
Class Notes on The Mathematical Foundations of

Iterative Program Analysis

Omer Tripp and Guy Ilany

March 28, 2011

Scope These notes present the mathematical underpinnings of iterative pro-
gram analysis. This background enables declarative definition of the solution
computed by an analysis, such that different solutions can be compared and the
notion of a “best” (or “most exact”) solution can be treated formally.

1 Lattice Theory

1.1 Posets

A partially-ordered set (poset) is a binary relation v over a set L that is reflexive,
antisymmetric and transitive. For all a, b and c in L we have that:

• a v a (reflexivity);

• a v b ∧ b v c⇒ a v c (transitivity); and

• a v b ∧ b v a⇒ a = b (antisymmetry).

We denote a poset by 〈L,v〉.
Intuitively, a poset formalizes the intuitive concept of ordering the elements

of a set. Here are some examples:

1. The total order according to weak inequality on natural numbers: 〈N,≤〉.
(Note that strong inequality (<) does not induce a poset, since it is not
reflexive.)

2. The powerset of set S, P(S), where X v Y ⇔ X ⊆ Y : 〈P(S),⊆〉.

3. The powerset of set S, P(S), where X v Y ⇔ X ⊇ Y : 〈P(S),⊇〉. In this
case, ⊥ = S and > = ∅.

In program analysis, the ordering imposed on a set of elements corresponds
to the accuracy of the analysis’ solution:

l1 v l2
⇔ l1 is more precise than l2
⇔ l1 represents fewer concrete states than l2

1

We saw the example of constant propagation, where the following poset is used:

• L = N ∪ {⊥,>}; and

• v= {〈⊥, n〉 | n ∈ N} ∪ {〈n,>〉 | n ∈ N}.

⊥ represents an unitialized value, and is thus the least element in 〈L,v〉. > is
used if the analysis concludes that a variable can be assigned more than one
integral value, and thus represents the least precise solution. This notion of com-
parability is used to impose an ordering on program environments: Environment
env1 is smaller than environment env2 if the value assigned to each variable in
env1 is smaller than its value in env2. Consider for example a program with
two variables, x and y. Then:

[x 7→ ⊥, y 7→ ⊥] v [x 7→ ⊥, y 7→ 7] v [x 7→ 2, y 7→ 7] v [x 7→ 2, y 7→ >] v [x 7→ >, y 7→ >].

In what follows, we use the following notations:

• l1 w l2 ⇔ l2 v l1;

• l1 @ l2 ⇔ l1 v l2 ∧ l1 6= l2; and

• l1 A l2 ⇔ l2 @ l1.

1.2 Upper and Lower Bounds

Given poset 〈L,v〉 and subset L′ of L (L′ ⊆ L), we say that l ∈ L is a lower
bound of L′ if

∀l′ ∈ L′. l v l′.

Analogously, we say that u ∈ L is an upper bound of L′ if

∀l′ ∈ L′. l′ v u.

l0 ∈ L is a greatest lower bound of L′ ⊆ L if (i) l0 is a lower bound of L′,
and (ii) for any lower bound l of L′, l v l0. Analogously, u0 ∈ L is a least upper
bound of L′ if (i) u0 is an upper bound of L′, and (ii) for any upper bound u of
L′, u0 v u.

Lemma Given poset L, for every subset L′ of L:

• If the greatest lower bound of L′ exists, then it is unique. In this case, we
denote it by uL′, and refer to it as the meet over L′.

• If the least upper bound of L′ exists, then it is unique. In this case, we
denote it by tL′, and refer to it as the join over L′.

2

Proof We show the proof for the greatest lower bound. The proof for the
least upper bound is analogous. Let L be a poset and L′ ⊆ L. Assume that u
and u′ both satisfy (i) and (ii) above. Then because u is a lower bound and u′

is a greatest lower bound, (ii) prescribes that u v u′. Symetrically, since u′ is
a lower bound and u is a greatest lower bound, (ii) prescribes that u′ v u. We
now use the fact that L is a poset, and thus v is antisymmetrical, to conclude
that u v u′ ∧ u′ v u⇒ u = u′. This concludes our proof.

