Program Analysis: Lecture 5
Page 9 of 20

Program Analysis/ Noam Rinetzky and Mooly Sagiv
Lecture 5, 14.4.2005, Systematic Domain Design

Notes by: Alon Shalita
Based of lecture notes by Assaf Oren.

Introduction

In this lecture, we will go over:

· Widening and Narrowing operators.
· A full example of Lattice definition – Lattice Octagon.
· Galois Insertion.
A way to combine several Data Flow Analysis.

· Widening and Narrowing operators

In order to reduce the time complexity of long or infinite chaotic iterations, we look for a way to accelerate the termination of chaotic iterations. Still, the solution should be sound, and therefore it will be a more conservative one than the least fixed point.

We will demonstrate the power of the widening operator by performing "Interval Analysis" on a program, with and without the widening operator and comparing the performance results.
Example of a long chaotic iteration:

"Interval Analysis" = find a lower and an upper bound to the value of a variable at every point in a single variable program.
The Lattice: L = (Z({-(,(}(Z ({-(,(}, (, (, (, (,()

 (is: [a, b] ([c, d] if c (a and d (b .
[a, b] ([c, d] = [min(a, c), max(b, d)]
[a, b] ([c, d] = [max(a, c), min(b, d)]
(= [-(,(]

(= [m,n] | m > n

The analyzed program:

[x := 1]1 ;
while [x (1000]2 do
 [x := x + 1;]3
The translation to CFG and to the normal chaotic iteration equations:

IntEntry(1) = [-(,(]

IntExit(1) = [1,1]

IntEntry(2) = IntExit(1) (IntExit(3)

IntExit(2) = IntEntry(2)

IntEntry(3) = IntExit(2) ([-(,1000]

IntExit(3) = IntEntry(3)+[1,1]

IntEntry(4) = IntExit(2) ([1001,(]
IntExit(4) = IntEntry(4)

(in the 6th row, when we write IntExit(3) = IntEntry(3)+[1,1] we mean "add 1 to the lower and upper bounds", eg [4,5]+[1,1]=[5,6])

The Galois Connection:

(: Z -> Z ({-(,(} x Z ({-(,(}

((z) = [z,z]

((X) = ({((z) | z (X}
(([a,b]) = { x | a <= x <= b }
This is the result of running chaotic iterations on the equations:
	Iteration 4
	Iteration 3
	Iteration 2
	Iteration 1
	

	[-(,(]
	[-(,(]
	[-(,(]
	[-(,(]
	IntEntry(1)

	[1,1]
	[1,1]
	[1,1]
	[1,1]
	IntExit(1)

	[1,1]([2,4]=

[1,4]…
	[1,1]([2,3]=

[1,3]
	[1,1]([2,2]= [1,2]
	[1,1]
	IntEntry(2)

	[1,4]…
	[1,3]
	[1,2]
	[1,1]
	IntExit(2)

	[1,4]…
	[1,3]
	[1,2]
	[1,1]
	IntEntry(3)

	[2,5]…
	[2,4]
	[2,3]
	[2,2]
	IntExit(3)

	(
	(
	(
	(
	IntEntry(4)

	(
	(
	(
	(
	IntExit(4)

…after a long long time…
	Final iteration
	Iteration 1001
	Iteration 1000
	Iteration 999
	

	[-(,(]
	[-(,(]
	[-(,(]
	[-(,(]
	IntEntry(1)

	[1,1]
	[1,1]
	[1,1]
	[1,1]
	IntExit(1)

	[1,1001]
	[1,1]([2,1001]=

[1,1001]
	[1,1]([2,1000]= [1,1000]
	…[1,999]
	IntEntry(2)

	[1,1001]
	[1,1001]
	[1,1000]
	…[1,999]
	IntExit(2)

	[1,1000]
	[1,1001] ([-(,1000] = [1,1000]
	[1,1000]
	…[1,999]
	IntEntry(3)

	[2,1001]
	[2,1001]
	[2,1001]
	…[2,1000]
	IntExit(3)

	[1001,1001]
	[1,1001]([1001, (] =
[1001,1001]
	[1,1000]([1001, (] = (
	(
	IntEntry(4)

	[1001,1001]
	[1001,1001]
	(
	(
	IntExit(4)

Here, only after about 1000 iterations, the algorithm terminates, yielding a solution. However, this number of iterations might not be acceptable – the analysis might take too long, and in case the domain is of an infinite height (as in our case) the algorithm might not terminate.

