Program Analysis: Lecture #1 - Overview
Page 1 of 23

Program Analysis/ Noam Rinetzky and Mooly Sagiv
Lecture 1, 24/2/05 (Overview)
Notes by: Sharon Goldshlager
Summary
Static program analysis (in short SA, for Static Analysis)automatically extracts program properties that are correct in every possible execution of the analyzed program (for every possible input), i.e., the analysis produce sound results.

The extracted properties may serve in optimization of the program, or the proof of its correctness if correct, or reporting a possible error.

In order to perform this analysis, the program is abstracted, and the analysis is performed on the abstract representation.

SA applies graph theory, automata theory and numerical analysis.

Some questions regarding program behaviour are undecidable, but there exist approximations that are useful for real-world applications.

SA is one approach for program verification. Other approach are model checking and testing/simulation.

Examples for usages of SA are detection of memory leakage, verifying that array indexes don’t overflow, elimination of redundant code, etc..

Current SA challenges include the processing of large programs efficiently, and the extraction of accurate properties under constrained processing resources.

SA is mostly used for software, but as microcode gains ground in hardware, it is used there as well.
Static Program Analysis Definition and Examples
Static Program Analysis Defined.
The term “Static Analysis” has several definitions; some are based on its uses.

· Determination for each program point p, an invariant property Pp known to hold each time control reaches p during execution, independently of the path taken to reach program point p [Cousot 1977].
· Aiken [1994] defines it as “a special­purpose theorem prover, designed to prove useful facts about a program”.

The term Static refers to the point where the assertions about the program are being made and verified: prior to program actual execution. Thus the program behaviour can be analyzed before running it on an actual input.
Common to all definitions are the following invariants:

Properties specified are
1. True per execution point of the program

2. Independent of program input.

3. Independent of the control-flow path traversed to reach that point.

The field of program analysis engages in the development of algorithms to automatically extract “interesting” program properties, in the sense that they will contribute to optimization of the program or the proof of its correctness, if correct, or reporting a possible error – see later undecidability for its limitations.
Example 1: Constant Propagation
Finding variables with constant value at a given program location.
int p(int x){

 return (x *x) ;

}

void main()

{

 int z;

 if (getc())

 z = p(6) + 8; //z=6*6+8=36+8=44
 else z = p(5) + 7; //z=5*5+7=25+7=32
 printf (z);

}

In the above program static analysis can be done by inlining the function p where it is called, and replacing the formal parameter with the constant value of the actual parameter. The resulting program contains a calculation composed solely of constants. This calcularion can be computed at compile time (and give the results specified as remarks at the appropriate lines.)
Replacing the if statement with

if (getc())

 z = p(3) + 1; //z=3*3+1=1-
 else z = p(-2) + 6; //z=(-2)*(-2)+6=4+6=10
and following the same procedure, we can conclude that whatever branch of the if is taken, z will always have the value 10, after the if. The program then can be reduced to
void main() {

 getch();
 printf(10);
}
Example 2: Constant Propagation and Recursion Analysis
int x;
void p(a) {

read (c);

if c > 0 {

L2:

a = a -2;

L1:

p(a);

L3:
a = a + 2;

}

L4:

x = -2 * a + 5;

print (x);

}

void main {

p(7);

L5:

print(x);
}

Observe that the recursion calls have a side effect, which is changing the value of (the global variable) x.

At L1 till the recursion returns to the function call instance, x’s value is changed.

During the recursive calls chain, x’s value is changed at L4 according to parameter a, and used to print an output inside the function.
After the recursive call returns,, the variable a restores its original value, since a was deducted at L2, and then added by 2 at L3.
Following this rational, at L4 a’s value is the same at function entry, and does not depend on the execution of the previous if statement.

Because prior to L5, p was called with a constant, we can calculate its value to be its last assignment (at end of recursion) done at L4 , at the first function call instance, -2*7+5=-14+5=-9, and replace L5 print(x), with print(-9).

Example 3: Finding Live variables
A variable is live at a program location

· If its R-value can be used before set.

· There exists a definition-free execution path from the label to a use of x.

