Program Analysis: Lecture #5
Page 1 of 1

Program Analysis/ Noam Rinetzky and Mooly Sagiv
Lecture 5, 24/03/2005, Soundness
Notes by: Shahar Shimon

Introduction

This lecture focuses on the method of proving the soundness of an abstract interpretation algorithm.

Let us review first the meaning of a ‘sound’ algorithm:

In a sound analysis every error will be detected however there maybe false alarms. If the algorithm decides a program is correct with respect to a certain semantic property then it is indeed correct. For example in constant propagation analysis every detected constant is indeed such. The general idea in this type of proofs is that the least fixed points we saw in previous lesson represents all occurring runtime states (and maybe more) and therefore no error will be lost.

A property that does not exist for these algorithms is completeness. Completeness is the opposite property it means that that every error detected is a real error. Here every state represented by the least fixed points is indeed reachable for some input. For example in constant propagation no constant will be missed, every constant is detected.

Proof of Soundness

We will see a general method to establish soundness of a given program analysis algorithm. Then to illustrate the method we will see in detail the soundness of Constant propagation analysis.

The basic steps in the proof of soundness:

1. Define an “appropriate” structural operational semantics.

2. Define “collecting” structural operational semantics.

3. Establish a Galois connection between collecting states and the analysis itself (ie: reaching definitions/liveness/constant propagation etc’)

4. Show that the abstract interpretation of every atomic statement is sound with respect to the collecting semantics. (local correctness)

5. Conclude that the analysis is sound by CC1976. (global correctness).

Example: Soundness in Constant Propagation for WHILE

The constant propagation algorithm achieves the following properties:

· Every detected constant is indeed such

· May include fewer constants

· May miss (
The general method is to first define the semantics of our programming language. Then, according to it, we create a "collecting" semantics that is better suited for the soundness proof. The relation between the constant propagation domain and the collecting semantics is defined by a Galois connection. If we manage to prove the local soundness on the atomic statements of the semantic we can conclude by a theorem of CC1976 global correctness of soundness.

We will go through each of the steps of the general method:

1. Structural operational semantics:

Here it is a good choice to use structural operational semantics and not natural because it allows us to brake down the program’s execution into intermediate stages.

Review of the SOS of while (from previous lectures):

Axioms:

-[ass]

<x:=a, s> => s[x:=A(a(s] - Assignment

- [skip]

<skip,s> => s - Skip statement

Rules:

-[comp1]

<S1,s> => <S1’,s’> - Composition (S1 yet does not terminate)

<S1;S2,s> => <S1’;S2,s>

-[comp2]

<S1,s> => s’ - Composition (S1 has ended)

<S1;S2,s> => <S2,s>

-[if-tt]

<if b then S1 else S2,s> => <S1,s> - if B[b]s=tt

-[if-ff]

<if b then S1 else S2,s> => <S2,s> - if B[b]s=ff

-[while]

<while b do S1,s> => <if b then (S1;while b do S1) else skip,s>

2. Collecting operational semantics:

Collection of all the states, defined by SOS, of the program in a given point. "Collect" all the states for all possible inputs to the program. This of curse maybe infinite and therefore incomputable collection however it is well defined.

The collecting semantics does not lose information or precision, deals with concrete values as apposed to the abstract values in the analysis.

This process can be thought of the process of applying the semantics of the program on every possible input separately and collecting all states at each point of the program.

Example 1:

In each point in the program we calculate all possible states. Assuming that in the beginning x is initialized to 0.

{[x (0]}
x := 1;

{[x (1]}
while(x (5) do {[x (1], [x (2], [x (3], [x (4], [x (5]}

x := x + 1;
{[x (2], [x (3], [x (4], [x (5], [x (6]}
In this example the sets of states are finite however if we change x (5 to true for example then we will also get infinite sets of states.

Example 2:

{[x (0, y (0, z (0]}

z = 3;
{[x (0, y (0, z (3]}

x = 1; {[x (1, y (0, z (3]}

while(x > 0) {[x (1, y (0, z (3], [x (3, y (0, z (3] }

{

if (x = 1)

then y = 7;

else y = z + 4;

x = 3;

print y;

}

We will define the collecting semantics iteratively:

Generate a system of monotone equations, the least solution is well defined.

The least solution is the collecting interpretation.

