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Lecture #3
In this lecture we continue the discussion about the structural operational semantics. Afterwards, we extend the While language by various constructs and discuss how it affects the natural operational semantics and the structural operational semantics. 

In the last part of the lecture we examine a constant propagation algorithm in an intuitive way.

Derivation sequence

A derivation sequence of a statement S starting in state s is one of the following:
· A finite sequence  (0, (1, (2 …, (k  such that

· (0=<S, s> 

· (i ( ( i +1

(for every 0 ≤ i < k)
· (k is either stuck configuration or a final state
· An Infinite sequence (0, (1, (2 …such that

· (0=<S, s>
· (i ( (i+1

(for every 0 ≤ i)

We write (0 (i (i   to indicate that there are i steps in the execution from (0 to (i.

We write (0 (* (i to indicate that there exists an i such that (0 (i (i
Note that (0 (i (i  and (0 (* (i are derivation sequences if and only if (i is either a final state or a stuck configuration.

Corresponding to each step in a derivation sequence is a derivation tree explaining why this step takes place. Therefore, the meaning of a program is now described by a sequence of trees, rather than just one derivation tree as in natural semantics.

Thus, the derivation sequence can be seen as a sequence of trees leading to a final state or to a stuck configuration (a configuration <S, s> is stuck configuration iff there is no ( such that <S, s>(( ).
Example
Consider the statement S = (z:=x; x := y);  y := z , and let s be a state such that s x = 5 and s y = 7.  for <S,s> we have the derivation sequence:

<(z:=x; x:= y;); y:= z, s> (
 < x:= y; y:= z, s [z(5]> ( 

< y:= z, (s [z(5])[x(7]> ( 

((s [z(5])[ x(7])[y(5]
Each one of these steps has a derivation tree, for example the derivation tree of the first step is: 
	< z:=x, s> ( s [z(5] 
	[asssos] 

	< z:=x; x:= y, s > ( < x:= y, s [z(5] >
	[comp2sos]

	<(z:=x; x:= y); y:= z, s> ( < x:= y; y:= z, s [z(5]>
	[comp1sos]


The derivation tree of the second step is:

	<x:=y, s [z(5]> ( (s [z(5])[x(7]
	[asssos]

	< x:= y; y:= z, s [z(5]> ( < y:= z, (s [z(5])[x(7]> 
	[comp2sos]


Example
Consider the statement S = y := 1; while ((x=1) do (y := y * x; x := x - 1),

and let s be a state such that s x = 3 
For S and s we have the derivation sequence:

<y := 1; while ((x=1) do (y := y * x; x := x - 1),s>(
< while ((x=1) do (y := y * x; x := x - 1),s[y(1]>(
< if ((x=1) then  ((y := y * x; x := x - 1); 
   while ((x=1) do (y := y * x; x := x - 1)) else skip ,s[y(1]>(
< (y := y * x; x := x - 1); while ((x=1) do (y := y * x; x := x - 1),s[y(1]>(
< x := x - 1; while ((x=1) do (y := y * x; x := x - 1),s[y(3]>(
<while ((x=1) do (y := y * x; x := x - 1),s[y(3] [x(2]>(
( ……. ( s[y(6] [x(1]
The Derivation trees for first four steps are:

	<y := 1, s> ( s[y(1]
	[asssos]

	<y := 1; while ((x=1) do (y := y * x; x := x - 1),s>(
< while ((x=1) do (y := y * x; x := x - 1),s[y(1]>
	[comp2sos]


	
	

	< while ((x=1) do (y := y * x; x := x - 1),s[y(1]>(
< if ((x=1) then ((y := y * x; x := x - 1); while ((x=1) do (y := y * x; x := x - 1)) else skip ,s[y(1]>
	[whilesos]


	
	

	< if ((x=1) then ((y := y * x; x := x - 1); while ((x=1) do (y := y * x; x := x - 1)) else skip ,s[y(1]>
(
< (y := y * x; x := x - 1); while ((x=1) do (y := y * x; x := x - 1),s[y(1]>
	[ifttsos]


	< y := y * x ,s[y(1]> ( s[y(3]
	[asssos]

	< (y := y * x; x := x - 1) ,s[y(1]> (
<x := x –1,s[y(3]>
	[comp2sos]

	< (y := y * x; x := x - 1); while ((x=1) do (y := y * x; x := x - 1),s[y(1]>
(
<x:=x-1; while ((x=1) do (y:=y*x; x:=x - 1),s[y(3]>
	[comp1sos]


Program Termination

Given a statement S and a state s, we shall say that the execution of S on s
· terminates - iff there is a finite derivation sequence starting at <S, s>
· terminates successfully – iff there is a finite derivation sequence starting at <S, s> leading to a final state

· loops – iff there is an infinite derivation sequence starting at <S, s>
Notice that in While an execution terminates successfully iff it terminates, because there are no stuck configurations (we will see stuck configurations when we extend While). 

