
Constant Propagation
Class notes
Program Analysis course given by Prof. Mooly Sagiv
Computer Science Department, Tel Aviv University
second lecture 8/3/2007

Osnat Minz and Mati Shomrat

Introduction

This lecture focuses on the Constant Propagation Analysis. This is just one of
many types of analyses that can be applied to programs. We use this example as
an incentive for the introduction of the mathematical foundation that will serve us
throughout the course. We focus on partially ordered sets, lattices and their rela-
tion to monotone functions. We later use those to formalize our analysis technique
and prove its correctness.

We start by introducing the Constant Propagation problem. The aim of our
analysis is to determine for each program point, whether a variable has a constant
value whenever the execution reaches that point. Furthermore, if a variable is
constant at some point we would like to know its value.

Information about constants can be used, for example, in the process of opti-
mization, where all uses of a variable may be replaced by the constant value.

Informal Example
We describe an informal algorithm for the computation of constants in order to
give the reader some intuition as to how the algorithm works before delving into
the mathematical world.

Before describing the algorithm let us define two values:

Top denoted>, will serve us to indicate that a variable is potentially non-constant
and

Bottom denoted ⊥, is the most accurate value that can be assigned. It captures
the case where the set of represented states is empty.

1



2

1. z := 3
2. x := 1
3. while (x > 0) do
4. if (x = 1)
5. y := 7
6. else
7. y := z + 4
8. x := 3
9. print y

Fig. 1: A simple example program

Consider the simple C like program shown in figure 1. We can make several
observations about the program:

• In line 2, z has the value 3

• In line 5, x has the value 1

• In lines 8,9, y has the value 7, thus the print statement can be replaced by
print 7

• In line 4, x either has the value 1 or 3, hence it is not a constant.

Let us now describe an informal algorithm for the Constant Propagation prob-
lem. The algorithm simply follows the program’s flow. At each statement we
remember the environment, a mapping between the program’s variables to their
values in Z ∪ {⊥,>}. It is an iterative algorithm in the sense that if the analyzed
program contains loops it will follow them. The algorithm stops once no more
changes are detected.

For the program in Figure 1 the steps of the algorithm are as follow:

1. Initialization: assign initial values to the program’s variables [x 7→ 0, y 7→
0, z 7→ 0]

2. z = 3, change the value of z [x 7→ 0, y 7→ 0, z 7→ 3]

3. x = 1, change the value of x [x 7→ 1, y 7→ 0, z 7→ 3]

4. while (x >0), at this point we have x 7→ 1 so we have no choice but t
enter the loop.

5. if (x = 1), indeed this is the case, so the algorithm only follows the
then branch.



3

6. y = 7, change the value of x [x 7→ 1, y 7→ 7, z 7→ 3]

7. x = 3, change the value of x [x 7→ 3, y 7→ 7, z 7→ 3]

8. print y, at this point we currently have [x 7→ 3, y 7→ 7, z 7→ 3]. We have
now completed our first iteration of the loop and we return to the while
statement.

9. while (x >0), from our initial iteration we have at this program point
[x 7→ 1, y 7→ 0, z 7→ 3], but now we have [x 7→ 3, y 7→ 7, z 7→ 3]. The state
at this point should have been [x 7→ {1, 3}, y 7→ {0, 7}, z 7→ 3]. Since we
represent states in a conservative way we get [x 7→ >, y 7→ >, z 7→ 3]

Again we enter the loop, but now since x is non-constant we will execute
both branches of the if statement.

10. First, we follow the then branch. We note that on that path x is 1, we get
[x 7→ 1, y 7→ 7, z 7→ 3]

11. Continuing down that path x = 3 and by the time we reach the print state-
ment we get [x 7→ 3, y 7→ 7, z 7→ 3]

12. We go back to the else branch were we have [x 7→ >, y 7→ 7, z 7→ 3]

13. Following that path as well, by the time we reach the print statement we
have [x 7→ 3, y 7→ 7, z 7→ 3]

14. Termination, since both paths lead to the same environment in the print
statement, and since this environment is the same as the one calculated on
our previous journey through that point in the program the algorithm termi-
nates.

In the remainder of this document we will formulate the above algorithm,
giving it firm mathematical foundation and then prove its correctness.