The above two definitions of a live variable are equivalent.

Definition-free means that the variable isn’t redefined, i.e. assigned a new value.
Sample program
[image: image1]
/* c (L2) */

L0:
 a := 0

/* a(L1) c(L2) */

L1:
b := a + 1

/* b c(L2 R-value) */

L2:
c := c + b

/* b(L3) c(L4) */

L3:
a := b * 2

/* a(L1 if branch occurs) c(L4) */

L4:
if c < N goto L1

/* c (L5) */

L5:
 return c

In the example, every program location is preceded with a remark that specifies the live variables at that location. Every variable is followed by a location in parentheses that specifies where the variable is used prior to being set.

The graph to the right is called a Livness Graph. Every two live variables at the same execution time – have an arc connecting them.

Variables that are not live at the same time can be assigned the same storage location.

This analysis is used for register allocation using graph coloring. Each color represents a different register. The aim is to color the graph nodes, so that nodes connected by arc (variables that live at the same time) won’t be assigned the same color (register).
At the example above the variables a and b aren’t connected by an arc, so the three variables a,b, and c can be stored using only two registers (coloring a,b with the same color, and c with the other one).
Example 4: Memory Leakage

Following is example of detecting a memory leakage.
At L1 the object pointed to by head leaks (nothing points to it). This happens because head is assigned a new value, and no variable has been assigned current value of head.
This can be fixed by switching statements L1, L2.

typedef struct List {

int d;

struct List* next;

} List;

List* reverse(List (head) {

List *rev, *n;
rev = NULL;

while (head != NULL) {

n = head (next;

head (next = rev;
L1:

head = n; //leakage of address pointed to by head
L2:
 rev = head;
}
return rev;

}

SA(Static Analysis) can sometimes prove the absence of memory leakage, or that calling a garbage collector at a given program location is not necessary.

SA phase in Compilation {slides 11: Compiler Scheme,13:The Need for Static Analysis}
Aiken [1994] lists two main reasons for the increasing importance of program SA.

1. Programming languages are moving toward higher levels of abstraction, thus there is more room for optimization of specific cases.

2. Hardware architectures become more complex to program, and to exploit all of their available features.
As a result, the use of SA in optimization gains more importance,
Compilers have a common high-level structure. SA can be done at the semantic analysis, or the code generation phase.

SA moves down to the later phases of compilation, and is done in modern compilers after code generation. This is because of two main reasons:
1. The previous compilation phases add more information that can be used by SA.
2. SA is used to optimize generated code for work with specific complex hardware (reason 2 above).
In compilers SA techniques are used in compilers for advanced computer architectures. Examples are:
· Superscalar pipelined, VLIW - benefiting the increased parallelism within a processor (both through pipelining and through multiple functional units) as much as possible.

· Prefetching – instructing the cpu to read from memory a variable prior to its use, so that it would be in cache/register when needed, saving the memory access waiting time.
In compilers for high level programming languages SA is used for optimizing the use of garbage collection, optimizing OO code (see below virtual function invocation), optimizing concurrent programs.
Software Productivity/Quality Tools
Examples of Compile time debugging

· Stronger type Checking for C – Since C has weak typing rules, it enables the programmer a greater freedom, which may result in more mistakes. SA may discover type related errors such as assignment of incompatible variables.
· Assertions – The Compiler may add assertions to be checked at SA phase or at run time
· Array bound violations - This analysis proves that arrays/buffers are not overrun. This is is useful for showing correctness , security and robustness
· Identify dangling pointers – Identify possible use of pointers that point to invalid places (not allocated or freed).
· Generate test cases – These can be used as input to test the program on. Passing these test cases won’t guarantee a correct program, but they may discover a bug.
· No runtime exceptions – Prove that the program never raises an exception.
· Memory leaks – Prove their absence or report their possible existence. Memory leaks is a severe problem as they may necessitate to reboot the computer for lack of available memory, or cause security holes.
· Uninitialized variables detection – the use of such variables may result in unpredictable program execution.
· Prove pre- and post- conditions – These can be used for model checking for proving correctness of higher level properties, such as properties that span over several program locations.
Some researches claim that some of the problems solved by SA can be avoided by adhering to certain programming rules.
Problems that can be solved using SA

· Live variables- finding the variables that need storage at each program location, see example 3 of SA definition section.