To solve this we will define two operators:

· The Widening operator – in order to accelerate the termination of the iterations.
· The Narrowing operator – in order to improve the "over conservative" result of widening.

[image: image1]
Widening
In the Iterative Chaotic Iteration algorithm, we will replace the JOIN operation with the WIDENING (() operation.

 Chaotic(G(V, E): Graph, s: Node, τ: L, f: E ((L (L)) {

 for each v in V do dfentry[v] := (
 In[v] = τ

 WL = {s}

 while (WL (() do

 select and remove an element u (WL

 for each v, such that e=(u, v) (E do

 temp = f(e)(dfentry[u])

 new := dfentry[v] (temp
 if (new (dfentry[v]) then

 dfentry[v] := new;

 WL := WL ({v}

In order to get a sound solution and to ensure termination of the algorithm, the widening operator should fulfill the following requirements:

· For all elements l1(l2 (l1 (l2
*This means that we are above the lfp – the widening operator may be more conservative than the join operator.
· For all ascending chains l0 (l1 (l2 …

The following sequence is finite:

· y0 = l0

· yi+1 = yi (li+1

**This means that there won't be infinite iterations.
· For a monotonic function f: L (L
Define a sequence:

· x0 = (
· xi+1 = xi (f(xi)

Theorem:
-
There exists k such that xk+1 = xk

-
xk (Red(f) = {l: l (L, f(l) (l}

***This means that our solution is in Red(f).
Proof of theorem:

· There exists k such that xk+1 = xk :

 The sequence of xi is increasing:
 For all i: xi+1 = xi (f(xi) (xi ( f(xi) (xi so we have xi+1 (xi
Since f is monotone we get that f(xi) ( f(xi+1). It follows that the sequence

 l0 = (

 li+1 = f(xi)

 is increasing.

 Thus, according to (**) the sequence:

 x0 = l0 = (
 xi+1 = xi (li+1 = xi (f(xi)

has a finite height, in particular there exists a k s.t. xk+1 = xk.
· The end of the sequence, xk , is in Red(f):
xk+1 = xk

(the existence of such a k is proved above)
xk (f(xk) = xk (by definition)
xk (f(xk) (xk (f(xk) = xk (by properties of ()
f(xk) (xk (f(xk) = xk (by properties of ()
f(xk) (xk
xk (Red(f)

· xk must be above the least fixed point - xk (lfp(f) - since lfp(f) = (Red(f). So since lfp(f) is a sound solution, so is xk (though may be less precise).

Note: Widening is heuristic, it may be too conservative. However, it can quicken the termination of the algorithm, assuring a sound solution.
 Example of implementing Widening on the long chaotic iteration: (interval analysis)
We define the widening as follows:

(([c,d] = [c,d]

(init)

[a,b] ([c,d] =
[
([a,b] = prev iteration, [c,d]=next iteration)

 if a (c

then a

(don't change)

else -(

(go straight to infinity)

if b (d

then b

(don't change)

else (

(go straight to infinity)
]

The operator works in the following way:
If the new iteration stresses the lower (upper) bound beyond what it is now, we "lose" all the information we gathered, and simply set the lower (upper) bound to -((().
Note that this widening operator is not symmetric.

We should replace all the JOIN operations with (. However, in order to be more precise, we will replace only the loop condition's JOIN operator with ((loops are the only place that the iterations will be long).

IntEntry(2) = IntExit(1) (IntExit(3)
 =>

IntEntry(2) = IntEntry(2) ((IntExit(1) (IntExit(3))

This is the result of running chaotic iterations on the new equations:

	Final iteration
	Iteration 3
	Iteration 2
	Iteration 1
	

	[-(,(]
	[-(,(]
	[-(,(]
	[-(,(]
	IntEntry(1)

	[1,1]
	[1,1]
	[1,1]
	[1,1]
	IntExit(1)

	[1, (](([1,1]([2,1001])=

[1, (]
	[1, (] (([1,1]([2,1001]) =

[1, (]
	[1,1] (([1,1] ([2,2]) = [1, (]
	((([1,1] (() =
 [1,1]
	IntEntry(2)

	[1, (]
	[1, (]
	[1, (]
	[1,1]
	IntExit(2)

	[1, (]([-(, 1000]=
 [1,1000]
	[1, (]([-(, 1000]=
[1,1000]
	[1, (] ([-(, 1000] =
[1, 1000]
	[1, 1] ([-(, 1000] =
[1,1]
	IntEntry(3)

	[2, 1001]
	[2, 1001]
	[2, 1001]
	[2,2]
	IntExit(3)

	[1001,1001]
	[1001,1001]
	[1001, (]
	(
	IntEntry(4)

	[1001,1001]
	[1001,1001]
	[1001, (]
	(
	IntExit(4)

Here, after only 4 iterations, we will get the "over conservative" result of [1, (] in node 2. Note, however, that the solution at node 4 and 3 is the same one that we got before.