A (more) Formal Example
For a program S the Constant Propagation algorithm contains the following stages:

1. Construct a control flow graph (CFG) of the program S.

2. Associate transfer functions with the edges of the CFG. The transfer func-
tion of an edge reflects the semantics of the atomic statements at its source
node.



4

3. At every node (program point) we maintain the values of the program’s
variables at that point. We initialize those to ⊥.

4. Iterate until the values of the variables stabilize.

Later we will show that the algorithm always terminate and that no matter how
we chose to traverse the CFG the outcome of the algorithm will be unique. Note,
however, that while the order of traversal does not affect the correctness of the
algorithm it will influence its cost, that is the number of iterations.

Control Flow Graph

A control flow graph (CFG) is a graph representation of all execution paths that
might occur in a program. Each node in the graph represents an atomic statement;
directed edges are used to represent transfers in the control flow. The graph is
finite and its size is proportional to the program size. The graph can be built by a
compiler. There might be paths in the CFG that are unreachable at run time.

Figure 2 shows the CFG for our working example.

Fig. 2: Control Flow Graph of the example program



5

Transfer Functions

At every node in the graph we store the known environment. We assign a transfer
function to each edge in the control flow graph. The transfer function is a mapping
from one environment to the other that corresponds to the semantics of its source
node.

We will use lambda expressions to describe the transfer functions. For exam-
ple, λe.e, the identity function, corresponds to the skip statement. λe.[x 7→ 2]
is the function corresponding to the assignment statement x = 2. The function
modifies only the value of the variable x in the environment.

The binary function meet (u) and join (t) are two elements in the set of trans-
fer functions. The meet function can be thought of as taking the intersection of
two mappings, and the join function as taking the union. Table 1 shows the output
of the two functions when applied to values from Z ∪ {⊥,>}.

d
> n ∈ N m 6= n ⊥

> > n m ⊥
n ∈ Z n n ⊥ ⊥
m 6= n m ⊥ m ⊥
m = n m ⊥ m ⊥
⊥ ⊥ ⊥ ⊥ ⊥

(a)

⊔
> n ∈ N m 6= n ⊥

> > > > >
n ∈ Z > n > n
m 6= n > > m m
m = n m ⊥ m ⊥
⊥ > > m ⊥

(b)

Tab. 1: Meet and Join functions

In Figure 2 a label is assigned to each of the graph’s edges. We assign a
transfer function to each such edge:



6

(1) λe.e[z 7→ 3]
(2) λe.e[x 7→ 1]
(3) λe. if e(x) ≤ 0 then e else ⊥
(4) λe. if e(x) > 0 then e else ⊥
(5) λe.e u [x 7→ 1, y 7→ >, z 7→ >]
(6) λe.e[y 7→ 7]
(7) λe. if e(x) 6= 1 then e else ⊥
(8) λe.e[y 7→ e(z) + 4]
(9) λe.e[x 7→ 3]
(10) λe.e

The revised algorithm

The algorithm then progresses in a similar way to the informal algorithm we de-
scribed earlier.

• Initialization. The environment e0 = [x 7→ 0, y 7→ 0, z 7→ 0] is assigned
to the starting node v0. We initialize the environments in all other nodes to
be ⊥.

• Graph traversal. The algorithm traverses the graph in a depth first search
(DFS) manner. As it advances from node v to u it joins the environment
in u with the new environment obtained by applying the transfer function
associated with the edge (v, u) to the environment in v.

• Termination. Once the iterative application of the transfer functions yields
no more changes to the environments the algorithm terminates.

Notice, that while for this more formal example we specified the traversal
scheme to be DFS this is not a requirement of the algorithm. Different traversal
scheme may be applied. The outcome is unique and does not depend on the order
of traversal. However, different traversal schemes may converge in different rates,
affecting the efficiency of the algorithm.

In the above examples we provided an informal and intuitive description of an
algorithm that compute the constants of a program. Before continuing to further
formalize our algorithm and to prove its correctness we now establish mathemat-
ical foundation on which we can build.

Mathematical Foundation

Partially ordered sets and complete lattices play a crucial role in program analysis,
we shall summarize some of their properties. We review the basic approaches for



7

to construct complete lattices from other complete lattices and state the central
properties of partially ordered sets satisfying the ascending and descending chain
condition. We then review the classical results about least and greatest fix points.

