Iterative Program Analysis
Abstract Interpretation

Mooly Sagiv

Textbook: Principles of Program Analysis
Chapter 4
POPL 79, 92 Cousot & Cousot
Outline

- The abstract interpretation technique
 - The main theorem
 - Applications
 - Precision
 - Complexity
 - Widening

- Later on
 - Combining Analysis
 - Interprocedural Analysis
 - Shape Analysis
Complete Lattices

◆ A poset \((L, \subseteq)\) is a complete lattice if every subset has least and upper bounds

◆ \(L = (L, \subseteq) = (L, \subseteq, \cup, \cap, \bot, \top)\)
 - \(\bot = \cup \emptyset = \cap L\)
 - \(\top = \cup L = \cap \emptyset\)

◆ Examples
 - Total orders \((N, \leq)\)
 - Powersets \((P(S), \subseteq)\)
 - Powersets \((P(S), \supseteq)\)
 - Constant propagation
Soundness Theorem(1)

1. Let \((\alpha, \gamma)\) form Galois connection from \(C\) to \(A\)
2. \(f: C \rightarrow C\) be a monotone function
3. \(f^\#: A \rightarrow A\) be a monotone function
4. \(\forall a \in A: f(\gamma(a)) \sqsubseteq \gamma(f^\#(a))\)

\[
\text{lfp}(f) \sqsubseteq \gamma(\text{lfp}(f^\#))
\]
\[
\alpha(\text{lfp}(f)) \sqsubseteq \text{lfp}(f^\#)
\]
Soundness Theorem(2)

1. Let \((\alpha, \gamma)\) form Galois connection from \(C\) to \(A\)
2. \(f: C \rightarrow C\) be a monotone function
3. \(f^\#: A \rightarrow A\) be a monotone function
4. \(\forall c \in C: \alpha(f(c)) \sqsubseteq f^\#(\alpha(c))\)

\[
\alpha(\text{lfp}(f)) \sqsubseteq \text{lfp}(f^\#)
\]

\[
\text{lfp}(f) \sqsubseteq \gamma(\text{lfp}(f^\#))
\]
Soundness Theorem (3)

1. Let \((\alpha, \gamma)\) form Galois connection from \(C\) to \(A\)
2. \(f: C \to C\) be a monotone function
3. \(f^#: A \to A\) be a monotone function
4. \(\forall a \in A: \alpha(f(\gamma(a))) \sqsubseteq f^#(a)\)

\[
\alpha(\text{lfp}(f)) \sqsubseteq \text{lfp}(f^#)
\]

\[
\text{lfp}(f) \sqsubseteq \gamma(\text{lfp}(f^#))
\]
Completeness

\[\alpha(\text{lfp}(f)) = \text{lfp}(f^\#) \]

\[\text{lfp}(f) = \gamma(\text{lfp}(f^\#)) \]
Flowchart Programs

- A finite control flow graph \(G(s, N, A) \) where
 - \(A \subseteq N \times N \)
 - \(s \in N \) is the start vertex, \(s \) has no incoming arcs and there is a path from \(s \) to every vertex
 - \(A \) special node error \(\not\in N \)

- Every arc in \(A \) is labeled with two types of operations
 - assume \(e \);
 - \(e := e' \);
Simple Example

```
z := 3;
x := 1
while x > 0 {
    if x == 4 then
        y := x + 4;
    else
        y := z + 5;
    assert y == 8;
}
```
Collecting (Concrete) Interpretation of Flowchart Programs

- A set of (usually infinite) states Σ
- A lattice $<\mathcal{P}(\Sigma), \subseteq, \cup, \cap, \emptyset, \Sigma>$
- A set of initial states at s: $\Sigma_s \subseteq \Sigma$
- The semantics of operations on arcs
 - $\llbracket \text{assume } e \rrbracket = \{<\sigma, \sigma> | \sigma \models e \}$
 - $\llbracket x := e \rrbracket = \{<\sigma, \sigma'> | \sigma' = \sigma[x \leftarrow \llbracket e \rrbracket(\sigma)]\}$
- The collecting interpretation is the least fixed point of the following system:
 - $CS[s] = \Sigma_s$
 - $CS[n] = \cup \{\sigma' | <m, n> \in E, \sigma \in CS[m], <\sigma, \sigma'> \in [\llbracket<m, n>\rrbracket]\}$
 for $n \neq s$
Constant Propagation