Narrowing
After iterating with the WIDENING operation (and by definition finish in a finite number of iterations inside RED(f)), we can iterate with the NARROWING (() operator in order to improve the result inside RED(f).

Formal requirements:

· y (x (y ((x (y) (x

(Narrowing Put us between the two arguments)

· For all strictly decreasing chains
x0 (x1 (x2 (…

The following sequence is finite

· y0 = x0
· yi+1 = yi (xi+1

· For a monotonic function f: L (L and x (Red(f) = {l: l (L, f(l) (l}
we define a sequence:

· y0 = x
· yi+1 = yi (f(yi)
Theorem: There exits k such that

- yk+1 = yk

(the sequence is finite)
- yk (Red(f) = {l: l (L, f(l) (l}

Proof of theorem:

· We show by induction on i that yi (Red(f):
Basis: y0 = x (Red(f) is given.
Induction step:
yi+1 = yi (f(yi) (by definition)
because of the induction hypothesis that yi (Red(f), meaning f(yi) (yi, and because y (x (y ((x (y) (x we have
f(yi) ( yi (f(yi) (yi
f(yi) (yi+1(yi
operating monotonic f(.) on the right ( we get
f(yi+1) (f(yi)
but since we know that f(yi) (yi+1 , all together we get
f(yi+1) (f(yi) (yi+1
f(yi+1) (yi+1
yi+1 (Red(f)

Example of implementing Narrowing on the long chaotic iteration (after Widening) (interval analysis)
[a,b] ((= [a,b]

(init)
[a,b] ([c,d] =
[
([a,b] = prev iteration, [c,d]=current iteration)
 if a = -(

(if we got infinity – refine to c)

then c

else a

(otherwise keep a)

if b = (

then d

else b
]

Where we did the (operation, now we'll do (:

IntEntry(2) = IntEntry(2) ((IntExit(1) (IntExit(3))

	Final iteration
	Iteration 2
	Iteration 1 (after ()
	

	[-(,(]
	[-(,(]
	[-(,(]
	IntEntry(1)

	[1,1]
	[1,1]
	[1,1]
	IntExit(1)

	[1, 1001](([1,1]([2,1001])=

[1, 1001]
	[1, (] (([1,1]([2,1001])=

[1, 1001]
	[1, (]
	IntEntry(2)

	[1, 1001]
	[1, 1001]
	[1, (]
	IntExit(2)

	 [1, 1000]
	[1, 1001]([-(, 1000]=
[1, 1000]
	[1,1000]
	IntEntry(3)

	[2, 1001]
	[2, 1001]
	[2, 1001]
	IntExit(3)

	[1001, 1001]
	[1001, 1001]
	[1001,1001]
	IntEntry(4)

	[1001, 1001]
	[1001, 1001]
	[1001,1001]
	IntExit(4)

Here we will get IntEntry(2) = [1, 1001]. Now we have a correct result in all the nodes.

A note on widening:

The widening operation is not necessarily monotonic. If it isn't monotonic, its behavior can be a bit strange:

· [0,1] ([0,2] = [0, (]

however,
[0,2] ([0,2] = [0,2]

Strangely, this means that if we know something on the program, i.e., that a variable is assured to be in a certain range, using this information might lead to a more conservative solution than the solution that we achieved without this information. This is contradictory to our intuition that the more we know of the program, the better results we expect.

Widening and Narrowing – Summary

· This is a very simple algorithm to implement.
· It can quickly get an impressive precision.
· It is really useful for lattices with infinite highest, but also with lattices with finite but yet too long height.
· It is only heuristic, which do not necessary supply a good result and therefore not widely accepted
A full example of Lattice definition -

Lattice Octagon

We will define a lattice that will help us determine the relationships between the values of every two variables of the program. For example, "x (y + 2" means that the value of x is not greater than the value of y minus 2.

Motivation:

 Identifying overflow in dynamically allocated arrays.

 Removing conditions which are always true or false.