Partially Ordered Sets (Poset)
A partial ordering is a binary relation v: L× L → {True,False} that is:

• Reflexive ∀l ∈ L : l v l

• Transitive ∀l1, l2, l3 ∈ L : l1 v l2 ∧ l2 v l3 ⇒ l1 v l3

• Anti-symmetric ∀l1, l2 ∈ L : l1 v l2 ∧ l2 v l1 ⇒ l1 = l2

A partially ordered set (or poset) is a set equipped with a partial ordering
relation. This relation formalizes the intuitive concept of an ordering, sequencing,
or arrangement of the set’s elements.

For the sake of simplicity we will use the following notation in the remainder
of the document:

• l1 v l2 ⇔ l2 w l1

• l1 @ l2 ⇔ l1 v l2 ∧ l1 6= l2

• l1 @ l2 ⇔ l2 A l1

A few examples of partially ordered sets are:

• The set of natural numbers equipped with the lesser than relation (N,≤)

• Power sets - set of subsets of a given set S along with the subset or superset
relations. (P (S),⊆)or(P (S),⊇)

• Program environment - We say that one program environment is smaller
than another environment if it is smaller on all program variables. For ex-
ample: [x 7→ ⊥, y 7→ ⊥] v [x 7→ 5, y 7→ ⊥] v [x 7→ 5, y 7→ 7] v [x 7→
>, y 7→ >]

We draw partially ordered sets as Hasse diagrams. Hasse diagrams are pic-
tures of a finite partially ordered set forming a drawing of the transitive reduction
of the partial order. The Hasse diagram of a poset (X, R) is the directed graph
whose vertex set is X and whose arcs are the covering pairs (x, y) in the poset.
We usually draw the Hasse diagram of a finite poset in the plane in such a way
that, if y covers x, then the point representing y is higher than the point represent-
ing x. No arrows are required in the drawing, since the directions of the arrows



8

Fig. 3: Hasse diagram for the divisors of 42

are implicit. Figure 3 shows the Hasse diagram for the divisors of 42, using ”di-
visibility” as partial ordering.
Upper and Lower Bounds. An upper bound of a subset S of some partially
ordered set (P,v) is an element of P which is greater than or equal to every
element of S. The term lower bound is defined dually as an element of P which
is lesser than or equal to every element of S.

More formally, if (P,v) is a poset than the following hold:

• l ∈ P is a lower bound of a subset S ⊆ P if for all s ∈ S : l v s

• u ∈ P is an upper bound of a subset S ⊆ P if for all s ∈ S : u w s

• l0 ∈ P is a greatest lower bounds of a subset S ⊆ P if l0 is a lower bound
of S and for all lower bounds l of S l0 w l.

• u0 ∈ P is a least upper bounds of a subset S ⊆ P if u0 is an upper bound
of S and for all upper bounds u of S u0 v u.

Note that subset S of a partially ordered set P need not have a least upper
bounds nor a greatest lower bounds, but when they exist they are unique (follows
from the anti-symmetry of v). We denote

d
P (meet) and

⊔
P (join) as the

greatest lower bounds and least upper bounds respectively.
As an example notice that for every subset of the natural numbers zero serves

as a lower bound. Every finite subset of the natural number also has a greatest
upper bounds.

Complete Lattices

A complete lattice is a partially ordered set (L,v) = (L,v,
d

,
⊔

,⊥,>) where all
subsets L′ ⊆ L has a least upper bounds and a greatest lower bounds. We denote



9

⊥ to be the least element, ⊥ =
⊔
∅ =

d
L, and > to be the greatest element,

> =
d
∅ =

⊔
L.

As an example of a complete lattice consider the powerset P(S) of some set
S. If we take v to be ⊂ then

⊔
S =

⋃
S,

d
L′ =

⋂
S,⊥ = ∅ and > = S. If we

take v to be ⊇ then
⊔

S =
⋂

S,
d

S =
⋃

S,⊥ = S and > = ∅. In case where
S = {1, 2, 3} figure 4 shows the two complete lattices.

Fig. 4: Two complete lattices

We can turn (N,≤) into a complete lattice by adding an artificial greatest
element ∞.

Lemma 1. For every partially ordered set L = (L,v) the following conditions
are equivalent:

(i) L is a complete lattice.

(ii) Every subset of L has a least upper bounds.

(iii) Every subset of L has a greatest lower bounds.