In what follows, we sometimes abuse notation and write a u b (resp. a t b)
to refer to the meet u{a, b} (resp. join t{a, b}) of two elements, a and b.

1.3 Complete Lattices

Poset 〈L,v〉 is a complete lattice if every subset of L has a least upper bound
as well as a greatest upper bound. We denote a complete lattice as a tuple
〈L,v,t,u,⊥,>〉, where

• ⊥ = t∅ = uL; and

• > = tL = u∅.

The least element is the greatest lower bound over all the elements in L, and
thus ∀l ∈ L. ⊥ v l. Similarly, the greatest element is the least upper bound
over all the elements in L, and thus ∀l ∈ L. l v >.

The examples we gave above of posets (〈N,≤〉, 〈P(S),⊆〉, 〈P(S),⊇〉, and
the constant-propagation poset) are all also complete lattices. However, if we
omit > from the constant-propagation lattice and consider L = N ∪ {⊥} and
v= {〈⊥, n〉 | n ∈ N} instead, then 〈L,v〉 is no longer a complete lattice. For
example, the least upper bound of Nodd does not exist.

The following claim asserts that there is redundancy in the above definition
of a complete lattice, in that it suffices to require the existence of either a least
upper bound or a greatest lower bound for every subset of L:

Claim Let 〈L,v〉 be a poset. Then

L is a complete lattice
⇔ every subset of L has a least upper bound
⇔ every subset of L has a greatest lower bound.

Proof We prove the equivalence between the first and second conditions. The
equivalence between the first and third conditions is proved analogously. Since
the first condition immediately entails the second condition, we need only prove
that if every subset of L has a least upper bound, then L is a complete lattice.

Thus, we assume the second condition, and let L′ be a subset of L. We shall
show that L′ has a greatest lower bound. Consider set

S = {l ∈ L | ∀l′ ∈ L′. l v l′} .

3

By definition, S is the set of all lower bounds of L′. Now, since the second
condition holds for L, the join over S, u = tS, is defined. We shall prove that
u is also the greatest lower bound of L′:

• First, we prove that u is a lower bound of L by choosing some arbitrary
l ∈ L and proving that l w u. Observe that ∀s ∈ S.s v l, since each s ∈ S
is not greater than all the elements in L, and in particular, l. This implies
that l is an upper bound of S. Hence, by definition of the least upper
bound, it holds that u is not greater than any other upper bound of S,
and thus u v l.

• Next, we observe that u is the greatest lower bound of L′. This follows
from the fact that u is the least upper bound of S, and thus an upper
bound of S, which implies that ∀s ∈ S. s v u. That is, there is no lower
bound of L′ that is greater than u.

Based on these two properties of u, we conclude that u is the greatest lower
bound of L′, which completes our proof.

1.4 Constructors for Complete Lattices

In many program analyses, we are interested in the approximation of multiple
values at multiple program locations. For example, in constant propagation,
our objective is to compute a safe approximation of the (integral) values as-
signed to each variable at each program location. This motivates the following
constructors for complete lattices:

Cartesian product Let 〈L1,v1〉 = 〈L1,v1,t1,u1,⊥1,>1〉 and 〈L2,v2〉 =
〈L2,v2,t2,u2,⊥2,>2〉 be complete lattices. Then poset L = 〈L1 × L2,v〉
where

〈x1, y1〉 v 〈x2, y2〉 ⇔ x1 v x2 ∧ y1 v y2

is also complete lattice, as we now prove formally. (Note that v is overloaded.
We disambiguate which overload is used where needed.)