 Generalizing the interval analysis.

In Graph Theory representation, we will define an octagon in which the nodes are the program's variables and the weights on the edges are the difference between them. We will add one additional node – 0, in order to have a fixed value in the analysis.

For example:

Means that:

X (Z + 5

and

0 (Y + 7 (7 (Y
The Lattice:

Each element in the lattice is a weighted graph:

(= an edge with the value (between every two variables
(no information at all)

(= a negative valued circle

(this is something that can not be valid)

G1(G2 = max{SP(G1), SP(G2)}

(takes the highest edge between each

two variables of each graph)

G1(G2 = min{SP(G1), SP(G2)}

(takes the lowest edge between each two

variables of each graph)

(can cause negative circles)

G1(G2 = SP(G1) (SP(G2)

(Each edge of SP(G1) is smaller than the

equivalent edge in SP(G2))

* SP(G) is the graph G in which the edge between two variables x and y will get the value of the shortest path between them. For example:

G = SP(G) =

The Abstraction:

Defines all the known values of variables with all other variables:

w(0,X)(б) = б(X)

w(X,Y)(б) = б(Y) - б(X)

And put them in G:

((б) = G(V, VxV, w)

[image: image2]

program
edges
relationships

variables

((C) = ({((б) | б (C}

Γ(D) = { б | ((б) (D}

Widening operator:
In order to reduce the time complexity and in order to get a solution in infinite programs, we will define the widening operator (.

In case of an infinite loop like:

X = 0;

While (true) {

X = X + 1;

}

 (

=

=

=

…….

=

In order to avoid this we will define the widening operator as follows:

· G'new = SP(G)

· If G'old(x,y) < G'new(x,y) then G'new(x,y) = (

This will end the process after two iterations in
Galois Insertion
In previous lectures, we defined "Galois connection":

If (L1, (1) = (L1, (1, (1, (1, (1, (1)

(L2, (2) = (L2, (2, (2, (2, (2, (2)

are complete lattices, and

(: L1 (L2

(: L2 (L1

We say that (L1,(, (, L2) is a Galois connection if

- (and (are monotone
- for all c (L1: c(((((c))

- for all a (L2: a(((((c))
Now, we will define "Galois insertion" :

We say that (L1,(, (, L2) is a Galois insertion if

- (and (are monotone

- for all c (L1: c(((((c))

- for all a (L2: a=((((c))
Some motivation for this definition:

In most cases, α(γ(a)) = a. This is quite obvious since the information doesn’t usually pop out of nowhere: If we start with some knowledge on the state (e.g. that x is not a constant and therefore [x↦(]), we are unlikely to obtain new knowledge just by specifying all the possible states that this knowledge possesses and then abstracting them into that knowledge again.

However it is possible to get cases in which α(γ(a)) (a . This happens when the abstract domain contains “redundant elements”. For example, in the constant propagation, consider abstract an state in which one variable is mapped to (. Since this means that this variable cannot have a value at this point, the set of concrete state at this place is empty.

Thus, for example α(γ([x((, y(1]) = α(() = (([x((, y(1]
Without the (value, we would get the equality and the Galois Connection would have turned into a Galois Insertion.

A Galois Insertion is a Galois Connection in which the composition of α over γ equals the unit function, or in other words – has no effect.

This means that there is no gain in precision when the concretization is applied before the abstraction.

Galois insertions rectify this problem of the Galois Connection – it’s ability to have more than one abstract element describing the same concrete element (which means that the abstract space contains elements which are not needed in order to do the approximation, in our case - ().

Every Galois Connection can be turned into a Galois Insertion. For example, in the constant propagation this is done by “smashing” the bottom: changing the abstract states domain operate over the domain

(Var*(Z ({(}).

In general, we enforce γ to be injective (γ(a) = γ(b) (a = b).

This is done by removing redundant elements from the lattice: By defining a reduction function, each element m of the lattice is mapped into the meet of all elements who share it γ value (in other words, all elements who share their γ value are identical in the eyes of the concretization function, and the lattice can therefore settle for one representative of this “family”).

