Boolean Satisfiability (SAT)

Is there an assignment to the \(p_1, p_2, \ldots, p_n \) variables such that \(\phi \) evaluates to 1?
Satisfiability Modulo Theories

Is there an assignment to the x, y, z, w variables s.t. ϕ evaluates to 1?
Motivation

• We have seen that efficient SAT solvers exit
 – DPLL is the most successful complete solver

• Can we generalize the results?
 – Is “$p \lor \neg q \lor (a = f(b - c)) \lor (g(g(b)) \neq c) \lor a - c \leq 7$” satisfiable?

• Improve our understanding of DPLL
Satisfiability Modulo Theories

• Given a formula in first-order logic, with associated background theories, is the formula satisfiable?
 – Yes: return a satisfying solution
 – No [generate a proof of unsatisfiability]
Satisfiability Modulo Theories

- Any SAT solver can be used to decide the satisfiability of ground first-order formulas.

- Often, however, one is interested in the satisfiability of certain ground formulas in a given first-order theory:
 - Pipelined microprocessors: theory of equality, atoms
 - $f(g(a, b), c) = g(c, a)$
 - Timed automata: planning: theory of integers/reals, atoms
 - $x - y < 2$
 - Software verification: combination of theories, atoms
 - $5 + \text{car}(a + 2) = \text{cdr}(a[j] + 1)$

- We refer to this general problems as (ground) Satisfiability Modulo Theories, or SMT.
Example Difference constraints

• Boolean combinations of `a ≤ b + k’
 – a and b are free constants
 – k ∈ Z
Uninterpreted Functions

read(write(X, Y, Z), Y) = Z
W ≠ Y ⇒ read(write(X, Y, Z), W) = read(X, W)

x+2 = y ⇒ f(read(write(a, x, 3), y-2)) = f(y-x+1)
A Simple Example (BMC)

Program

```c
int x;
int y = 8, z = 0, w = 0;
if (x)
    z = y - 1;
else
    w = y + 1;
assert (z == 5 || w == 9);
```

Constraints

```c
y = 8,
z = x ? y - 1 : 0,
w = x ? 0 : y + 1,
z != 5,
w != 9
```

SMT counterexample found!

```c
y = 8, x = 1, w = 0, z = 7
```
Motivating Example

Skolem-Lowenheim Formulas

• Prenex Normal Form $\exists \forall$

• $\exists x, y \ \forall z, w : P(x, y) \land \neg P(z, w)$
Lifting SAT to SMT

• Eager approach [UCLID]:
 – translate into an equisatisfiable propositional formula,
 – feed it to any SAT solver

• Lazy approach [CVC, ICS, MathSAT, Verifun, Zap]:
 – abstract the input formula into a propositional one
 – feed it to a DPLL-based SAT solver
 – use a theory decision procedure to refine the formula

• DPLL(T) [DPLLTT, Z3, Sammy]:
 – use the decision procedure to guide the search of a DPLL solver
(Very) Lazy Approach for SMT – Example

\[g(a) = c \land f(g(a)) \neq f(c) \lor g(a) = d \land c \neq d \]

1 \quad \neg 2 \quad 3 \quad \neg 4

Send \ \{1, \neg 2 \lor 3, \neg 4\} \text{ to the SAT solver}

SAT solver returns \ \{1, \neg 2, \neg 4\}

Theory solver finds that \ \{1, \neg 2\} \text{ is E-unsatisfiable}

Send \ \{1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2\} \text{ to the SAT solver}

SAT solver returns \ \{1, 2, 3, \neg 4\}

Theory solver finds that \ \{1, 3, \neg 4\} \text{ is E-unsatisfiable}

Send \ \{1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2, \neg 1 \lor \neg 3 \lor 4\} \text{ to the SAT solver}

Return UNSAT
Plan

• Motivation
• [ADPLL]
• Decision Procedures for some theories
• Nelson-Openn
Decision Procedures

• Complete (terminating) algorithms for determining the validity (satisfiability) of a formula in a given logic
 – Cost is an issue