Assuming that L1 and L2 are complete lattices, we show for L = 〈L1 × L2,v〉
that (i) L is a poset, and (ii) every subset of L has a least upper bound. For
(i), we show that v is reflexive, transitive and antisymmetric:

• Reflexivity 〈x, y〉 vL 〈x, y〉 ⇔ x vL1
x ∧ y vL2

y ⇔ T , since both vL1

and vL2
are reflexive.

• Transitivity Assume that 〈x1, x2〉 vL 〈y1, y2〉 and 〈y1, y2〉 vL 〈z1, z2〉.
This implies that

x1 vL1
y1 ∧ y1 vL1

z1, and thus, from the transitivity of L1: x1 vL1
z1

x2 vL2
y2 ∧ y2 vL2

z2, and thus, from the transitivity of L2: x2 vL2
z2

Now, since x1 vL1 z1 and x2 vL2 z2, we conclude that 〈x1, x2〉 vL 〈z1, z2〉.

4

• Antisymmetry Assume that (1) 〈x1, y1〉 vL 〈x2, y2〉 and (2) 〈x2, y2〉 vL

〈x1, y1〉. Then

x1 vL1 x2 (by (1)) ∧ x2 vL1 x1 (by (2)) ⇒ x1 = x2 (by the antisymmetry of L1)

y1 vL2 y2 (by (1)) ∧ y2 vL2 y1 (by (2)) ⇒ y1 = y2 (by the antisymmetry of L2),

which implies 〈x1, x2〉 = 〈z1, z2〉.

For (ii), let X ⊆ L. We define X1 = {l1 ∈ L1 | ∃l2 ∈ L2. 〈l1, l2〉 ∈ X} and
X2 = {l2 ∈ L2 | ∃l1 ∈ L1. 〈l1, l2〉 ∈ X}. Then the least upper bounds of X1 and
X2, x1 = tX1 and x2 = tX2, are well defined. We claim that x = 〈x1, x2〉 is
the least upper bound of X. First, we observe that x is an upper bound of X.
Now, let y = 〈y1, y2〉 be an upper bound of X. Then

∀z = 〈l1, l2〉 ∈ X.z v y ⇒
l1 v y1 ∧ l2 v y2 ⇒
y1 is an upper bound of X1 ∧ y2 is an upper bound of X2 ⇒
y1 w x1 ∧ y2 w x2 ⇒
y w x.

This concludes our proof.
Using the cartesian-product constructor, we can simultaneously represent

the constant-propagation solution for multiple variables. Each component in
the cartesian product corresponds to a specific variable in the program. We still
need, however, to distinguish between program locations. Hence the following.

Finite maps Let 〈L1,v1〉 = 〈L1,v1,t1,u1,⊥1,>1〉 be a complete lattice and
V a finite set. Then poset L = 〈V → L1,v〉 where

e1 v e2 ⇔ ∀v ∈ V. e1 v v e2 v (1)

is a complete lattice, as we now prove.
To show that L is indeed a complete lattice, we need to show that (i) L is

a poset and (ii) every subset of L has a least upper bound. We leave (i) as a
simple exercise, and move straight to (ii). Let X ⊆ L. For each v ∈ V , we
define Xv = {l ∈ L1 | ∃e ∈ X.e v = l}. Then xv = tXv is well defined. We
claim that e = λv ∈ V. xv is the least upper bound of X. First, note that e is
an upper bound of X. Next, let e′ be an upper bound of X. Then given v ∈ V ,
∀e′′ ∈ X.e′ v w e′′ v, and thus e′ v is an upper bound of Xv, which implies that
e′ v w xv. Thus, according to (1), e′ w e. We conclude that e is the least upper
bound of X, which concludes our proof.

In constant propagation, V represents the (finite) set of program variables.
Every program variable is mapped via the solution computed by the constant-
propagation analysis to an abstract value. Since L is a poset, we can compare be-
tween different constant-propagation solutions according to the condition in (1).

5

2 Fixed Points

Iterative program analysis relies a notion of convergence, which we now treat
formally.