· Reaching Definitions – For each definition of a variable (assignment to it), find the program locations where this definition is used – path from that definition to a use of the variables, without redefining the variable with a new value.
Alternatively for each use of a variable, what are the definitions from which there is a definition free path to the use of the variable, making each such definition the last assignment to the variable.

· Available Expressions – An expression that is used in multiple places, can be calculated once, and its value stored for the other instances of it. SA makes sure the operands will not change for the other instances, so the expression result will have the same value.
· Dead Code – Code that is not used during program execution. Reasons may be:

· Assignment to unused variables.

· Unreachable code due to false if conditions,

· Optimizations of code (such as not calling a function that returns a value that be computed at compile time c

· Pointer variables never point into the same location – In that case updating one of them cannot affect the other.

· Points in the program in which it is safe to free an object – Then compiler can insert a free statement at that location, optimizing memory usage.
· An invocation of virtual method whose address is unique – Jumping to a virtual function is expensive. If a derived class object does not re-implement a base class function than its code location is the same as for the base class, and there’s no need to use the virtual function table.
· Statements that can be executed in parallel – A parallel processor can speed up execution by executing these statements on different execution units.
· An access to a variable which must be in cache – Memory access is expensive in relation to access to cache. A variable accesses many times will speed up execution by keeping it in cache.

· Integer intervals – Statically resolving the range of values an integer variable may get. See Array bound violations above.
Optimality Criteria
There are different criteria to asses the “quality” of a static analysis.

· Precise (with respect to a subset of the programs)

· Precise under the assumption that all paths are executable (statically exact)

· Relatively optimal with respect to the chosen abstract domain – Yielding the most accurate observation of the possible values of the domain.

· Good enough – Practical for use, not consuming too many resources. Stopping when the cost of reaching higher accuracy exceeds the gain.
Challenges in Static Analysis
· SA is Non-trivial – some properties are known to be undecidable. Reaching a program location can be reduced to program termination. Still SA heuristics can be applied to most programs to generate meaningful information, though not for all possible programs.
· Correctness (soundness) – Proving the correctness of the SA algorithms used.
· Precision – Generating as precise observations on the program. SA may produce a true observation, but too general, thus not helpful.
· Efficiency of the analysis – Some techniques require exponential time analysis, which is not feasible for industrial programs.
· Scaling – SA takes most of the time an optimizing compiler runs. Activating SA techniques on large scale programs may take too much time. This might cause that it won’t be used.
Foundation of Static Analysis
Static analysis can be viewed as interpreting the program over an “abstract domain”.
This means that the analysi might consider a larger set of execution paths than the program actually executes.
Howeverm the analysis guarantees the results to be sound. For example, in constant propagation:
· Every identified constant is indeed a constant (sound – always correct)
· But not every constant is identified as such (not complete – doesn’t always discover all instances of a certain property in a program).

Aiken summarizes Cousot and Cousot [CC77] article
“A programming language has a standard interpretation µ mapping programs e to values µ(e). An abstract interpretation consists of another interpretation α that maps programs e to abstract values α(e). The abstract values are abstractions of the standard values and this is formalized by a function γ that maps every abstract value δ to the set of (standard) values γ(δ) that δ represents. If a (standard) value ν is in γ(δ), then δ is said to be an abstraction of ν.”

[image: image7.wmf]+

’

?

O

E

?

?

?

?

O

?

E

O

E

?

O

E

*

’

?

O

E

?

?

?

E

O

?

O

E

E

E

E

E

+

’

?

O

E

?

?

?

?

O

?

E

O

E

?

O

E

*

’

?

O

E

?

?

?

E

O

?

O

E

E

E

E

E

This kind of relation between α (γ (α functions is called a Galois connection.
Note that the concretization function γ is not necessarily the inverse function of the abstraction function α.