Proof. From the definition of complete latticea we have that (i) implies (ii) and
(iii). To show that (ii) implies (iii) we construct the meet operation using the join
operation. This suffice, because condition (ii) means that the join operation exists,
and condition (iii) is implied by the existence of the meet operation.

The construction of
d

is as follows: Let L′ ⊆ L, we denote
d̃

our candidated
and define

l̃
L′ =

⊔
{l ∈ L | ∀l′ ∈ L′ : l v l′}

.
We need to show that

d̃
L′ is indeed the greatest lower bound of L′. We note

that all elements on the right hand side of the definition are lower bounds of L′,
the join of all of them must also be a lower bound of L′. Since any lower bound
of L′ will be in the set it follows that

d̃
L′ =

d
L′.

To prove that (iii) implies (ii) we follow analogous arguments only this time
we are constructing the join from the assumed meet.



10

Construction of Complete Lattices

Complete lattice can be combine to construct other lattices.
Cartesian Product. Let (L1,v1) = (L1,v1,

⊔
1

d
1,⊥1,>1) be a complete

lattice and let (L2,v2) = (L2,v2,
⊔

2

d
2,⊥2,>2) be another complete lattice.

We define
L = {(l1, l2) | l1 ∈ L1 ∧ l2 ∈ l2}

and
(l11, l2,1) v (l1,2, l2,2) iff l1,1 v1 l2,1 ∧ l1,2 v1 l2,2

We write L = L1 × L2 and call it the cartesian product of L1 and L2. It is
straightforward to verify that L itself is a complete lattice. We can generalize the
construction to construct a lattice L = L1 × L2 × . . .× Ln.

Example. The Cartesian product of the thirteen-element set of standard play-
ing card ranks {Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2} and the four- el-
ement set of card suits {♣,♦,♥,♠} is the 52-element set of playing cards {(Ace,♣),
. . . , (2,♣), . . . , (Ace,♠), . . . , (2,♠)}. The Cartesian product has 52 elements be-
cause that is the product of 13 times 4.

Finite Maps. Let (L1,v1) = (L1,v1,
⊔

,
d

,⊥,>), be a complete lattice and V
be finite set. We define a poset L = (f : V → L1,v) where:

f1 v f2 if for all v ∈ V, f1(v) v1 f2(v)

It is straightforward to verify that L is a complete lattice.
Using combination of lattices will enable us to handle programs with multiple

variables, which is the the normal case for programs and otherwise we would only
be able to deal with unrealistic toy programs.

Monotone Functions. Let (L,v) be a poset. We say f : L → L is monotone
(also called order preserving) if for every two elements l1, l2 ∈ L, l1 v l2 ⇒
f(l1) v f(l2)

Lemma 2. Given a lattice L then f : L → L is monotone iff

∀X ⊆ L :
⊔
{f(z) | z ∈ X} v f(

⊔
{z | z ∈ X)}

Proof. Let f be monotone. From the definition of join we have that for all z ∈
X , z v

⊔
{x | x ∈ X}. Applying f and using its monotonicity we get f(z) v

f(
⊔
{x | x ∈ X}). Hence, f(

⊔
{x | x ∈ X}) is an upper bound of f(z), and

from the definition of join as a least upper bound we get
⊔
{f(z) | z ∈ X} v

f(
⊔
{x | x ∈ X}). We leave it as an exercise for the reader to prove the other

direction.



11

Intuitively, this lemma means that when working locally, traversing each path
on its own rather than considering all paths, we lose information. However, the
information loss is conservative.

We will require that out transfer functions be monotone, this requirement im-
plies that increase in our knowledge about the input result in an increase of our
knowledge about the output (or at least the our knowledge does not decrease).
Distributive Functions. We say f is distributive if for all X ⊆ L :

⊔
{f(x) |

x ∈ X} = f(
⊔
{x | x ∈ X}. In this case our iterative algorithm will give an exact

result, since no information loss occurs in the course of executing the algorithm.

Chains
Definition. A subset L′ ∈ L in a poset (L,v) is a called a chain if every two
elements in L′ are ordered. That means, for all l1, l2 ∈ L′ : l1 v l2 or l2 v l1.

• An ascending chain is a sequence of values: l1 v l2 v l3 v . . .

• A strictly ascending chain is a sequence of values: l1 @ l2 @ l3 @ . . .

• A descending chain is a sequence of values: l1 w l2 w l3 w . . .