• Decidable logic a logic with a decision procedure for every formula

• Decidable (computation problem) there exists an a terminating algorithm which solves every instance of the problem
Obtaining a decision procedure

- Limit the logic
- Limit the class of intended models
- Answer validity (satisfiability) w.r.t. a given theory $T \models F$
Proving Decidability

- Small model theorem
 - Every satisfiable formula has a model whose size if proportional to the size of the formula

- Direct decision procedure

- Reduction to another decidable logic
Quantifier Free First Order Logic

• Universal formulas only
• Allow a fixed scheme of first order formulas T
• Determine if $T \models F$

• Decidable for interesting theories
 – Uninterpreted functions
 • $\forall a, b: f(a, b) = a \Rightarrow f(f(a, b), b) = a$
 – Theory of lists
 – Arrays

• Different theories can be combined
Theory of Uninterpreted Functions (EUF)

- Theory $T \forall X, Y: X = Y \Rightarrow f(X) = f(Y)$

- Determine the validity of universal formulas

- Decidability Ackerman 1954

- Downey, Sethi, Tarjan, Kozen, Nelson & Oppen Efficient Algorithms

- Bryant, German, Velev Improvements for positive terms
Small model property of EUF formulas

• Ackerman 1954

• Every satisfiable formula has a model of size \(k \) where \(k \) is the number of distinct function application terms

• Example
 – \(x = y \lor f(g(x)) = f(g(y)) \)
 – \(\{x, y, g(x), g(y), f(g(x)), f(g(y))\} \)

• Impractical algorithm
Proof by Refutation

• Determine the validity of a formula by checking the satifiability of its negation

• For quantifier free it is enough to consider Conjunction of literals
 – DNF
 – SMT

• Example “∀A, B: f(A, B) = A⇒f(f(A, B), B) = A”
 – Proof that “f(a, b) = a ∧ ¬ f((f(a, b), b) = a” is not satisfiable
An efficient EUF algorithm (intuition)

• Goal prove satisfiability of
 \(t_1 = u_1 \land \ldots \land t_p = u_p \land r_1 \neq s_1 \land \ldots \land r_q \neq s_q \)

• Represent terms using DAGs
• Unify equal terms and their consequences
• Report UNSAT when contradicts inequalities
• Otherwise report SAT
The Congruent Closure Problem

• Given
 – A finite labeled directed graph G
 • Nodes are labeled by function symbols
 • Edges are labeled
 – A binary relation R on the nodes

• Two nodes are congruent under R if
 – They have the same label
 – Their arguments (outgoing neighbours) are in R (respectively)

• R is closed under congruences if all congruent nodes according to R are in R

• Compute the a minimal extension of R which is an equivalence relation and closed under congruences
Example 1

\[f(a, b) = a \land f((f(a, b), b) \neq a \]
Example 2

\[
f(f(f(A))) = A \land f(f(f(f(A)))) = A \Rightarrow f(A) = A
\]

\[
f(f(f(a))) = a \land f(f(f(f(a)))) = a \land f(a) \neq a
\]
Computing Congruence Closure

- Let \(R \) be a relation which is congruence closed
- Compute the congruence closure of \(R \cup \{(u, v)\} \) by \(\text{MERGE}(u, v) \)

\[
\text{MERGE}(u, v)
\]

1. If \(\text{FIND}(u) = \text{FIND}(v) \) then return

2. Let \(P_u \) be the predecessors of vertices equivalent to \(u \) and \(P_v \) be the predecessors of vertices equivalent to \(v \)

3. \(\text{UNION}(u, v) \)

4. For each pair \((x, y) \) such that \(x \in P_u, y \in P_v, \text{CONGRUENT}(x, y) \) and \(\text{FIND}(x) \neq \text{FIND}(y) \) do \(\text{MERGE}(x, y) \)

\[
\text{CONGRUENT}(u, v) = \text{label}(u) = \text{label}(v) \land \forall i: \text{FIND}(u[i]) = \text{FIND}(v[i])
\]
Properties of the Congruence Closure Algorithm