2.1 Chains

Let L = 〈L,v〉 be a poset. Then subset Y of L is a chain if every two elements
in Y are ordered:

∀l1, l2 ∈ Y. l1 v l2 ∨ l2 v l1.

Sequence 〈l1, l2, . . .〉 of values is considered an ascending chain (resp. descending
chain) if l1 v l2 v . . . (resp. l1 w l2 w . . .). 〈l1, l2, . . .〉 is a strictly ascending
chain (resp. strictly descending chain) if l1 @ l2 @ . . . (resp. l1 A l2 A . . .).

We say that poset L = 〈L,v〉 has a finite height if every chain in L is finite.
For example, the constant-propagation lattice has a finite height of 3. Every
maximal strictly ascending chain there is of the form: 〈⊥, n,>〉 (n ∈ N).

Lemma Poset L = 〈L,v〉 has a finite height iff every strictly ascending and
strictly descending chain in L is finite.

Proof We need only show that if every strictly ascending and strictly descend-
ing chain in L is finite, then L has a finite height. Let us falsely assume that this
is not the case. Then by definition, there is an infinite chain Y = 〈l1, l2, . . .〉 in
L. Since v, when restricted to the elements in Y , is a total order, we can trans-
form Y into a strictly ascending chain Y ′ = 〈li1 , li2 , . . .〉 (where li1 @ li2 @ . . .),
contrary to our assumption that there are no infinite strictly ascending chains
in L. This concludes our proof.

Intuitively, chains bound the amount of iterations that an iterative analysis
would perform in the worst case: If all the chains are finite, then the height of
the poset is finite, and so the analysis is guaranteed to converge at some point
assuming that it behaves monotonically, which brings us to our next definition.

2.2 Monotone Functions

Let L = 〈L,v〉 be a poset. Function f : L→ L is monotone if

∀l1, l2 ∈ L. l1 v l2 ⇒ f(l1) v f(l2).

A simple class of monotone functions is those mapping all values in L is a
constant value: fk : L → L = λl ∈ L. k. fk is monotone since ∀l1 v l2 ∈
L. fk(l1) = fk(l2)⇒ fk(l1) v fk(l2).

An example we saw in program analysis is constant propagation, where the
transfer functions defined on the edges of the program’s control-flow graph are
monotone. Here are some examples:

6

• Nop The transfer function corresponding to a skip statement is the
identity function, id = λe. e. This function is visibly monotone, since
e1 v e2 ⇒ id(e1) = e1 v id(e2) = e2.

• Assignment The transfer function corresponding to assignment state-
ment x=2 is ass = λe. e[x 7→ 2]. Consider environments e1 and e2, such
that e1 v e2. Then ass(e1) v ass(e2), since

∀v ∈ V ar \ {x}. ass(e1) v v ass(e2) v ∧ ass(e1) x = ass(e2) x.

2.3 Tarski’s Theorem

We say that l ∈ L is a fixed point of function f : L→ L if f(l) = l.
(Notice that in the general case, the least fixed point (greatest fixed point) does
not allways exist, but when L is a complete Lattice, both allways exist.)
We are interseted in finding the least and greatest fixed points of f .

For example:

f : P(U)→ P(U) Least Fixed Point Greatest Fixed Point
f(X) = X ∅ U
f(X) = ∅ ∅ ∅

f(X) = X \A ∅ U \A
f(X) = X ∪A A U

Another simple example of Constant Propogation is sketched below:

Figure 1: A simple constant propogation Control Graph

This simple example has 3 states CP1, CP2, CP3 (each of which contains a
single variable x), with 3 transitions:

• CP1 = [X 7−→ 0]

• CP2 = CP1[X 7−→ 0] t CP2

• CP3 = CP3

7

Figure 2: Visualization of Tarski’s theorem

So we can look at f as a function that operates on a triplet of states and returns
a triplet of states. A least fixed point of this function needs to be least fixed
point simultaneously in SP1, SP2 and SP3.