• A strictly descending chain is a sequence of values: l1 A l2 A l3 A . . .

• We say L has a finite height if every chain in L is finite.

Example. Consider the complete binary tree and use ”prefix of” as partial
ordering. We get that every path in the tree is a chain.

Lemma 3. A poset (L,v) has finite height if and only if every strictly decreasing
and strictly increasing chains are finite.

Fixed Points
We say l ∈ L is a fixed point of a function f : L → L if f(l) = l.

Given a function f : L → L and a complete lattice L := (L,v,
d

,
⊔

,⊥,>)
we define the following three sets:

• The fixed points set Fix(f) = {l | f(l) = l}

• The reductive set Red(f) = {l | f(l) v l}

• The extensive set Ext(f) = {l | f(l) w l}



12

Fig. 5: Fixed Points

Figure 5 depicts the fixed points of f .
In order to see how our example program relates to the fixed points diagram

we claim (and prove shortly) that the outcome of our algorithm is the lfp(f). Since
our example program was quite trivial, we will modify it slightly by adding the
variable w initializing it to 0 and within the while loop we add the statement w =
w + 1 (see Figure 6). It is not hard to see that the final outcome of our algorithm
(the lfp(f)) is now [w 7→ >, x 7→ 3, y 7→ 7, z 7→ 3].

0. w = 0
1. z := 3
2. x := 1
3. while (x > 0) do
3+ w = w + 1
4. if (x = 1)
5. y := 7
6. else
7. y := z + 4
8. x := 3
9. print y

Fig. 6: Slightly modified example program

The state [w 7→ >, x 7→ >, y 7→ 7, z 7→ 3] is placed above the lfp(f) in the



13

diagram. If that would have been our algorithm’s outcome it would have been
a correct (sound) solution since every variable the algorithm claim is constant is
indeed so, but obviously this is not the best solution.

On the other hand if the outcome would have been [w 7→ 5, x 7→ 3, y 7→
7, z 7→ 3] we would say it is not sound, since though w is said to be a constant it
is not so. The state is depicted below the lfp(f) in the diagram.

We have:

⊥ v [w 7→ 5, x 7→ 3, y 7→ 7, z 7→ 3] v lfp v [w 7→ >, x 7→ >, y 7→ 7, z 7→ 3] v >

Tarski’s Theorem

Let L := (L,v,
d

,
⊔

,⊥,>) be a complete lattice. If f : L → L is monotone
then lfp(f) and gfp(f) satisfy:

lfp(f) =
l

Red(f) ∈ Fix(f)

gfp(f) =
⊔

Ext(f) ∈ Fix(f)

Proof. To prove the claim for lfp(f) we define l0 =
d

Red(f). We first show
that f(l0) v l0 so that l0 ∈ Red(f). Since l0 v l for all l ∈ Red(f) and f is
monotone we have

f(l0) v f(l) v l for all l ∈ Red(f)

and hence f(l0) v l0. To prove that l0 v f(l0) we observe that f(f(l0)) v f(l0)
showing that f(l0) ∈ Red(f) and hence l0 v f(l0) by definition of l0. Together
this shows that l0 is a fixed point of f so l0 ∈ Fix(f). To see that l0 is least in
Fix(f) simply note that Fix(f) ⊆ Red(f). It follows that lfp(f) = l0.
The claim for gfp(f) is proved in a similar way.

We have a special interest in lfp(f), since we would like to find the best solu-
tion without damaging the soundness of our algorithm. lfp(f) is that point, below
it our solution is not conservative. We sometimes will give a point above lfp(f)
as a result from efficiency considerations.

Calculating lfp(f)

Now that we’ve established the mathematical foundations we are interested in
finding constructive algorithm to compute the lfp(f) of every point in out pro-
gram. We’re interested in the lfp(f) since it give us the minimum number of
non-constant and the maximum number of ⊥.



14

x = ⊥
while x 6= f(x) do

x = f(x)

Consider the following algorithm:
We show that if this iterative algorithm terminates, it will compute lfp(f).

Note that if the algorithm terminate x = f(x), meaning that the end value is in
Fix(f). In order to prove that the algorithm indeed calculate lfp(f) all is left to
show is that the end value is a lower bound of Fix(f). We take advantage of the
fact that f is monotone, and prove our claim using induction on the number of
loop iterations.