The definition of loops is essential for nondeterministic languages because in such languages a program can terminate or not terminate on the same input (we will see how to extend the While language to be nondeterministic).
Properties of the semantics

We say that the sentences S1 and S2 are semantically equivalent if:
· for all s and s’   (s’ is a stuck configuration or a final state)
<S1, s> (* s’ if and only if <S2, s> (*s’
· there is an infinite derivation sequence starting at <S1, s> if and only if there is an infinite derivation sequence starting at <S2, s> 

We can say informally that S1 and S2 are semantically equivalent if they agree about all the finite computations and loop on the same inputs.

We say that the structural operational semantics is deterministic if for all choices of  S, s, s’, s’’ (s’, s’’ -  can be either a stuck configuration  or  a final state) we have that: 

<S, s> (* s’ and <S, s> (* s’’ imply s’=s’’

We can prove that the structural operational semantics for While is deterministic by using induction on the maximum length of the derivation sequences.

The general technique is as follows:

· Prove that the property holds for all derivation sequences of length 0 (usually holds vacuously).


· Prove that the property holds for all other derivation sequences:
Assume that the property holds for all sequences of length at most k (the induction hypothesis) and show that it holds for sequences of length k+1.


· Conclude that the property holds for every terminating computation.


We will illustrate this proof technique shortly.

Note: Since each transition in a derivation sequence has a derivation tree corresponding to it, we will sometimes have to use sub-inductions on the shape of derivation trees, in addition to the global induction on the length of the derivation sequence.

Sequential composition
In the structural operational semantic we defined for the While language, the following property holds: 

The execution of S1; S2 on an input can be split into two parts:

execute S1 on s yielding a state s’

execute S2 on s’

We can show that this property holds by proving the theorem:

For any statements S1 and S2, if <S1; S2, s> (k s’’ then there exists a final state s’ and natural numbers k1 and k2 such that:

· <S1, s> (k1 s’

· <S2, s’> ( k2 s’’

· and k = k1  + k2.

Proof:

The proof is by induction on k, i.e. the length of the derivation sequence 

<S1; S2, s> (k s’’.

For k=0 the claim holds vacuously: 

There is no derivation sequence of the form <S1; S2, s> (0 s’’ (for any choice of S1, S2, s and s’’), since it is impossible to get from an intermediate configuration to a final state using zero derivation steps. Therefore, the claim if <S1; S2, s> (0 s’’ then... holds vacuously.

Induction step: assume that the claim holds for k (k≥0), and prove that it holds for k+1:

Suppose that <S1; S2, s> (k+1 s’’. If we isolate the first derivation step, this derivation sequence can be written as <S1; S2, s> ( ( (k s’’ for some configuration (. Since we begin with a composite construct S1; S2, the first derivation step must follow one of the composition rules [comp1sos] or [comp2sos]. 

In the first case, we have <S1; S2, s> ( <S1’; S2, s’> where (1) < S1,s> ( < S1’,s’>. That means (=<S1’; S2, s’>, and therefore (2) <S1’; S2, s’> (k s’’. Note that so far we have not used the induction hypothesis, only the structure of the derivation rule. 

The induction hypothesis can now be applied to (2), and we conclude that there is a state s* and natural numbers k1 and k2 such that:

(3) <S1’, s’> (k1 s* and (4) <S2, s*> ( k2 s’’ where k = k1 + k2.

(1) + (3) imply that (6) <S1, s> (k1+1 s*.

Since (k1+1) + k2 = k+1, (6) + (4) prove the result for k+1.

In the second case, we have <S1; S2, s> ( <S2, s’> where (7) < S1,s> ( s’.

So (=<S2, s’>, and therefore (8) <S2, s’> (k s’’.

The result for k+1 follows from (7) + (8) by choosing k1=1 and k2=k.