• Partial Correctness

• Complexity $O(m^2)$

• Downey, Sethi, and Tarjan achieves $O(m \log n)$ by storing the vertices in a hash table keyed by the list of equivalence classes of their successors
Application 1: EUF

- construct a graph G which corresponds to the set of all terms appearing in the conjunction $t_1 = u_1 \land \ldots \land t_p = u_p \land r_1 \neq s_1 \land \ldots \land r_q \neq s_q$
- For each term i appearing in the conjunction let $\tau(i)$ denote the node of the term
- Let R be the identity relation on vertices
- For every $1 \leq i \leq p$, MERGE($\tau(t_i)$, $\tau(u_i)$)
- If for some $1 \leq j \leq q$, $\tau(r_j)$ is equivalent to $\tau(s_j)$) report UNSAT
- Otherwise report SAT
Improvements and Extensions

• Lahiri, Bryant, Goel, Talupur TACAS 2004

• Explicit Representation
 \[ITE(e_1, e_2, e_3) = (e_1 \land e_2) \lor (\neg e_1 \land e_2) \]
 \[P(T_1, T_2, \ldots, T_k) \]

• Treat `positive’ terms differently
Simple Theory of Lisp Lists

• car, cdr, cons without nil values

• Theory (axioms):

 \[
 \text{car(cons(X, Y)) = X} \\
 \text{cdr(cons(X, Y)) = Y} \\
 \neg \text{atom(X)} \Rightarrow \text{cons(car(X), cdr(X)) = X} \\
 \neg \text{atom(cons(X,Y))}
 \]

• Goal:

 \[
 \text{car(X)=car(Y) \land cdr(X) = cdr(Y) \land \neg \text{atom(X) \land \neg \text{atom(Y)}} \Rightarrow f(X) = f(Y)}
 \]

• Use congruence closure with special equalities
Application 2: Lisp

- $v_1 = w_1 \land \ldots \land b_r = w_r \land x_1 \neq y_1 \land \ldots \land x_s \neq y_s \land \text{atom}(u_1) \land \ldots \land \text{atom}(u_q)$
- Construct a graph G which corresponds to the set of all terms appearing in the conjunction
- For each term i appearing in the conjunction let $\tau(i)$ denote the node of the term
- Let R be the identity relation on vertices
- For every $1 \leq i \leq r$, $\text{MERGE}(\tau(v_i), \tau(w_i))$
- For every vertex u labeled by cons add a vertex v labeled by car and a vertex w labeled by cdr with out degree one s.t. $v[1] = w[1] = u$ and $\text{MERGE}(v, u[1])$ and $\text{MERGE}(v, u[2])$
- If for some $1 \leq j \leq s$, $\tau(x_j)$ is equivalent to $\tau(y_j)$ report UNSAT
- If for some $1 \leq j \leq q$, $\tau(u_j)$ is equivalent to a cons node report UNSAT
- Otherwise report SAT
Integrating Values

\[
\begin{align*}
\text{car}(\text{cons}(X,Y)) &= X \\
\text{cdr}(\text{cons}(X,Y)) &= Y \\
X \neq \text{nil} \Rightarrow \text{cons}(\text{car}(X), \text{cdr}(X)) &= X \\
\text{cons}(X,Y) &\neq \text{nil} \\
\text{car}(\text{nil}) &= \text{cdr}(\text{nil}) = \text{nil}
\end{align*}
\]

• Becomes NP-Hard
Theory of Arrays (Stores)

• \(\text{read}(\text{write}(v, i, e), j) = \)
 \[\begin{cases}
 e & \text{if } i = j \\
 \text{read}(v, j) & \text{else}
 \end{cases} \]

• \(\text{write}(v, i, \text{read}(v, i)) = v \)

• \(\text{write}(\text{write}(v, i, e), i, f) = \text{write}(v, i, f) \)

• \(i \neq j \Rightarrow \text{write} (\text{write} (v, i, e), j, f) = \text{write} (\text{write} (v, j, f), i, e) \)

• Eliminate write and use EUF
Combining Decision Procedures

• Programming languages combine different features
 – Arithmetic
 – Data types
 – Arrays
 – ...