Our base case is trivially correct, since⊥ is obviously a lower bound. Assume
that after i − 1 iterations x is a lower bound. In the ith iteration we calculate
the new value of x which is f(x). Since x is a lower bound we have that for all
l ∈ Fix(f) x v l. From the monotonicity of f we get f(x) v f(l) = l, and the
new value of x is still a lower bound.

This is true only if the algorithm terminates, which in the general case is not
guaranteed. Notice, however, that if the lattice L on which f is defined has a finite
height the algorithm is guaranteed to terminate.

A similar analysis can be done starting with x = > and calculating gfp(f).

Chaotic Iteration
Given a lattice L := (L,v,

d
,
⊔

,⊥,>) with finite strictly increasing chains, we
denote Ln = L × L × . . . × L. Let f : Ln → Ln be a monotone function. We
would like to compute lfp(f), which is the simultaneous fixed point of the system
{x[i] = f

i
(x)}

A naı̈ve algorithm for finding the lfp(f) of the combined system is a slight
modification of the above mentioned algorithm to handle vector of variables in-
stead of a single one.

−→x = {⊥,⊥,⊥, . . . ,⊥}
while −→x 6= f(−→x ) do

−→x = f(−→x )

Fig. 7: A naı̈ve algorithm

This algorithm, however correct, is extremely inefficient taking O(n) time at
each step.



15

The Algorithm

An improved algorithm should structure its traversal method to conservatively
include only those steps that might influence the final outcome and to skip those
who don’t.

At all times in the algorithm we maintain a work-list (WL) that holds the
tasks to be done. Initially, since no computation has been made, the list contains
all the statements. As the algorithm progresses, a task is removed from the list
and processed. Processing a task might result in other tasks being added to the
list. The process continues until the work-list is empty - there is no more work
to be done. In our context, the tasks are to update our knowledge of constants
at a point in the program. If by processing a task, applying the transfer function,
changes are made to the following state we will add to the list all the states that
might be influenced. When the algorithm converges – no more changes are made
– it will terminate. The algorithm is displayed in Figure 8.

Step 1 Initialization
for i:=1 to n do

x[i] = ⊥
WL = {1,2,...,n}
Step 2 Iteration (updating of WL and the values array)
while (WL 6=) do

select and remove an element i ∈ WL
new := fi(x)
if (new 6= x[i]) then

x[i] := new
add all indexes that directly depend on i to WL

Fig. 8: Chaotic Iteration

Notice that this is more a framework rather than a specific algorithm since the
details of how the work-list is maintained, as well as the specifics of the extrac-
tion operation are omitted. Various concrete algorithms can be derived from this
framework. All algorithms will have the same final outcome, which is lfp(f),
however, their complexity differs based on the exact details of implementation.

Specialized Chaotic Iteration

A variant of the chaotic iteration algorithm is defined in terms of graph rather than
the vector representation of the above algorithm. As with the above algorithm we
maintain a work-list of the nodes we still need to traverse. This will fit nicely with
a CFG representation of a program. The algorithm is defined in figure 9.



16

Chaotic(G(V, E):Graph, v0:Node, L:Lattice, ι:L, f : E → (L → L))
for each v ∈ V do

cfentry[v] = ⊥
cfenry[v0] = ι
WL = {v0, v1, v2, . . . , vn}
while (WL 6=) do

select and remove element u ∈ WL
for each v s.t. (u, v) ∈ E do

temp = f(e)(cfentry[u])
new := cfentry[v] t temp
if (new 6= cfentry[v]) then

cfentry[v] := new
WL := WL ∪ {v}

Fig. 9: Specialized Chaotic Iteration

We assume that there is a a designated control flow node v0 that is the start
node and has no incoming edges.

For a program S the graph is the CFG of S, v0 the starting node and ι is an ini-
tialization value chosen, for example, by the implementors of the compiler. Also,
the lattice L is the environments, namely a mapping from the program variables
to their value at a program point. f associates a transfer function with every edge
of the CFG.

The algorithm is equivalent to the following system of equations:

S :=

{
cfentry[s] = ι
cfentry[v] = t{f(u, v)(cfentry[u]) | (u, v) ∈ E}

and in vector representation:

FS : Ln → Ln :=

{
FS(X)[s] = ι
FS(X)[v] =

⊔
{f(u, v)(X[u]) | (u, v) ∈ E}

The solution is the same in both representations, i.e. lfp(S) = lfp(FS)
The number of equations is the same as the number of nodes in the graph, and

a minimal solution to the system is our desired result.