Nothe that because the the analysis considers abstract domains, it may report bugs in execution paths in the program that will never be exercised, for example, because the input in the real world may be a proper sub-set of the abstract domain on which analysis is done.

Example 1: Casting Out Nines>

This analysis is used as a sanity check for calculations done in standard arithmetics.

The analysis can detect when two calculations do not have the same value.

In this analysis. the integers are the concrete domain. They are mapped using mapping function sum_modulu_9 to the abstract domain containing {0,..8}.
sum_modulu_9: Whenever an intermediate result exceeds 8, replace by the sum of its digits (recursively).

Example:

Check whether two expressions don’t have the same value.

If their respective sum_modulu_9 values differ then they are guranteed to be different, otherwise we may not know, the algorithm will not provide us with additional information.

 “123 * 457 + 76543 = 132654?”

Left: 123*457 + 76543 (6 * 7 + 7 = 6 + 7 (4

Right: 21 (3

Report an error – their sum_modulu_9 don’t match.
The soundness of next analysis is based on the following rules:

(10a + b) mod 9 = (a + b) mod 9
(a+b) mod 9 = (a mod 9) + (b mod 9)
(a*b) mod 9 = (a mod 9) * (b mod 9)

Example 2: Odd/Even Abstract Interpretation
Determine whether an integer variable is even or odd at a given program point.

Abstraction ((X) =
if X= (return ┴
 else if for all z in X (z%2 == 0) return E

 else if for all z in X (z%2 == 0) return O

 else return ?
Concretization ((a) =
if a = ┴ return (
else if a = E return Even

else if a= O return Odd

else return Natural

e.g.
(({-2,0}) = E

((E) = {x | x ∊ Even}

(((({-2,1,5})) = ((?) = All concrete states (loss of information

[image: image2]
(is bottom – empty group or an uninitialized object.

Applying γ (α will map to the original set.

Applying α (γ may map to a larger set than the original.
We can abstract the following infinite concrete domains.
[image: image6.wmf]+

0

1

2

3

…

0

0

1

2

3

…

1

1

2

3

4

…

2

2

3

4

5

…

3

3

4

5

6

…

M

M

M

M

M

*

0

1

2

3

…

0

0

0

0

0

…

1

0

1

2

3

…

2

0

2

4

6

…

3

0

3

6

9

…

M

M

M

M

M

+

0

1

2

3

…

0

0

1

2

3

…

1

1

2

3

4

…

2

2

3

4

5

…

3

3

4

5

6

…

M

M

M

M

M

*

0

1

2

3

…

0

0

0

0

0

…

1

0

1

2

3

…

2

0

2

4

6

…

3

0

3

6

9

…

M

M

M

M

M

These are the abstract interpretations with which we’ll analyze the oddness of variables at program locations.

Example use: Collage Series

Assuming at start(L1) X is a given positive number, following the algorithm below, will the generated series end ?

L1:/* x=? */
while (x !=1) do { /* x=? */

 if (x %2) == 0
/*L2: x=E */ { x := x / 2; } /*L3: x=? */

else
/*L4: x=O */ { x := x * 3 + 1; /*L5: x=E */
 assert (x %2 ==0); }

}

/*L6: x=O because x==1*/
The statements in /* */ remarks were added by statically analyzing the program.
At L1 we cannot know a-priori whether we start with an odd or even value.

L2 is located after the if condition, so x is guaranteed to be even. Dividing an even number by two may generate an even number, or an odd one, so we cannot state whether x is even or odd.

At L4 x is odd. Odd multiplied by an odd will result in an odd number. Adding 1 to odd number will result in an even number since 1 is odd, and odd + odd=even number, so we can safely state that at L5 x is even. After executing the odd branch of the if statement control will transfer to the start of the loop. Optimization can be done now: x is even so it can’t be 1 and the condition at the while loop will always hold, also since x is even there’s no need to perform the if check and we can unconditionally branch to L2.
Example 3: Constant Propagation>

In the previous example we have reduced an infinite concrete domain to a finite abstract domain. Next we’ll show an example of reducing the same concrete domain to an infinite abstract domain.