The Semantic Function Ssos
As we did for the natural semantics we define the meaning of a statement S as a partial function from State to State:

Ssos: Statement ( (State ( State)
Ssos(S( s  =  s’               
if <S,s> (* s’
{s’ is a final state or stuck configuration}
Ssos(S( s  =  undefined  
otherwise

Theorem: for every statement of the While we have Sns(S( = Ssos(S( 

A detailed proof for this theorem can be found in the “Semantics with Applications” book pages 40-43.
This theorem expresses the following properties:
1. if the execution of a statement S from some state terminates in one of the semantics then it also terminates in the other, and the resulting states will be equal

2. If the execution of a statement S loops from some state in one of the semantics then it will also loop in the other
The properties follow from the theorem because there are no stuck configurations (for now), and because the determinism of the both semantics.

Extensions of While 

In order to illustrate the power and the weakness of the two approaches, we will consider various extensions of While. 

· Abort statement (like C exit)

· Non determinism

· Parallelism

· Local Variables

· Procedures
· Static Scope

· Dynamic scope
The While language with Abort
In this section we extend While with an abort statement. The idea is that abort stops the execution of the program (like the C exit function). abort behaves differently from the statement while true do skip in that it causes the execution to stop rather than loop. abort behaves differently from skip because a statement following abort will not be executed whereas one following skip will.

The new syntax of statements is given by:

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | while b do S| abort
One way to support the extension is not to add any new rules to the natural and the operational semantics, by that we achieve that nothing can be proven about configurations of the form <abort ,s>.

Consider the following statements:

· skip
· abort
· while true do skip

Intuitively each one of the statements behaves differently. skip skips to the next statement, abort stops the execution of the program and while true do skip causes the program to run forever.

Let’s look at these statements from the structural operational semantics point of view:

<skip, s>( s

is the only derivation sequence for skip starting at s.

<abort, s> (stuck) 
is the only derivation sequence for abort starting at s.

The only derivation sequence for while true do skip starting at s, is the infinite sequence:

<while true do skip, s>( <if true then (skip; while true do skip) else skip, s>                 ( <skip; while true do skip, s>( <while true do skip, s>( ...

From the definition of semantic equivalence for structural operational semantics, it is clear that these three statements are nonequivalent in pairs.

Let’s look at these statements from the natural operational semantics point of view:

It is clear that skip and abort are not semantically equivalent (we can prove nothing about a statement with abort). But abort and while true do skip are semantically equivalent because in the natural semantics we are only concerned with executions that terminate properly so we can’t distinguish the difference between these statements (these statements cannot be inside a valid derivation tree according to the natural semantics rules).

We can summarize this as follows:

· The natural semantics cannot distinguish between looping and abnormal termination.
· In the structural operational semantics looping is reflected by infinite derivations and abnormal termination is reflected by stuck configuration

The While language with Non-Determinism
We want the create non-determinism in our programs. We can do it by adding statements of the form S1 or S2, the program will choose non-deterministically to execute either S1 or S2. 

<Example>

The statement x := 1 or (x :=2 ; x := x+2) could result in a state where x=1, but it could as well result in a state where x=4.

The new syntax of statements is given by:

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | while b do S| S1 or S2 

In order to support this extension we extend the natural semantics with the following rules:

	[or1ns]
	<S1, s> ( s’

	
	<S1 or S2, s> ( s’


	[or2ns]
	<S2, s> ( s’

	
	<S1 or S2, s> ( s’


<Example>

 For the configuration <x :=1 or (x :=2 ; x := x+2), s> we have derivation trees for:
<x :=1 or (x :=2 ; x := x+2), s> ( s[x(1] 

	< x :=1, s> ( s[x(1]       
	

	<x :=1 or (x :=2 ; x := x+2), s> ( s[x(1]     


as well as 

<x :=1 or (x :=2 ; x := x+2), s> ( s[x(4].

	<x :=2, s> ( s[x(2]     
	< x := x+2, s[x(2]> ( s[x(4]    

	<x :=2 ; x := x+2, s> ( s[x(4]       

	<x :=1 or (x :=2 ; x := x+2), s> ( s[x(4]        


It is important no notice that the configuration
<while true do skip or (x :=2 ; x := x+2), s>  will have only one derivation tree (because we can not produce a derivation tree from the infinite-while):

	<x :=2, s> ( s[x(2]     
	< x := x+2, s[x(2]> ( s[x(4]    

	<x :=2 ; x := x+2, s> ( s[x(4]       

	< while true do skip or (x :=2 ; x := x+2), s> ( s[x(4]        


The structural semantics is extended with the following axioms:

[or1sos]            <S1 or S2, s> ( < S1, s>

[or2sos]            <S1 or S2, s> ( < S2, s>

<Example>

 for the statement x :=1 or (x :=2 ; x := x+2) we have two derivation sequences:

< x :=1 or (x :=2 ; x := x+2), s>(*  s[x(1]

< x :=1 or (x :=2 ; x := x+2), s>(*  s[x(4]

if we replace x:=1 by while true do skip then we will still have 2 derivation sequences,

One is infinite:

< while true do skip or (x :=2 ; x := x+2), s>( < while true do skip, s>( …….