• Is there a way to compose decision procedures of different theories?

• Given two decidable logics is there a way to combine the logics into a decidable logic?
Bibliography

• Nelson & Oppen
 Fast Decision Procedures Based on Congruence Closure
 JACM 1979

• Stump, Dill, Barrett, Levitt
 A Decision Procedure for an Extensional Theory of Arrays
 LICS’01
Combining Decision Procedures

• Programming languages combine different features
 – Arithmetic
 – Data types
 – Arrays
 – …

• Is there a way to compose decision procedures of different theories?

• Given two decidable logics is there a way to combine the logics into a decidable logic?
Cooperating Decision Procedures
Nelson & Oppen

- Quantifier free
- Proof be refutation
- Separate the conjunct into separate conjuncts $A \land B$
such that
 - A and B use different theories
 - Only constants are shared
- If either A or B is UNSAT report UNSAT
- When A and B are SAT propagate equalities between A and B and repeat
Example Theories

\[\text{car}(\text{cons}(X, Y)) = X\]
\[\text{cdr}(\text{cons}(X, Y)) = Y\]
\[\neg \text{atom}(X) \Rightarrow \text{cons}(\text{car}(X), \text{cdr}(X)) = X\]
\[\neg \text{atom}(\text{cons}(X, Y))\]

EUF

\[X + 0 = 0\]
\[X + -X = 0\]
\[(X+Y)+Z = X + (Y+Z)\]
\[X+Y = Y +X\]
\[X\leq X\]
\[X\leq Y \lor Y \leq X\]
\[X\leq Y \land Y \leq X \Rightarrow X=Y\]
\[X\leq Y \land Y \leq Z \Rightarrow X \leq Z\]
\[X\leq Y \Rightarrow X+Z \leq Y+Z\]
A Simple Example

\[x \leq y \land y \leq x + \text{car}(\text{cons}(0, x)) \land P(h(x) - h(y)) \land \neg P(0) \]

\begin{align*}
\text{g}_1 &= \text{car}(\text{cons}(0, x)) \\
\text{g}_2 &= g_3 - g_4 \\
\text{g}_3 &= h(x) \\
\text{g}_4 &= h(y) \\
\text{g}_5 &= 0
\end{align*}

\[P(\text{g}_2) = \text{true} \]

\[P(\text{g}_5) = \text{false} \]
Equality Propagation Procedure

1. Assign conjunctions to \(F_L \) and \(F_F \) s.t.,
 - \(F_F \) contains only \(F \)-literals
 - \(F_L \) contains only \(L \)-literals
 - \(F_L \land F_F \) is satisfiable iff \(F \) is satisfiable

2. If either \(F_L \) or \(F_F \) is UNSAT report UNSAT

3. If either \(F_L \) or \(F_F \) entails equality not entailed by other add this equality and go to step 2

4. If either \(F_L \) or \(F_F \) entails \(u_1=v_2 \lor u_2=v_2 \lor \ldots u_k=v_k \) without entailing any equality alone then apply the procedure recursively to the \(k \)-formulas \(F_L \land F_F \land v_i = u_i \)
 If any of these formulas is SAT return SAT

5. Return UNSAT
Notes

• Only equalities are propagated
• Requires that the theories can find all consequent equalities
• Completeness is non-obvious
• The original paper also performs simplification
Convexity

• A formula F is non-convex if F entails
 $u_1 = v_2 \lor u_2 = v_2 \lor \ldots \lor u_k = v_k$
 without entailing any equality alone
 – Otherwise it is convex

• A theory is convex

• Convex theories
 – EUF
 – Relational linear algebra

• Non-convex theories
 – Theory of arrays
 – Theory of reals under multiplications
 $xy = 0 \land z = 0 \models_R x = z \lor y = z$
 – Theory of integers under $+$ and \leq
Hints about Completeness