Abstract representation: set of integer values and extra value “?” denoting variables not known to be constants

	Conservative interpretation of +
	Conservative interpretation of *

	+#

?

0

1

2

?

?

?

?

?

0

?

0

1

2

1

?

1

2

3

2

?

2

3

4

…

?

…

…

…

	*#

?

0

1

2

?

?

?

?

?

0

0
0

0
0
1

?

0
1
2
2

?

0
2
4

…

?

0
…

…

Program1

x = 5;

y = 7;

if (getc())

 y = x + 2; //5+2=7
z = x +y; //redundant calculation
The calculation of z is redundant since whether or not the if is taken z will have value 7. The statement can be replaced with

z = 12;
Program 2

L1:if (getc())
 x= 3 ; y = 2;

else

 x =2; y = 3;

L2:z = x +y; //z=3+2=5 if getch() yields true, or z=2+3=5 if getch() yields false
A compiler that employ only a local analysis may not optimize z to get value 5. The reason for this is that at L2 the compiler may not know that the sum of x and y is a constant (5). The complier may fail to detect this because of x an y have different values at L2, depending on whether the if condition is true or false. Thus, the compiler may set their abstract value to ?. The abstract semantics of ? +? is ?, thus the compiler may not detect that z is actually constant.
For the optimization of z to 5 to work we should consider the abstract interpretation of x, and y together for each control-flow path.

Abstract Interpretation and homomorphism

Abstract interpretation cannot always be homomorphic.
In the process of abstraction information may be lost, as the abstracted set may be a proper subset of the concrete set represented by the abstraction to which it is mapped.

It is not always the case that dividing a group of even numbers by 2 yields a group of only even numbers. Thus analyzing over the abstract domain may produce less accurate results than analysis done over operation semantics, even though the result of the abstract semantics analysis is correct.

The following illustration demonstrates this. The specific example values are in blue.
E represents all even numbers, O all odd numbers, and ? all numbers.

[image: image3]
This is a conservative interpretation. The abstract domain may represent more elements than the real world, this is sound because it represents all relevant elements of the real world.
Operational semantics is used in the concrete world, whereas abstract semantics in used in the abstract world.
Challenges in Abstract Interpretation
· Finding appropriate program semantics (finding a semantics that can be executed in by an interpreter that records the information that we are interested in. This semantics can be the standard program semantics, or an “instrumented” semantics that records additional information)

· Designing abstract representations

· What to forget

· What to remember

· Summarize crucial information

· Handling loops

· Handling procedures

· Scalability

· Large programs

· Missing source code

· Precise enough – see optimality criteria.
Runtime vs. Abstract Interpretation (software quality tools)

	
	Runtime (testing/simulation)
	Abstract

	Effectiveness
	Missed Errors (input and timing dependant)
	False alarms (considering unrealistic inputs)

	
	
	Locate rare errors (analyzes all execution paths)

	Cost
	Proportional to program’s execution
	Proportional to program’s size

Testing finds common mistakes relatively fast.

SA for large programs will find corner cases errors but at high cost.

SA and Undecidability
Theorem 1

It is undecidable if a program point is reachable in some execution.

Proof

Reduce the halting problem by asking whether a point past the program exit point is reachable.

Some static analysis problems are undecidable even if the program conditions are ignored. Meaning that even if all code is reachable determination of some properties is undecidable, like the following example.
Example 1: The Constant Propagation Example
Assume L2 is reachable.

L1:while (getc()) {

 if (getc()) x_1 = x_1 + 1;

 if (getc()) x_2 = x_2 + 1;

 ...

 if (getc()) x_n = x_n + 1;

 }

L2: y = truncate (1/ (1 + p2(x_1, x_2, ..., x_n))
L3
/* Is y=0 here? */

It is known to be undecidable whether a polynomial of order n has a root over the naturals. We can reduce this problem to the above program, with the property to be verified is whether at L3 y==0.

p2 will yield a non-negative value.

If p(…) is non zero, p2 is positive, adding it to 1 yields a value greater than 1. This value in the denominator will yield a fraction, truncating it will yield a 0.