Equations generated for collecting interpretation:

· Equations for elementary statements:

l represents a node in the CFG:

-[skip]

CSexit(1) = CSentry(l)

That is a skip statement does to change the collecting states.

-[b]

CSexit(1) = {σ: σ(CSentry(l),(b(σ = tt}

A Boolean node in the CFG returns all states in which the Boolean condition was evaluated to true.

-[x := a]

CSexit(1) = {(s[x (A(a(s]) | s (CSentry(l)}

Assignment is operated one by one on each state resulting with a new set of states.

–2
· Equations for control flow constructs:
CSentry(l) = (CSexit(1’) For every node l’ which immediately precedes l in the CFG.

That is for each node l all the states entering l are the union of all exiting states of all nodes that immediately precedes l.

· An Equation for the entry

Notation: σ 0
 is a starting state of the program.

CSentry(S) = σ 0
A state with all the information that is known in the beginning, depends on the language of course.

System of Equations:

[image: image1.wmf]ìü

ïï

ïï

íý

ïï

ïï

îþ

An alternative definition is using both CSentry[l] and Csexit[l] of each node l:

CSentry[s] ={ σ 0
 }

CSentry[v] = U{CSexit[u]) | (u, v) (E }

CSexit[v]) = f(v)(CSentry[v])
Here instead of a system with n equations we get a system with 2n equations. This definition is a little more intuitive but does not represent splits, makes an assumption that every time a node is exited the same effect (f) has taken place.

The Least Solution:

The set of equations can be written in vectorial form:

Fs:Ln(Ln
Fs (X)[v] = U{f(e)[u]| (u,v) (E}

The least fixed point of the function FS, used to define the collecting semantics, is well-defined, and from the equivalent between to the system of equation.

lfp(s) = lfp(Fs)
Such that the least fixed point of the system of equations S is equal to the one in Fs.

The least fixed point of Fs is one where every component is minimal. Since Fs is monotone such a solution always exists.

3. Establish Galois connection
Our purpose here is to define both the abstraction function between the collecting states to the constants and the concretization function between the constants to the collecting states. Then we will show that there is a Galois connection between them.

Form the following figures we can see (and our goal is to show) that the abstract representation contains more states then in the collecting semantics.

Abstraction and Concretization Functions:
Abstraction function:

This function maps collecting states into constants. In other words, it determines which variable is a constant (based on the collected set of states) and which is not.

First we define the abstraction of an individual state:

βcp[Var* (Z] ([Var* (Z ({(, (}]

βcp (σ) = σ
Abstraction on one individual state is the state it self.

Now we'll define an abstraction function on a set of states:

αcpP([Var* (Z]) ([Var* (Z ({(, (}]

αcp(CS) = ({ βcp (σ) | σ (CS} = ({ σ | σ (CS}

This function maps a set of states to a single abstract state. It operates the single state abstraction function on each state and join their result. If two states don't agree on the value of a certain variable are joined then this variable will receive (in the abstract state. If a variable has the same value in all states then after the abstraction this variable will still have this value. Join on empty set is resulted with (.

Example:

αCP({[x(7,y(3],[x(2,y(3]})=

({βCP([x(7,y(3]),βCP([x(2,y(3])} =

(({[x(7,y(3],[x(2,y(3] }) =

[x((,y(3]
Soundness:

we will show that for each node v in the CFG exits:

αcp(CSentry[v]) (dfentry[v]
Which means that abstraction on the states gained by collecting semantics is not bigger then what is calculated from the abstract semantics analysis and therefore the analysis is sound.

Concretization function:

The opposite of the abstraction function, maps constants into collecting states.

(cp: [Var* (Z U{(, (}] (P([Var* (Z])

(cp(df) = { σ | βcp (σ) (df } = { σ | σ (df }

Returns all states that their abstraction generate abstract representation that is not grater than the abstract state df (what is calculated by the algorithm).

The variables assigned to (are given in the concrete space every possible value. This is where information is (sometimes) lost: since (stands for any possible value, the concretization function may generate a set which may contain more states than the program.