Formally: f(m) = ({m’ | γ(m) = γ(m’)}

Upper Closure:
An operator op:P(() -> P(() is an upper closure if

· op is monotonic

· op is inflationary, ie X (op(X)

· op is idempotent, ie op(op(X)) = op(X)

Every Galois connection (insertion) defines an upper closure on the set of concretization:

Up(X) = ((((X))

An example of upper closure operator:

Op({(x->5, y-> 7)}) = {(x->5, y->7)}

Op({(x->5, y-> 7), (x->5, y->18)}) = {(x->5, y->1), (x->5, y->2), … (x->5, y->n), …}

Op({(x->5, y-> 7), (x->7, y->5)}) = {(x->a, y->b) | a,b (N}

Combining Data Flow Analyses
We saw a way to construct an analysis by defining Lattice and Galois connections. After building some simple analyses, we would like to be able to combine them into one unified analysis, maybe also use them in order to build more complex ones. For example if we have one analysis for integers and another for pointers, we would like to combine them into one (integer and pointers) analysis without having to design it from scratch.
These combining techniques can also be used to improve precision of an analysis or to obtain a more efficient analysis. We can more easily model the "relevant" parts of the program and abstract the "irrelevant" parts.

Cartesian Products combination

If we have two complete lattices:
(L1, (1) = (L1, (1, (1, (1, (1, (1) and (L2, (2) = (L2, (2, (2, (2, (2, (2)
We can define the Poset

L = (L1 (L2 ,()

Where

(x1, x2) ((y1, y2) if x1 (1 y1 and x2 (2 y2.

We can easily prove that L is a complete lattice.

To see what an element in L represents, we need to construct a Galois connection between it and a concrete lattice C (which is usually a power set): Given the two Galois connections (C, (1, (1, L1) and (C, (2, (2, L2) we now define a new Galois connection (C, (( L1 (L2) as

(: C (L1 (L2

((c) = <(1(c),(2(c)>

(trivial)

(: L1 (L2 (C

((<a1,a2>) = (1(a1) ((2(a2)

(keeps the common information)

Example – combining the Parity and Sign analysis:
L1 will be the Parity lattice and L2 the Sign lattice:

Parity

Sign

The combined lattice L = L1 (L2 will be:

Looking at ((<{O},{0,+}>) = (1(a1) ((2(a2) = "odd" and "zero or positive"

= "odd" and "positive" = {1, 3, 5, …}

We can see that the combination reduces the range and gives a more precise solution!

Question:

Given two Galois Insertions, is the combined connection also Galois Insertion?

Answer: No,

For example ((((<{O},{0,+}>)) is <{O},{+}>

and not <{O},{0,+}>

Given the abstract effect on L1 and L2 of elementary statements:

L1(st(#: L1(L1
L2(st(#: L2(L2

we define the abstract effect on L = L1 (L2 of elementary statements:

L1 (L2 (st(#: L1 (L2 (L1 (L2 in a manner that preserves soundness and hopefully preserves optimality.

If we define L1 (L2 (st(#(<a1,a2>) = < L1(st(#(a1), L2(st(#(a2)>, we will preserve the soundness (L1 (L2 (st(#(<a1,a2>) = < L1(st(#(a1), L2(st(#(a2)> ((((st((((<a1,a2>))). However, the solution will not be optimal (it doesn't use the interrelationships between the domains).

Defining L1 (L2 (st(#(<a1,a2>) in a way that will provide an optimal solution is difficult. One needs to understand the interrelationships between the abstract interpretations of the two domains.
Component-wise combination

More methods to combine several analyses into a single analysis:
· Independent attribute method.
· Relational attribute method.
· Total function space.
· Monotone function space.
· Direct tensor product.

Independent attribute method

In this method we define (and (to be:

(: C1 (C2 (L1 (L2

((<c1,c2>) = <(1(c1),(2(c2)>
 (: L1 (L2 (C1 (C2

((<a1,a2>) = <(1(a1),(2(a2)>

And L1 (L2 (st(# to be:
L1 (L2 (st(#: L1 (L2 (L1 (L2,

L1 (L2 (st(#(<a1,a2>) = < L1(st(#(a1), L2(st(#(a2)>

This will preserve the soundness and also the relative optimality (because there is no influence between the domains). However, this means that we are loosing the relationships between the two analyses and therefore a lot of information is lost.

For example: if C1 is the concrete domain of the values of x and C2 is the values of y, with a statement like x:=y we will get <(, … > , and will loose the knowledge that x gets the value of y. Note that the reason we could not track the assignment in the abstract transform is because we use two independent concrete domains to represent different aspects of the program, i.e., values of different variables. This choice, as in our case, might cause difficulties in defining the abstract transforms.

Relational attribute method

This method allows tracking of relations between the elements.

