
Blockchain Seminar 
Proof of work
By Idan Gerichter 



Junk email problem

Nigerian Prince



Restrain spammers

• Spammers can send thousands (or more) emails 
per second

• We want to limit the amount of emails a 
spammer can send



Possible solution #1

Prince

Timestamp

More than X secs 

passed from “Prince” 

last email

Bob



More than X secs 

passed from “Prince 1” 

last email

More than X secs 

passed from “Prince 2” 

last email

Problems with solution #1 

Prince 4 Prince 5 Prince 6Prince 1 Prince 2 Prince 3

Timestamp Timestamp Timestamp TimestampTimestampTimestamp



Problems with solution #1

• A spammer can create many accounts 

• The same apply for ip addresses

• We require a trusted third party



Possible solution #2

• Let’s take snail mail as example

• Every email will cost a nominal fee - virtual 
stamp

Negligible for 

regular user

Bob
Alice



Solution #2 - spammer

A lot of money 

for a spammer



Problems with solution #2

• Usage fees can be deterrent for most users

• We don’t want a system where sending notes 
between friends will cost similarly to a postage 
stamp.



Computational approach 

• Usage fees by computational power

• The sender will be required to invest computing 
power - preventing him from spamming

• First proposed in “Pricing via Processing or Combatting Junk mail” 
[Dwork & Naor 92] 

NaorDwork



The missing link - Proof of Work

• We need a way of efficiently verifying a 
computational effort has been made by the 
sender.



Challenge-Response PoW scheme

1. Ask for service

2. Choose 

challenge

3. Send challenge: Factorize 9,487

4. Compute

5. Response: 9487 = 53 * 179

6. Verify
7. Grant access

Alice Bob



Theoretical model definitions

• Resource – The object we want to limit access to 
(e.g. my mail box)

• User – Desires access to the resource

User Resource



Theoretical model definitions

• Resource manager – Regulates access to the 
resource 

• Pricing function – Moderately difficult to 
compute but not infeasible. Easy to verify.

User ResourceResource managerPricing function proof



Pricing function definition

• Let 𝑓 be a pricing function if:
 𝑓 is moderately easy to compute

 𝑓 is not amenable to amortizations:

 The computational cost of computing 𝑓 𝑚1 , … , 𝑓(𝑚𝑘) is 
comparable to the sum of cost of computing 𝑓 𝑚𝑖
where 1 ≤ 𝑖 ≤ 𝑘

 𝑓 is not amenable to preprocessing

 Given 𝑥, 𝑦 it is easy to determine if 𝑦 = 𝑓(𝑥)



Introduction to Cryptographic hash 
functions

• Preimage resistance
 Given 𝑦, hard to find 𝑥 such that 𝐻 𝑥 = 𝑦

• 2nd preimage resistance:

 Given 𝑥 hard to find 𝑥′ ≠ 𝑥 such that 𝐻 𝑥′ = 𝐻(𝑥)

• Collision resistance:

 Hard to find 𝑥 ≠ 𝑥′ such that 𝐻 𝑥 = 𝐻(𝑥′)



Random oracle model

CAT F51A41

If new - Generate random 

string from 0,1 𝑛

If seen before, return the 

string generated before

“Ideal cryptographic hash function”



Pricing function classes of difficulty

• Focus on the relative difficulty of computational 
tasks rather than asymptotic growth

• A good pricing function will have a difficulty 
parameter

Hard ProblemsEasy problems Moderate Problems

Somewhere in the gapEfficient solution 

exists
Ex: Verify preimage

Infeasible in 

reasonable time
Ex: Hash preimage



Pricing function example - Hashcash

• 𝐻: 0,1 ∗ → 0,1 𝑛 is a cryptographic hash 
function

• If random oracle, for a string 𝑠:

Every bit in 𝐻(𝑠) is 0 or 1 with probability 
1

2

• The probability the first 𝑘 bits are 0 is 
1

2𝑘



Hashcash continue

• Find 𝑠 such that 𝐻(𝑠) has 𝑘 leading zeros. 
𝑠 is the proof

• In a brute force attack the complexity of such 
PoW is 𝑂(2𝑘) in expectation

• We assume 𝐻 is partial preimage resistance



Hashcash – Preprocessing 

• Pricing function should be “not amenable to 
preprocessing”

• 𝑡 is a timestamp

• Task: find 𝑠 such that 𝐻 𝑡 𝑠) has 𝑘 leading zeros

• A better function might be 𝐻 𝑡 𝑠) < 𝑡𝑎𝑟𝑔𝑒𝑡
Used in bitcoin



Connection to blockchain

• What miners do in blockchain is solving PoW
puzzles!

• But why?

• PoW secures the integrity and order of blocks



Blockchain pricing function

• The pricing function should be a function of the 
current block and the previous block.

• Blockchain block internals:
Block:

Header:

𝐵𝑝𝑟𝑒𝑣_ℎ𝑎𝑠ℎ , 𝑃𝑜𝑊 , …

Transactions:

Tx 1

Tx 2

Tx 3

…



Pricing function task

• Find 𝑃𝑜𝑊 ∈ 0,1 ∗ such that 𝐻 𝑏𝑙𝑜𝑐𝑘 has 𝑘
leading zeros. 

• Note: actual PoW uses only the
merkle root.

Block:

Header:

𝐵𝑝𝑟𝑒𝑣_ℎ𝑎𝑠ℎ , 𝑃𝑜𝑊 , …

Transactions:

Tx 1

Tx 2

Tx 3

…



Proof of Work in blockchain

Prev hash: QJ65

PoW: JI56

Prev hash: F168

PoW: 6DLK

Prev hash: I2OP

PoW: KRX3

The work 

must be 

redone

Hash: F168 Hash: I2OP Hash: I2OPHash: FD58

Prev hash: I2OP

PoW: KRX3

Prev hash: F168

PoW: 6DLK



LCR and Proof of Work

• Tampering with a block c annot be done without 
redoing the work

• Not only of the current block but all the blocks 
chained after it

• Not only the work must be redone for those block
but also faster than the pace new blocks are 

generated!



Questions?

Thank you for listening!