Alternative way to show soundness of the analysis:

For each node v in the CFG exits:
CSentry[v] ((cp(dfentry[v])

Which means that the set of collecting state of the node v is contained in the set of states returned by the concretization function (on the abstract state obtained by the analysis.
Next we will see that (and α obtain a Galois connection.
Let us recall the definition of Galois connection:

1) αcp is monotone
2) (cp is monotone

3) (df ([Var* (Z U {(, (}]
· αcp ((cp (df)) (df
4) (c (P([Var* (Z})

· c ((cp (αcp(c))
Proof that the connection does hold:

1) αcp is monotone. We need to show that for two sets of concrete states CS1 and CS2 if CS1 (CS2 then αcp(CS1) (αcp(CS2).

Proof:

αcp(CS1) = ({ βcp (σ) | σ (CS1} = ({ σ | σ (CS1} (({ σ | σ (CS2} = ({ βcp (σ) | σ (CS2} = αcp(CS2)

Intuitively this is easy to understand, if CS1 (CS2 then every constant detected from CS1 (after the abstraction) is also in CS2 however after abstraction it may still be a constant or (if there were more values for the specific variable in CS2. Either way the abstract state obtained from CS2 is not smaller then the one obtained from CS1.

2) (cp is monotone. We need to show that for two abstract states df1 and df2 if df1 (df2 then (cp(df1) ((cp(df2).
Proof:

(cp(df1) = { σ | βcp (σ) (df1 } = { σ | σ (df1 } ({ σ | σ (df2} = { σ | βcp (σ) (df2 } = (cp(df2).

Intuitively if one abstract state is more general then another than after concretization there will be more concrete states that correspond to that abstract state than the other.

3) (df ([Var* (Z U {(, (}] , αcp ((cp (df)) (df

Proof:

αCP(γCP(df)) = αCP({σ | βCP(σ) (df} = ({βCP(σ) | βCP(σ) (df} (df.

Intuitively when going from abstract state to concrete states any concrete value that there was in the abstract state will stay and we will only add states for (/(and when returning back to abstract state every constant there was will stay. Therefore the amount of constants we get will be no less than before.
4) (c (P([Var* (Z}), c ((cp (αcp(c))

Proof:

γCP(αCP(cs)) = γCP(({βCP(σ)| σ (cs}) = {σ| βCP(σ) (({βCP(σ) (σ (cs}} (cs

Intuitively for a given set of states each state the abstraction function would do one of the following things:

· If none of the values of the variables in the states contradict then the abstract state is the same as the set of concrete states (meaning each variable have a concrete value which is the same as all values in the set of concrete states) and then concretization on an abstract sate which is already concrete would not change any of the values and we get a set of concrete states which is not smaller than the one we started with.

· If there exist a variable whose values in the concrete states contradict then after abstraction this variable will have abstract value (and after concretization this variable will hold all possible values and therefore the set of sets may only increase and still have all states the were before the abstraction and concretization.
Either way the set of states may only increase.

We’ve shown that γCP and αCP stand for each one of the requirements and therefore form a Galois connection.

4. Local Soundness
Now we will show soundness of the abstract interpretation on the atomic statements.

Let us recall first the local concrete semantics for atomic statements:

For every atomic statement S:

(S(: [Var* (Z] ([Var* (Z]

assignment: (x := a(s = s[x:=A(a(s]

skip: (skip(s = s

Now we will define local abstract semantics for atomic statements:

(S(#: Var*(L (Var*(L

assignment: (x := a(#(e) = e[x((a(#(e)]

skip: (skip(#(e) = e

To prove local soundness for every atomic statement it is enough to show one of the following:

1) α cp ({(S(σ| σ (cs) ((S(#(α cp (cs))

If we perform local concrete semantic operations of a statement S on each state of the collecting semantics and perform abstraction on the result we will get a result that is at least as accurate as if we perform the local abstract semantics on the abstract state (the abstraction of the collecting semantics).

2) {(S(σ| σ (γ cp (df)} (γ cp ((S(#(df))

The set of the results local concrete semantics on concretized abstract state is at least as accurate as the concretization of the result of the local abstract semantics on the abstract state.

3) α cp ({(S(σ| σ (γ cp (df)}) ((S(#(df)
Abstraction of the set of results local concrete semantics that was operated on each state in the set of concretized states of the abstract state is at least as accurate as in the result of the local abstract semantic on the abstract state.

Each one of the above conditions implies global soundness[Cousot & Cousot 1976].