Given the two Galois connections

(P(C1), (1, (1, P(L1)) where (1: C1(L1 , (1 (X) = ({(1(c) | c (X}
(P(C2), (2, (2, P(L2)) where (2: C2(L2 , (2 (X) = ({(2(c) | c (X}
We define a new Galois connection (P(C1(C2), (, (, P(L1 (L2))
(: P(C1 (C2) (P(L1 (L2) , ((XX) = {<(1(c1),(2(c2)> | <c1, c2 >(XX}
 (: P(L1 (L2) (P(C1 (C2) , ((YY) = {<c1,c2> | <(1(c1) , (2(c2) > (YY }
Here, we have a way to preserve the information of relations between elements. However, this definition causes the new domain to be very large (exponent^|L|).

Example of the Relational attribute method
We will now show how the relational method can be used to construct a more precise analysis than the independent attribute method.
We want to keep interval information simultaneously on 2 variables. Here,

C1 = C2 = Z

L1 = L2 = Z ({-(,(} x Z ({-(,(}
We define the Galois connection: (P(Z (Z), (ss', (ss', P(L1xL2)), where
((z) = [z,z]

((X) = ({((z) | z (X}

(ss'(ZZ) = { [({((z1)}, ({((z2)}] | (z1, z2) (ZZ}
(ss'(SS) = {(z1, z2) | a <= z1 <= b, c <= z2 <= d, ([a,b], [c,d]) (SS}
Now, concretization of an abstract interval pair can be done in a way that keeps the relation between the values, eg.
(ss'({([5,6], [7,8]) ([6,7], [8,9])}) = {(5,7), (6,7), (5,8), (6,8), (6,9), (7,8), (7,9)}
This is another example not given in class (but taken from last year's scribe):
We want to preserve the information about expressions like (z, -z). Using the Independent attribute method with Sign (Sign, they are abstracted to <(,(>:
With (2, -2) and (6, -6) the abstraction will work fine. We will get {(+, -)}.

When (3, -3) and (-4, 4) we will loose the (z, -z) information. We will get <(,(>.

 However, when we define the Galois connection: (P(Z (Z), (ss', (ss', P(Sign (Sign)) where:

(ss'(ZZ) = {(sign(z1), sign(z2)) | (z1, z2) (ZZ}
(ss'(SS) = {(z1, z2) | (sign(z1), sign(z2)) (SS}
Now, the expression (x, -x) that has a value in {(z, -z) | z (Z} will not be discarded, because {(z, -z) | z (Z} is an element of P(Z (Z) and is described by the set (ss'({(z, -z) | z (Z}) = {(-, +), (0, 0), (+, -)}. For example:

Now with (2, -2) and (6, -6) the abstraction will work the same. We will get {(+, -)}.

And also with (3, -3) and (-4, 4) we will get {(-, +), (+, -)}. And therefore there is no lose of the {(z, -z) | z (Z} information.

Conclusions:

· Good static analysis is:
 Precise enough (for the client).
 Efficient enough.
· Good static analysis needs good domain.
 Abstracts non-important details.
 Represents relevant concrete information.
 Precise and efficient abstract meaning of abstract interpreters.
 Efficient join implementation.
 Small height or widening.
· The Theory of Static Analysis is well founded.
 Abstraction.
 Soundness.
 Chaotic iterations.
 Elimination methods (find a function which is the solution to the analysis
 equations).
 Modular methods.
· Weak Parts.
 Transformations (optimizations).
 Predictable approximations.
 System.
Bibliography

"Principles of Program analysis", Chapter 4
[exit]4

[x := x+1]3

[x (1000]2

[x:=1]1

[exit]4

[x := x+1]3

[x (1000]2

[x:=1]1

Red

narrowing

widening

lfp

[exit]4

[x := x+1]3

[x (1000]2

[x:=1]1

X

Z

Y

0

5

7

X

Z

Y

0

5

3

2

1

6

X

Z

Y

0

5

7

2

1

0

X

0

0

0

X

1

-1

X

0

0

0

X

0

0

2

X

0

3

0

X

0

0

0

X

100000

0

0

X

-1

1

2

0

(

0

X

 (1

{0}

{+}

 (1

 {-}

{0, -}

{0, +}

{-, +}

(1

{O}

{E}

(1

 <(1,(2>

<(1,(2>

<{O},(2>

<{E},(2>

<(1,{0}>

<(1,{-}>

<(1,{+}>

<{E},{0}>

<{E},{0, -}>

<{E},(2>