- The **residues** of formula
 - The strongest Boolean combinations of equalities between constants entailed by the formula

<table>
<thead>
<tr>
<th>$x=f(a) \land y=f(b)$</th>
<th>$a=b \rightarrow x=y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x+y-a-b>0$</td>
<td>$\neg(x=a \land y=b) \land \neg(x=b \land y=a)$</td>
</tr>
<tr>
<td>$x=\text{write}(v, u, e)[j]$</td>
<td>$i=j \rightarrow x=e$</td>
</tr>
<tr>
<td>$x=\text{write}(v, u, e)[j] \land y=v[j]$</td>
<td>if $i=j$ then $x=e$ else $x=y$</td>
</tr>
</tbody>
</table>

Lemma 4: If A and B are formulas whose only common parameters are constant symbols then

$\text{RES}(A \land B) = \text{RES}(A) \land \text{RES}(B)$
A theory T is **stably infinite** if every quantifier-free formula is T-satisable if and only if it is satisfied by a T-model A whose domain A is infinite.

For lemma 4 we require

- The theories are disjoint
- Both theories are stably infinite
- Read more in Manna 2003
The residues in the simple example

\[
\begin{align*}
\text{x} \leq \text{y} & \wedge \text{y} \leq \text{x} + \text{car(cons(0, x))} \wedge \text{P(h(x)-h(y))} \wedge \neg \text{P(0)} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>\text{x} \leq \text{y}</th>
<th>\text{P(g}_2\text{)=true}</th>
<th>\text{P(g}_5\text{)=false}</th>
<th>\text{g}_1=\text{car(cons(g}_5\text{, x))}</th>
<th>\text{g}_1=\text{g}_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{y} \leq \text{x} + \text{g}_1</td>
<td>\text{g}_3=\text{h(x)}</td>
<td>\text{g}_4=\text{h(y)}</td>
<td>\text{g}_2 \neq \text{g}_5 \wedge</td>
<td>\text{x} = \text{y} \rightarrow \text{g}_3=\text{g}_4</td>
</tr>
<tr>
<td>\text{g}_2=\text{g}_3-\text{g}_4</td>
<td>\text{g}_5=\text{0}</td>
<td>\text{g}_5=\text{g}_2 \leftrightarrow \text{g}_3=\text{g}_4</td>
<td>\text{g}_1=\text{g}_5</td>
<td></td>
</tr>
</tbody>
</table>
Handling Quantifiers

- The problem becomes undecidable
- Refutationally resolution based complete procedures exist and implemented (e.g., SPASS, Vampiere)
 - Not guaranteed to terminate
 - Do not handle theories
- Z3 employs incomplete heuristics
 - Instantiate universal quantifiers with relevant terms
 - Can be tuned by the user
Conclusion

• Handling specialized theories yields significant improvements
 – Efficiency
 – Termination
 – Predictability

• Combination procedures are useful

• But resolution based theorem provers can still be superior in several cases
Partial Bibliography

• Nelson & Oppen
 Simplification by Cooperating Decision Procedures
 TOPLAS 1980

• Tinelli & Zarba
 Combining non-stably infinite theories
 Journal of Automated Reasoning, 2006

• *Simplify: A Theorem Prover for Program Checking*
 David Detlefs, Greg Nelson, James B. Saxe
 JACM 2005

• *Combining Decision Procedures (2003)*
 Zohar Manna, Calogero G. Zarba

• *Verifun: An Explicating Theorem Prover for Quantified Formulas*
 Cormac Flanagan, Rajeev Joshi, James B. Saxe
 HPL-2004-199

• Leonardo Mendonça de Moura, Nikolaj Bjørner:
 Satisfiability modulo theories: introduction and applications.
 Commun. ACM 54(9): 69-77 (2011)

• Leonardo Mendonça de Moura, Nikolaj Bjørner:
 Engineering DPLL(T) + Saturation.
 IJCAR 2008: 475-490