That is implying :

 α cp (CSentry (l)) (dfentry(l)

or
 CSentry (l) (γ cp(dfentry(l))

We will partially show the local soundness of atomic statements. The following lemma will aid us in the local soundness proof:

Lemma 1:
Consider a lattice L.
f: L (L is monotone iff
 for all X (L: ({f(z) | z (X } (f(({z | z (X })

Proof:

(
This direction is immediate:

If X(Y then f(X)(f(Y) (f(Y) therefore f(X) (f(Y) hence f is monotone.

(
(z (X f(z) (f(({z | z (X })

 ({f(z) | z(X} (f(({z | z (X })

Intuitively we understand that there is more precision in the individual calculations of f than performing the join first and calculating f later.

roof

Assignments in constant propagation:
Monotone:

df1 (df2 ((x := e(#(df1) ((x := e(#(df2
)

Proof:

For any other variable besides x the operation does not change it’s value. For x, its value depends on the value of e, an expression constructed from variables from df1 and df2. Therefore the evaluated result will be accurate in df1 not less than in df2 because any real constant in df1 is either the same constant in df2 or (.

Local soundness:

α cp ((x := e(σ| σ(CS) ((x := e(#(α cp(CS))
Proof:

We need to show that:

({ βcp ((x := e(σ)| σ(CS} ((x := e(#(({ βcp(σ)| σ(CS)

Form lemma1(βcp is monotone we’ve shown)

({ βcp ((x := e(σ)| σ(CS} (βcp ((σ(CS {(x := e(σ | σ(CS})

Since β is a trivial function

βcp ((σ(CS {(x := e(σ | σ(CS }) = (σ(CS {(x := e(σ | σ(CS }

Since σ(CS it is a concrete state and (x := e(# on concrete states is defined the same

as (x := e(

(σ(CS {(x := e(σ | σ(CS } = (σ(CS {(x := e(#σ | σ(CS }

Form lemma1((x := e(# is monotone)

(σ(CS {(x := e(#σ | σ(CS } ((x := e(# ((σ(CS {σ | σ(CS }

Again since βcp is a trivial function

(x := e(# ((σ(CS {σ | σ(CS } = (x := e(# ((σ(CS { βcp(σ)| σ(CS }

5. Soundness
Cousot & Cousot’s Soundness Theorem determines that given:

Soundness Theorem 1:

1. (α, γ) is a Galois Connection

2. f:C→C is a monotone function

3. f#:A→A is a monotone function

4. (a (A, f(γ(a)) (γ(f#(a))
then lfp(f) (γ(lfp(f#)),

or alternatively from Galois Connection α(lfp(f)) (lfp(f#)

Proof:
In condition 4 we will substitute the abstract state lfp(f#) which is a member of A,

f(γ(lfp(f#)) (γ(f#(lfp(f#)) = γ(lfp(f#))

Therefore (*) γ(lfp(f#)) (Red(f).
Remainder: Red(f) = { l | l (L, f(l) (l}

Then according to Tarski’s theorem, if f is monotone then:

(**) lfp(f) = (Red(f)

from (*) and (**) we get: lfp(f) (γ(lfp(f#)).
Alternative conditions to the Soundness Theorem 1:

Soundness Theorem 2:

Under the same conditions for 1-3

4. (c (C, α(f(c)) (f#(α(c))

Here instade of having an abstract argument for f we have concrete argument an the perform abstraction on the result. We require that the result here will be at least as accurate than if first perform the abstraction on the input and then perform f#. It is easy to see the equivalence to the condition in the first theorem because of the Galois connection.

Soundness Theorem 3:

Under the same conditions for 1-3

4. (a (A, α(f(γ(a))) (f#(a)

As before the equivalence is due to the Galois connection of α and γ.

We’ve concluded the proof of soundness of the constant propagation analysis. Next we will see another example (less detailed) in reaching definition analysis.

Example Program Analysis Problem: Reaching Definition
Let us first introduce the reaching definition problem:

An assignment (definition) of the form [x := a] l may reach an elementary block l’ if there is execution of the program that leads to l' where x was last assigned at l.

Usage of Reaching Definitions:

· Compiler optimizations

· An occurrence of a variable x in in an elementary block l is constant n if all in the reaching definitions (x, l'),
l' assigns n to x
· Loop invariant code motion

· Program dependence graphs

· Software quality tools

· A usage of a variable x in an elementary block may be uninitialized if ...