It is easy to see that:

(SP1, SP2, SP3) is a fixed point is lfp
(0, 3, 3) Yes Yes
(0,>,>) Yes No
(>,>,>) No No
(0,⊥,>) No No

Given monotone function f : L→ L, where L = 〈L,v,t,u,⊥,>〉 is a com-
plete lattice, we define:

• Fix(f) = {l | l ∈ L. f(l) = l} (the fixed-points set)

• Red(f) = {l | l ∈ L. f(l) v l} (the reductive set)

• Ext(f) = {l | l ∈ L. l v f(l)} (the extensive set)

Tarski’s Theorem, 1955 Let L = 〈L,v,t,u,⊥,>〉 be a complete lattice,
and f : L→ L a monotone function. Then the least fixed point and the greatest
fixed point of f , denoted by lfp(f) and gfp(f) respectively, satisfy:

• lfp(f) = Fix(f) = Red(f) ∈ Fix(f)

8

• gfp(f) =
⊔
Fix(f) =

⊔
Ext(f) ∈ Fix(f)

A visualization of Tarski’s theorem is presented in Figure 2.

Proof We prove the claim for lfp(f). The proof for gfp(f) is analogous. Let
a = uRed(f). Notice that a is well defined, since L is a lattice and {l ∈ L |
f(l) v l} ⊆ L, and so a = u{l ∈ L | f(l) v l} exists and is unique.

We show both f(a) v a and a v f(a), thus concluding that a = f(a) (since
v is antisymmetric). This implies that a ∈ Fix(f). To see that a = lfp(f),
notice that since v is reflexive, it follows that Fix(f) v Red(f), and by the
definition of a, we get that a = Fix(f) and is the least fixed point of f , thus
proves Tarski’s theorem.

We first show that f(a) v a, so that a ∈ Red(f): Since (i) a v l for all
l ∈ Red(f) and (ii) f is monotone, we have

∀l ∈ Red(f). a v l⇒ (employing f , which is monotone)

f(a) v f(l)⇒ (by definition, ∀l ∈ Red(f).f(l) v l)
f(a) v l

Thus, f(a) is a lower bound of Red(f). Since a is the greatest lower bound
of Red(f), by definition, we conclude that f(a) v a.

In the other direction, we observe that since f is monotone

f(a) v a⇒ f(f(a)) v f(a),

which implies that f(a) ∈ Red(f). Now, again, since a is the greatest lower
bound of Red(f), and in particular, a lower bound of Red(f), we conclude that
a v f(a), which completes our proof.

Computing lfp(f) From the perspective of program analysis, lfp(f) repre-
sents the most precise fixed-point solution. This solution may not be computable
in general, but as Tarski’s theorem shows, it is guaranteed to exist. We claim
that the following (simple) algorithm computes lfp(f) if it terminates:

x = ⊥
while f(x) 6= x

x := f(x)

A similar algorithm can be defined for computing gfp(f), this time starting
with x = >.

First, note that if the algorithm terminates, then x = f(x), meaning that the
final value is in Fix(f). In order to prove that the algorithm indeed converges
on lfp(f), we show that it satisfies a stronger property: At each point along the
computation, x is a lower bound of Fix(f).

9

We take advantage of the fact that f is monotone, and prove our claim using
induction on the number of loop iterations. Our base case is trivially correct,
since ⊥ is obviously a lower bound. Assume that after i − 1 iterations, x is a
lower bound of Fix(f). Thus, in the i-th iteration:

∀l ∈ Fix(f). x v l⇒ (f is monotone)

f(x) v f(l)⇒ (l = f(l))

f(x) v l

and since the i-th iteration ends with the assignment x := f(x), we conclude
that after the i-th iteration, x is still a lower bound of Fix(f).

Recall that this is true only if the algorithm terminates, which in general is
not guaranteed. Notice, however, that if the lattice L over which f is defined
has a finite height, then the algorithm is guaranteed to terminate.