If we found a root of p, then p2 =0, and 1/ (1 + p2)=1/(1+0)=1, truncated yields 1.

To conclude, at L3 y==1 iff a root of p is found.

If always y==0 at L3 then p has no root over the naturals.

Coping with undecidabilty
· Analyzing Loop free programs –This kind of programs are decidable, but not relevant to real-world applications.
· Analyzing Simple static properties – like adhering to typing rules, will mostly find trivial errors.
· Interactive solutions – The analyzing tool will ask a user for relevant unknown information. This may be too complex for the user to apprehend or understand.
· Conservative (sound) estimations. This may have the following effects
· Program optimization transforms one code representation to another, ensuring the original meaning is preserved. The static analysis can detect which transformation are applicable at every program point. The enabled transformation cannot change the meaning of the code, but the analysis may fail to detect that some transformations applicable. This conservative approach may lead to some preserving optimizations not being used.
· Non optimal code – not using available sound optimization - see above.
· Every potential error is caught but some “false alarms” may be issued – we’ll be conservative in our estimations, preferring false alarms over false positives. The anlysis will detect all the errors in the programs but might generate warnings about non-erroneous code. If the analysis produces too many false alarms it might not be reasonable to ask the programmer to check every warning (an anlysis that “discovers” an error in every program statement is sound, but very useful)
Analogies with Numerical Analysis
· Non optimal Approximate the exact semantics

· More precision can be obtained at greater computational costs
· But sometimes more precise can also be more efficient efficient: more knowledge can be used later in the analysis to resolve ambiguities, such as an “if” clause, and thus lead to examination of less execution paths.

Violation of Soundness
· Loop invariant code motion – moving code inside a loop to outside for optimization.
· Dead code elimination

· In both the above cases the existence of exceptions in the moved/eliminated code may produce different behaviour in the optimized program than the original program.
· Overflow – values calculated may differ since computer precision is limited.
{float x, y, z ; ((x+y)+z) != (x + (y+z))}
· Quality checking tools may decide to ignore certain kinds of errors

An anlysis may ignore certain errors. However, we sometimes still show that it is sound with repsct to a different concrete semantics. For example, an analysis that ignores overflows can be shown to be sound with respect to a concrete semantics in which standard arithemtics is used.
<Program Verification >

This field was initiated by Hoare and Dijkstra. The Israelis Zohar Manna and Amir Pnueli (Turing award winner) have further developed this field both in theory and in practice.

Program verification:

· Mathematically prove the correctness of the program
· Requires formal specification
· Example Hoare Logic {P} S {Q}
· {x = 1} x++ ; {x = 2}
· {x=1}
{true} if (y >0) x = 1 else x = 2 {?} // {true} means no assumption.

· {y=n} z = 1 while (y>0) {z = z * y-- ; } {?}
A program is treated as a mathematical object. Its correctness then should be proved w.r.t all possible input sequences. User should specify the input sequences, and the expected program behaviour formally.
The analysis is composed of pre- and post- conditions, which are the properties before and after the execution of a statement.

[image: image4]
Origins of Abstract Interpretation
· [Naur 1965] The Gier Algol compiler “`A process which combines the operators and operands of the source text in the manner in which an actual evaluation would have to do it, but which operates on descriptions of the operands, not their value”

· [Reynolds 1969] Interesting analysis which includes infinite domains (context free grammars)

· [Syntzoff 1972] Well foudedness of programs and termination

· [Cousot and Cousot 1976,77,79] The general theory

· [Kamm and Ullman, Kildall 1977] Algorithmic foundations

· [Tarjan 1981] Reductions to semi-ring problems

· [Sharir and Pnueli 1981] Foundation of the interprocedural case

· [Allen, Kennedy, Cock, Jones, Muchnick and Scwartz]
<Some Industrial Success Stories>

Array bound checks for IBM PL.8 Compiler:
· out-of-bounds references can be critical

· can be a result of bugs

· can be a result of a malicious behavior (buffer overflow attacks etc.)