· Program slicing

Soundness in Reaching Definition

· Every reachable definition is detected

· May include more definitions

· Less constants may be identified

· Not all the loop invariant code will be identified

· May warn against uninitailzed variables that are in fact in initialized

· But never miss a reaching definition

· All constants are indeed such

· Never move a non invariant code

· Never miss an error

Example of reaching definition:

[image: image2.jpg]ED0:06M [y =x] =260 &2
0w D.@) [2=1% (®26D @2

while {x 2. (. D, (.5 (z 2). (2 4}

[y>1P
{2, 4. D, (.5, 2 2). = 4}
do (

(20,1, (0,5 (22, @M z= 2 * yHE D 6. 1. 6:5).@ 4

DD eEm [y=y-1P (x2.0.5. @9
)

(2.0 0. 0.5, @ 2. @ 9y = 01% {x2.0.6). 2.z

Example 2: unsound reaching definitions:

[image: image3.jpg]ED0:06M [y =x] =260 &2
0w D.@) [2=1% (®26D @2

while {x 2. (. D, (.5 (z 2). (2 4}

[y>1P
{2, 4. D, (.5, 2 2). = 4}
do (

(2. 0, 1, (55 (2 2, & D z= 2 * y]HE 9. 6. D, @ 93
DD eEm [y=y-1P (x2.0.5. @9
)
(2.0 0. 0.5, @ 2. @ 9y = 01% {x2.0.6). 2.z

Example 3: unsound reaching definitions:

[image: image4.jpg]ED0:06M [y =x] =260 &2
0w D.@) [2=1% (®26D @2

while {x 2. (. D, (.5 (z 2). (2 4}

[y>1P
{2, 4. D, (.5, 2 2). = 4}
do (

&0 D0.5.620 [2=2*yHE 2.6, 0. 6,5 @ 9

DD eEm [y=y-1P (x2.0.5. @9
)

(2.0 0. 0.5, @ 2. @ 9y = 01% {x2.0.6). 2.z

Example 4: suboptimal reaching definitions:

[image: image5.jpg]ED0:06M [y =x] =260 &2
0w D.@) [2=1% (®26D @2
while {x 2. (. 1. (.5 @ 2). @)}

[y>1P
{2, 4. D, (.5, 2 2). = 4}
do (

{2 01D, 5906, @ D[z=z * y]HE 2, 3. D, 305, @ 4)
@ 4}
ED®DE).@H [y =y-11% (x2 6.5 @4
)

(2.0 0. 0.5, @ 2. @ 9y = 01% {x2.0.6). 2.z

Equations Generated for Reaching Definitions

· Equations for elementary statements

· [skip]l
RDexit(1) = RDentry(l)

· [b]l
RDexit(1) = RDentry(l)

· [x := a]l
RDexit(1) = (RDentry(l) - {(x, l’) | l’ (Lab }) ({(x, l)}

· Equations for control flow constructs
 RDentry(l) = (RDexit(l’) l’ immediately precedes l in the control flow graph

· An equation for the entry
RDentry(1) = {(x, ?) | x is a variable in the program}

Chaotic Computation of the Least Solution:

Initialize
 RDentry(1):={(x, ?), (y, ?), (z, ?)};
RDexit (1):= (
 RDentry(2):= (;

RDexit (2):= (
 RDentry(3):= (;
RDexit (3):= (
 RDentry(4):= (;
RDexit(4) := (
 RDentry (5):= (;
RDexit(5):= (
 RDentry (6):= (;
RDexit(6):= (
WL = {1, 2, 3, 4, 5, 6}

 while WL != (do
 select and remove an l from WL
 new := FRDexit(l)(…)
 if (new != RDexit(l)) then

 RDexit(l) := new

 for all l’ such that RDexit(l) is used in FRDentry(l’)(…) do
 RDentry(l’) := RDentry(l’) (new

 WL := WL ({l’}

Addition to before - soundness in Reaching Definition:

· At every elementary block l
 RDentry(l) includes all the possibly definitions reaching l

· At every elementary block l
 RDentry(l) “represents” all the possible concrete states arising when the structural operational semantics reaches l
Now we will go trough each of the steps in the proof of soundness for reaching definition:

1) Structural Operational Semantics to justify Reaching Definitions

· Normal states [Var* (Z]
are not enough

· Instrumented states
 [Var* (Z] ([Var* (Lab*]