Soundness, Completeness and Complexity

We now turn to discuss the characteristics of the chaotic iteration algorithm.



17

Complexity. Let n be the number of nodes in the graph (CFG), n is propor-
tional in the size of our program which may be quite large. In practice, though, the
analysis will be applied to a single procedure at a time, thus maintaining a man-
ageable size. k is the maximum outdegree and is dependant on the programming
language. In our examples the maximum outdegree is 2, though in a language
such as C that has a switch statement the outdegree is unbound. h is the height
of the lattice which is proportional in the number of nested loops, and while in the-
ory it is unbounded, in practice Knuth reported of a maximum nesting of seven. c
is the maximum cost of applying f(e),t and L comparisons. From all the above
we get that the complexity of the algorithm is O(n · h · c · k)

Soundness. The chaotic iteration algorithm is sound which means that any
constant it will report of is indeed such, though there might be constants it will
fail to detect. In that sense it is conservative. For an error detection algorithm
soundness implies that it will detect every possible error, though some of them
may not occur at runtime. In general, the least fixed points computed represents
at least all occurring run time states.

The soundness of the algorithm can be proved by first proving that the transfer
function of each semantic construct behave as it should. The soundness of the
algorithms than follows since we already know that it computes the least fixed
points, which represent the maximum number of constants.

Completeness. Another desirable property is completeness. In constant prop-
agation that means our algorithm detects every constant in the program. As is
usually the case the the algorithm is not complete. Completeness means that every
state represented by the least fixed point is reachable for some input.



18

Next Week on Program Analysis...

Though we’ve mentioned that the chaotic algorithm is sound a formal proof is still
required. To so we have to introduce the field of abstract interpretation, explaining
Galois connections (and insertions) and collecting semantics and how it relates to
structural operational semantics. These topics will be covered in depth on the next
lecture. We give here a (very) short introduction.

Abstract Interpretation

Abstract Interpretation is the foundation of program analysis. Formalized by
Patrick Cousot and Radhia Cousot [CC76], its goals are to establish the sound-
ness of a given program analysis algorithm and to guide the design of new analysis
algorithms.

The technique relates each step in the algorithm to a step in structural opera-
tional semantics and establish global correctness using a general theorem proved
in CC76] following directly from Tarski’s theorem.

Galois Connection

Let A and C be two lattice, α : C → A and γ : A → C. The pair of functions
(α, γ) form a Galois connection if:

- α and γ are monotone

- for all a ∈ A, α(γ(a)) v a

- for all c ∈ C, c v γ(α(c))

Alternatively, the pair (α, γ) is a Galois connection if for all c in C and for all
a in A, α(c) v a iff c v γ(a).

Figure 10 gives a schematic representation of Galois connection.
In order to prove soundness of the constant propagation algorithm we need to:

• Define an ”appropriate” structural operation semantics

• Define ”collecting” structural operation semantics

• Establish a Galois connection between collecting states and the abstract
states

• (Local correctness) Show that the abstract interpretation of every atomic
statement is sound with respect to the collecting semantics

• (Global correctness) Conclude that the analysis is sound according to [CC76]



19

Fig. 10: Galois Connection

Collecting Semantics

The collecting semantics is used to define a collection of states that can occur at
any program point during the course of an execution. Since we don’t know what
the program’s input will be we have to analyze the program for all possible inputs.
For example, while executing the constant propagation we reached a state where
the value of x could have been either 1 or 3. In the structural operational semantics
we mapped this to the state [x 7→ >] whereas in collecting semantics the state will
be the collection of the possible states, namely {[x 7→ 1], [x 7→ 3]}.

Summary

In this lecture we have described the Constant Propagation Analysis. We formal-
ized the algorithm using partially ordered sets, lattices and monotone functions.
We have begun to introduce the concepts that will later serve us to prove the cor-
rectness of the algorithm and other algorithms in the future. Those are the abstract
interpretation technique, Galois connections and the collecting semantics. These
concepts will be explained in greater length future lectures.

References

[1] Lecture slides

[2] Fleming Nielson, Hanne Riis Nielson and Chris Hankin Principels of Pro-
gram Analysis, Springer-Verlag, 1999 ,

[3] Wikipedia, The Free Encyclopedia, www.wikipedia.org