2.4 Chaotic Iterations

Given a lattice L = 〈L,v,t,u,⊥,>〉 with finite strictly increasing chains: Ln =
L × L × L × · · · × L and a monotone function f : Ln → Ln, it is desirable to
compute lfp(f) (which as stated before, must exist). Notice that lfp(f) is
defined as the set of simultaneous least fixed points of each dimention: {xi |
xi = lfp(fi), i = 1 . . . n}

Thus if we have a program with n statements, and we wish to calculate the
least fixed point of the program (which means calculating the least fixed point
of every statement), we can simply look for the least fixed point of the function
f (f : Ln → Ln).

One naive way for searching is by using the generic algorithm we’ve seen
earlier:

x = (⊥,⊥, . . . ,⊥)

while f(x) 6= x

x := f(x)

(Notice the slightly different vector form of the algorithm.)
This algorithm, in case of convergence, indeed finds lfp(f), but is extremely
inefficient, taking O(n) time at each step due to the vector form, so that if the
height of the control graph is h, the number of steps until a solution is found
could be O(h∗n2), which is not good enough since it does not follow the control
flow of the program and recomputes the program property associated with every
control point at each iteration step. An improved algorithm should structure its
traversal method to conservatively include only those steps that might influence
the final outcome and to skip those that cannot exert any influence.

We now take a look at a simple scheme which basically breaks the operations
on vectors to operating on a single variable (of a single dimention), and finds

10

the lfp of that dimention. From that point on, this dimention could be ignored
while searching for the lfp of another dimention. This process continues until
each dimention’s lfp is found. Notice that the solution is obviously equal to
that of the vector form, according to the definition.

The algorithm maintains a worklist (WL) which holds the indices (corre-
sponding to statements), where lfp was not already found. Initially, since no
computation has been made, the list contains all indices. As the algorithm pro-
gresses, an index is removed from the list and processed. Processing an index
might result in other nodes being added to the list. The process continues until
the work-list is empty - there is no more work to be done. In our context, the
work that is done for each index is to update our knowledge of constants at a
point in the program. If, when processing an index (this is done by applying the
transfer function), changes are made to the following state, we will add to the
list all the indices of those states that might be influenced. When the algorithm
converges (so no more changes are made, and f(x) = x) it will terminate. The

Figure 3: Chaotic Iteration algorithm

general algorithm, in its vector form, is presented in Figure 3.
This algorithm is a generic scheme due to the selection made at each itera-

tion. Although the final outcome is the same no matter which selection scheme
is used, ordering has considerable impact on performance. This algorithm pro-
duces the minimum number of non-constants (due the least fixed point) and
maximum number of ⊥ due to the initialization stage.

The control-flow graph of a program is a natural way of representing depen-
dencies between elements in the worklist. The indices that directly depend on

11

i correspond to the control-flow locations immediately succeeding the location
represented by i (and i itself may be among them if it is a successor of itself).

For example, given the program:

x := 0

while x ≤ 10 do begin :

y := 0

while y ≤ x do :

y := y + 1

end

Figure 4 represents its control-flow graph, which discloses the dependencies

Figure 4: A cotrol-flow graph example

between (potential) worklist elements.
A similar algorithm that is adapted for the control-graph form, is presented

in Figure 5. Notice that the worklist is initialized with the starting node s
alone. This might result in fewer iterations, in case the control graph contains
unreachable nodes.

Another representation of the algorithm, in both forms, is via a system of
equations:

S =

{
dfentry[s] = τ
dfentry[v] =

⊔
{f(u, v)(dfentry[u]) | (u, v) ∈ E}

12

Figure 5: Chaotic Iteration algorithm, CFG form

for representing the CFG form, and:

FS : Ln → Ln =

{
FS(X)[s] = τ
FS(X)[v] =

⊔
{f(u, v)(X[u]) | (u, v) ∈ E}

for representing the vector form, where τ is an initial assigment of the start
node s

The solution is the same in both representations, i.e. lfp(S) = lfp(FS).
The number of equations is the same as the number of nodes in the graph, and
the goal is a minimal solution for the system.