· Avoiding these errors is easy if we bound-check each reference by adding the check in the compiler level (as 1970s compilers could do)

· The problem is that code with checking runs slowly – obvious opportunity for optimization

· PL.8 philosophy: check everything & optimize checks

· According to the compiler developers – the checked code runs 5 to 10 percent slower than the unchecked code

· On upper/lower bound fault, a trap function will be called without buffer overrun taking place

· The check block added is considered as an atomic operation

· Optimizations include

· moving the check block out of loops – check the endpoints

· with known loop bounds, the checks become static (for i=1 to 100 a[i] = … (Check in compile time)

Polyspace Technologies:
· Focuses on Run-time errors in embedded applications, using abstract interpretation

· Errors which are said to be found by their C++ developer edition

· Read access to non-initialized data (variables and function return values),

· De-referencing through null and out-of-bounds pointers,

· Out-of-bounds array access,

· Invalid arithmetic operations such as division by zero, sqrt(negative number),

· Overflow / underflow on arithmetic operations for integers and floating point numbers,

· llegal type conversions, e.g.: long to short, float to int,

· Access conflicts for data shared between tasks,

· Invalid dynamic_cast calls,

· Throws of unauthorized exceptions,

· Calls to virtual pure methods,

· Negative size arrays,

· Null receivers,

· Null pointers to members,

· Wrong type for receivers such as polymorphic type in non-virtual method,

· Throws during catch parameter construction,
· Non-terminating function calls and loops,

· Unreachable code (dead code).

· (Interesting) Published Clients

· Railway company – Verified a signaling program for trains

· 15,000 lines of code in Ada verified in a few hours

· Requirement – zero defects (trains at 300 kp/h separated by 3 minutes from one another…)

· Debugged:

· Access to non-initialized variables

· Division by zero

· Out of bounds array access

· EADS (European Aeronotic Defence and Space company) Launch vehicle

· 100,000 lines of code, Ada again

· Used as a "final touch" tool

· Very concerned to errors leading to a software halt (which means the missile is on its own…)

· “Reminder”: The EADS Ariane 5 rocket crashed in 1996 (valued with cargo at $500 million) after a 64-bit float was converted to a 16-bit signed integer and overflowed, thus failing to convert…

· Safety-critical units in oil refineries and chemical/petrochemical plants.

· 70,000 lines of C and 140,000 lines of Ada in "hard real time"

· Standard verification took up to 5 man-years.

· Nuclear Energy Industry – Nuclear safety-software

AbsInt:
· PAG - The Program Analyzer Generator, which implements:

· Cache behavior prediction

· Stack usage analysis

· Memory error detection (dereferencing null pointers)

· Post pass code optimizations

· Conditional constant propagation

· Addressing mode optimization

· Data dependency analysis on pointer structures

· Optimizations for a video accelerator multiprocessor

· Pipeline analysis

· Escape analysis on Java

· Value analysis on executables

· Shape analysis

· Strongly live variables analyses

· Interval analysis

· Classical bit-vector analyses
· Timing validation for real-time software
· Verify that safety-critical applications always react fast enough

· Avoids the need to perform Extensive timing testing

· Code Compaction - The size of compiled C code is becoming increasingly critical in embedded systems

· Speed up the execution of the compiled code

· Reduce size of program (lower memory and hardware costs

· Stack usage analysis which is valid for all inputs and each task execution

'Prefix' by Intrinsa:

· Was used as early as 1997 by Sun Microsystems to aid development of hardware diagnostics tools for users of Sun's Solaris operating system, and by Netscape.

· Bought by Microsoft in 1999 in order to control bugs in Windows 2000. Although the tool found many bugs, it proved to be slow and processor-intensive. In response, Microsoft has developed an improved version (and has developed offspring tools like Prefast and SLAM).

· Aims to achieve a Purify 'look and feel' in a static analyzer.

· Results of running the tool on Mozilla web browser, Apache web server and a BoundsChecker demo program (GDI) using a P2 266Mhz with 96Mb RAM:

[image: image5.png]lable 1. Performance on sample public domain software.