· For an instrumented state (s, def) and variable x
def(x) holds the last definition of x

2) Equations Generated for Collecting Interpretation
· Equations for elementary statements

· [skip]l
CSexit(1) = CSentry(l)

· [b]l
CSexit(1) = CSentry(l)

· [x := a]l
CSexit(1) = {(s[x (A(a(s], d(x (l)) | (s, d) (CSentry(l)}

· Equations for control flow constructs
 CSentry(l) = (CSexit(l’) l’ immediately precedes l in the control flow graph

· An equation for the entry
CSentry(1) = {(s0, d?) |s0 (Var* (Z}

The Least Solution:
· 12 sets of equations, CSentry(1), …, CSexit (6)

· Can be written in vectorial form
· uThe least solution lfp(Fcs) is well-defined

· Every component is minimal

· Since Fcs is monotonic such a solution always exists

· CSentry(l) = {(s’, d’)|(s0: (P, (s0, d?) (* (S’, (s’, d’)),
 init(S’)=l}

· Simplify the soundness criteria

The Abstraction Function:

· Map collecting states into reaching definitions

· The abstraction of an individual state
β:[Var* (Z] ([Var* (Lab*] (P(Var* (Lab*)
β (s,d) = {(x, d(x) | x (Var* }

· The abstraction of set of states
 α:P([Var* (Z] ([Var* (Lab*]) (P(Var* (Lab*)
 α (CS) = ((s, d) (CS β (s,d) =
 = {(x, d(x) | (s, d) (CS, x (Var* }

· Soundness
 α (CSentry (l)) (RDentry(l)
The concretization function:
· Map reaching definitions into collecting states

· The formal meaning of reaching definitions

· The concretization
(:P(Var* (Lab*) (P([Var* (Z] ([Var* (Lab*])
 ((RD) = {(s, d) | (x (Var* : (x, d(x) (RD}=
 = { (s, d) | β (s, d) (RD }

· Soundness
 CSentry (l) (((RDentry(l))

3) Galois Connections:
· The pair of functions (α,() form a Galois connection if:
(CS (P ([Var* (Z] ([Var* (Lab*])
(RD (P(Var* (Lab*)
 α (CS) (RD iff CS (((RD)

· Alternatively:
(CS (P([Var* (Z] ([Var* (Lab*])
(RD (P(Var* (Lab*)
 α (((RD)) (RD and CS (((α (CS))

· (and (uniquely determine each other

4) Local Abstract Semantics:
· For every atomic statement S

· (S(# : P(Var* (Lab*) (P(Var* (Lab*)

· (x := a]l (#(RD) = (RD - {(x, l’) | l’ (Lab }) ({(x, l)}
· (
· skip]l (# (RD) = (RD)

· (b]l (# (RD) = (RD)

4) Local Soundness:
· For every atomic statement S show one of the following

 α ({(S((s,d)| (s, (cs) ((S(#(α (cs))

{(S((s,d)| | (s,d)| (γ (RD)} (γ ((S(#(RD))

α ({(S((s,d)| (s,d) (γ(RD)}) ((S(#(RD)

5)
The above condition implies global soundness [Cousot & Cousot 1976]
 α (CSentry (l)) (RDentry(l)
 CSentry (l) (γ (RDentry(l))
Bibliography:

1) Program Analysis course presentation

2) Principles of Program Analysis by Nielson, Nielson and Hankin
(

Set of states

Abstract semantics

statement s

abstract

representation

abstraction

abstract

representation

(

S =

CSentry[s] ={ σ 0

 }

CSentry[v] = ({f(e)(CSentry[u]) | (u, v) (E }

where f(e) = (X. {(st(e)(σ | σ (X} for atomic statements

 f(e) = (X.{ σ | (b(e)(σ = tt }

Operational semantics

statement s

abstraction

Set of states

abstract

representation

(

abstract

representation

abstract

representation

Abstract semantics

statement s

חסר התחשבות באפשרות שהלולאה תרוץ פעמיים, כלומר חסר (y, 5)

concretization

concretization

Set of states

Set of states

(

Set of states

Operational semantics

statement s

שוב חסר התחשבות באפשרות שהלולאה תרוץ פעמיים, כלומר חסר (z, 4)

יש מצב מיותר, (y, 6) , כי מרגע שיצאנו מהלולאה לא חוזרים אליה

_1173291315.unknown