What follows is an example of the algorithm’s operation on a familiar sample
program. Figure 6 presents the CFG and transfer functions for the example,
and Table 1 describes the state changes during the algorithm’s operation.

Below is a short description of the algorithm’s operation corresponding to
the example presented in Figure 6 and Table 1:

1. The initial state.

2. Node 2 has been added to WL (node 1 was removed), and the state
dfentry[2] is updated with z 7→ 3 according to the transfer function.

3. Node 3 has been added to WL (node 2 was removed), and the state
dfentry[3] is updated with x 7→ 1 according to the transfer function.

13

z =3

x =1

while (x>0)

if (x=1)

y =7 y =z+4

x=3

print y

e.e[z3]

e.e[x1]

e. if x >0 then e else

e. if x 0 then e else

e. e [x1, y , z] e. if x 0 then e else

e.e[y7] e.e[ye(z)+4]

e.e[x3]

e.e

1

2

3

4

5 6

7

8

[x0, y0, z0]

Figure 6: CFG and its corresponding transfer functions

4. Node 4 has been added to WL (node 3 was removed), and the state
dfentry[4] is [x 7→ 1, y 7→ 0, z 7→ 3].

5. Node 5 has been added to WL (node 4 was removed), and the state
dfentry[5] is [x 7→ 1, y 7→ 0, z 7→ 3] as well.

6. Both edges (5, 6) and (5, 7) are traversed, but since the transfer function
corresponding the edge (5, 6) yields a fixed point, node 6 is not added to
the WL while node 7 does. The value of y changes accordingly.

7. Node 8 has been added to WL (node 7 was removed), and the vale of x
has changed to 3 according to the transfer function.

8. Node 3 has been added to WL (node 8 was removed), and the values of x
and y are updated in dfentry[3] (the value of z does not change).

9. Node 4 has been added to WL (node 3 was removed), and the values of x
and y are updated in dfentry[4] (the value of z does not change).

10. Both nodes 5 and 6 have been added to WL (node 4 was removed). The
value of y is updated in dfentry[5] (the value of x and z do not change).

11. dfentry[6] is updated with [x 7→ 1, y 7→ >, z 7→ 3]. Node 5 has been
removed.

14

Table 1: State changes while running the algorithm

WL dfentry[v]
1 {1} dfentry[1] = [x 7→ 0, y 7→ 0, z 7→ 0]
2 {2} dfentry[2] = [x 7→ 0, y 7→ 0, z 7→ 3]
3 {3} dfentry[3] = [x 7→ 1, y 7→ 0, z 7→ 3]
4 {4} dfentry[4] = [x 7→ 1, y 7→ 0, z 7→ 3]
5 {5} dfentry[5] = [x 7→ 1, y 7→ 0, z 7→ 3]
6 {7} dfentry[7] = [x 7→ 1, y 7→ 7, z 7→ 3]
7. {8} dfentry[8] = [x 7→ 3, y 7→ 7, z 7→ 3]
8 {3} dfentry[3] = [x 7→ >, y 7→ >, z 7→ 3]
9 {4} dfentry[4] = [x 7→ >, y 7→ >, z 7→ 3]
10 {5, 6} dfentry[5] = [x 7→ 1, y 7→ >, z 7→ 3]
11 {6, 7} dfentry[6] = [x 7→ >, y 7→ >, z 7→ 3]
12 {7} dfentry[7] = [x 7→ >, y 7→ 7, z 7→ 3]

12. The value of x in dfentry[7] is updated to >. While employing the tran-
sition function of edge (7, 8), the algorithm reaches a fixed point of [x 7→
3, y 7→ 7, z 7→ 3], and the work-list is empty.

15