PREfix
Numberof Numberof PREfix parse simulation
Progmm Language files lines time time
Mozilla C 603 40613 2h Sh
28 min min
Apache ¢ © 48303 6 min 9 min
GDI Demo « 9 2655 I's 155
Table 11 Warnings reported in sample public domain software.
Warning Mozilla Apache GDI
Using uninitialized memory W.14% 4% 6%
Dereferencing uninitialized pointer 173% 0 0
Dereferencing NULL pointer S803% S0% 15%
Dereferencing invalid pointer 0 s% 0
Dereferencing pointer to freed memory Lo8% 0 0
Leaking memory 075% 0
Leaking a resource (such as a file) 000% 0
Returning poiner 1o local stack variable 052% 0
Returning poiner to freed memory 009% 0 0
Resource in invalid state 0 0
Tlleal value passed to function 043% 0
Divide by zero 035% 0 0
Total number of warnings 1159 20 13

· Examination of the errors reported found that many of them are not on the mainstream code, which is usually tested and debugged more, and thus is complimentary to 'standard' testing.

· The parse time of the various applications was not much longer than their respective compile times.

Some Academic Success Stories
· Cousot PLDI 03

· Validates floating point computations
· High precision rate

· Reasonable computational power and time

· Main effort was to discover an appropriate abstraction

· Uses 3 abstract domains – two specialized and one improved
· CSSV (Nurit Dor) PLDI 03 – C String Static Verifier
· Prove the absence of buffer overruns by looking for the errors:

· ANSI-C violations of string, such as an access out of bounds

· Violations of pre/post-conditions of procedures

· “Cleanness” – all accesses are before the null-termination byte etc.

· Tested on actual EADS Airbus code with no bugs found

· Scored a good bug/false alarm ratio on another commonly used string intensive application
· PLDI 02 Ramalingam et al., PLDI 04 Yahav & Ramalingam

· Conformance of client to component specifications

Complementary Approaches
· Finite state model checking
· Extensively used hardware design, but even then it may handle relatively small blocks, or an abstraction is required.

· For software it requires bounding the range of values variables may get (in, float etc).

· Unsound approaches

· Compute underapproximation – researched at CMU, where false alarms are not tolerated, and every reported bug is a real bug, but this approach may not discover all the bugs.
· Better programming language design
· Like Java which has solved some error prone featured, but introduced others
· Type checking

· Proof carrying code
· The compiler generates proof for code correctness.

· Just in time and dynamic compilation
· Static analysis is done at program execution, where there’s knowledge of the input, but then it should be done very fast.

· Profiling – Running typical tests, very great variance, and thus gathering the most common control flow and inputs and verifying using these.
· Runtime tests – the old fashion method.
Bibliography

1. Program Analysis course presentation – overview.ppt (versions 2001,2004,2005)
2. Notes on Program Analysis/Alex Aiken, April 1994

3. Principles of Program Analysis/Nielson, Nielson and Hankin
4. An Introduction to a mathematical theory of global program analysis/Patrick M. Cousot/March 1977

5. Program Analysis course notes 2004/ Yotam Shtossel

6. Program Analysis course notes 2001/Greta Yorsh

(

Descriptors of

sets of stores

Sets of stores

(

Concrete

Abstract

(

(

c

b

a

Program Verification

Program Analysis

Fully automatic

But can benefit from specification

Applicable to a programming language

Can be very imprecise

May yield false alarms

Identify interesting bugs

Establish non-trivial properties using effective algorithms

Requires specification and loop invariants

Not decidable

Program specific

Relative complete – a proof for each property.

Must provide counter examples

Provide useful documentation

(

(

{x: x (Even}

All concrete states

(

(

(

?

O

E

(

{0}

{2}

{0,2}

{-2, 1, 5}

(

(

?

abstract semantics

Statement

x := x /# 2

Abstract

semantics

Set of states {8, 16}

Statement x :=x/2

Operational semantics

(

E

abstract

representation

(

Set of states

{16, 32}

E

abstract

representation

Notes taken by Sharon Goldshlager, 2/2005 -- Page 1 -

Computer Science Dept., Tel-Aviv University, Israel