And the other is finite:

< while true do skip or (x :=2 ; x := x+2), s>(*  s[x(4]

We can summarize this as follows:

· In the natural semantics non-determinism will suppress looping if possible 

· In the structural operational semantics non-determinism does not suppress looping
The While language with Parallel constructs
We want to add parallelism to our programs. We can do it by adding statements of the form S1 par S2. The idea is that both statements S1, S2 have to be executed but their execution can be interleaved.

Example
 the statement x := 1 par (x :=2 ; x := x+2) can give three different results for x: x=1,x=3,x=4 (it is quite simple to understand why). 

In order to support this extension we extend the structural semantics with the following axioms:

	[par1sos]
	<S1, s> ( <S’1, s’>

	
	<S1 par S2, s>  ( <S’1 par S2, s’> 


	[par2sos]
	<S1, s> ( s’

	
	<S1 par S2, s> ( <S2, s’>


	[par3sos]
	<S2, s> ( <S’2, s’>

	
	<S1 par S2, s>  ( <S1 par S’2, s’>


	[par4sos]
	<S2, s> ( s’

	
	<S1 par S2, s> ( <S1, s’>


The first two rules take account of the case where we begin by executing the first
step of statement S1. If the execution of S1 is not fully completed we modify the
configuration so as to remember how far we have reached. Otherwise only S2 has
to be executed and we update the configuration accordingly. The last two rules 
are similar but for the case where we begin by executing the first step of S2.
Example
Consider the statement x := 1 par (x :=2 ; x := x+2), we have 3 derivation sequences:

< x := 1 par (x :=2 ; x := x+2), s>(< (x :=2 ; x := x+2), s[x(1]>(
< (x := x+2), s[x(2]>( s[x(4]

< x := 1 par (x :=2 ; x := x+2), s>(< x := 1 par x := x+2, s[x(2]>(
< x := 1, s[x(4]>( s[x(1]

< x := 1 par (x :=2 ; x := x+2), s>(< x := 1 par x := x+2, s[x(2]>(
< x := x+2, s[x(1]>( s[x(3]

In the natural semantics it is impossible to express parallelism because the natural semantics considers the execution of a statement as an atomic entity that cannot be split into smaller pieces.

 We can summarize this as follows:
· In the natural semantics immediate constituent is an atomic entity so we cannot express interleaving of computations 

· In the structural operational semantics we concentrate on small steps so interleaving of computations can be easily expressed
Conclusions 

· Structural operational semantics allows us to simulate low level computations without bothering with too many details

· Natural semantics allows to abstract more

· Local memory

· Non termination

· Thinking in concrete semantics is essential for a compiler writer

Constant propagation

For a given program, we want to know for every point in the program which variables have a constant value and which variables have a variable value.  A variable has a constant value at a certain point if in every execution (of the program) that reaches to that point; the variable has the same value at that point.
In the following program there are variables which have constant values in certain points. For example, it is very easy to see that between the first and the second statements the value of z is always 3, it is also easy to see that when executing “y=7” the value of x must be 1.
z = 3

x = 1

while (x > 0) (

if (x = 1) then y = 7

  else y =z + 4

x = 3

print y 

   ) 

The algorithm

For each variable and a point in the program the algorithm matches one of: (, T or a value. if the algorithm matches a value c for variable v in point P, it means that in every execution of the program v equals c when the program is at point P (i.e. the value of v at point P is always c). If it matches T for variable v in point P then it means that the value of v at point P is not necessarily a constant. If it matches ( for variable v in point P then it means that P is an unreachable point or v is not initialized at P. 

The algorithm iteratively traverses the program’s CFG, in each node it updates the information about each variable according to the functionality of the node and the information about the current and the previous node. The traversing over the CFG stops when no information can be changed anymore.

The algorithm has the following steps:

1. Construct a control flow graph (CFG)
2. Associate transfer functions with control flow graph edges

3. Iterate until a solution is found
This algorithm always stops with a unique solution. The traversing order does not affect the solution but does affect the running time of the algorithm.

The CFG of the program:
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The CFG with the transfer functions:
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The Final state:
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