- A lattice $<\text{[Var \to Z} \cup \{\top, \bot\}], \sqsubseteq, \sqcup, \sqcap, \bot, \top>$
- $\beta: \text{[Var \to Z]} \to [\text{Var \to Z} \cup \{\top, \bot\}]$
 - $\beta(\sigma) = (\sigma)$
- $\alpha: \text{P([Var \to Z])} \to [\text{Var \to Z} \cup \{\top, \bot\}]$
 - $\alpha(X) = \sqcup \{\beta(\sigma) | \sigma \in X\} = \sqcup \{\sigma | \sigma \in X\}$
- $\gamma: [\text{Var \to Z} \cup \{\top, \bot\}] \to \text{P([Var \to Z])}$
 - $\gamma(\sigma^\#) = \{\sigma | \beta(\sigma) \subseteq \sigma^\#\} = \{\sigma | \sigma \subseteq \sigma^\#\}$

- Initial value at s

- The semantics of operations on arcs
 - $[\text{assume x ==c}]^\#$
 - $[\text{x := e}]^\# = $

- Local Soundness and optimality
Example: May-Be-Garbage

- A variable x may-be-garbage at a program point v if there exists a execution path leading to v in which x’s value is unpredictable:
 - Was not assigned
 - Was assigned using an unpredictable expression

- Lattice
- Galois connection
- Basic statements
- Soundness
Pointer Language

\[a ::= x \mid *x \mid &x \mid \ldots \]

\[b ::= \text{true} \mid a = a \mid \text{not } b \]

assume \(b \)

\[x ::= a \]

\[*x ::= y \]
Collecting Semantics for Pointers

State1 = [Loc → Loc∪Z]
Points-To Analysis

- Lattice $L_{pt} =$
- Galois connection
- Meaning of statements
t := &a;
y := &b;
z := &c;

if x > 0
 then p := &y;
 else p := &z;

*p := t;
/* ∅ */ t := &a; /* {(t, a)} */
/* {(t, a)} */ y := &b; /* {(t, a), (y, b)} */
/* {(t, a), (y, b)} */ z := &c; /* {(t, a), (y, b), (z, c)} */
if x > 0;
 then p := &y; /* {(t, a), (y, b), (z, c), (p, y)} */
else p := &z; /* {(t, a), (y, b), (z, c), (p, z)} */
/* {(t, a), (y, b), (z, c), (p, y), (p, z)} */
*p := t;
/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)} */
Abstract Transformers

State# = P(Var* × Var*)

\[
\begin{align*}
\mathcal{L} & = \{ [x := a]#, [x := &y]#, [x := *y]#, [x := y]#, \[x := y]#, \[assume x ==y]#, \[assume x !=y]# \}
\end{align*}
\]
/* ∅ */ t := &a; /* {(t, a)} */
/* {(t, a)} */ y := &b; /* {(t, a), (y, b) } */
/* {(t, a), (y, b)} */ z := &c; /* {(t, a), (y, b), (z, c) } */
if x > 0;
 then p := &y; /* {(t, a), (y, b), (z, c), (p, y)} */
else p := &z; /* {(t, a), (y, b), (z, c), (p, z)} */
/* {(t, a), (y, b), (z, c), (p, y), (p, z)} */
*p := t;
/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)} */
Flow insensitive points-to-analysis
Steengard 1996

- Ignore control flow
- One set of points-to per program
- Can be represented as a directed graph
- Conservative approximation
 - Accumulate pointers
- Can be computed in almost linear time
 - Union find
t := &a;
y := &b;
z := &c;

if x > 0;
 then p := &y;
 else p := &z;

*p := t;
Precision

◆ We cannot usually have
 – $\alpha(CS) = DF$
 on all programs
◆ But can we say something about precision in all programs?
The Join-Over-All-Paths (JOP)

- Let $\text{paths}(v)$ denote the potentially infinite set paths from start to v (written as sequences of edges)
- For a sequence of edges $[e_1, e_2, ..., e_n]$ define $f^# [e_1, e_2, ..., e_n] : L \rightarrow L$ by composing the effects of basic blocks

 $$f^# [e_1, e_2, ..., e_n](l) = f^#(e_n) (\ldots (f^#(e_2) (f^#(e_1) (l)) \ldots)$$

- $\text{JOP}[v] = \sqcup \{ f^# [e_1, e_2, ..., e_n](i) \mid [e_1, e_2, ..., e_n] \in \text{paths}(v) \}$
JOP vs. Least Solution

- The df solution obtained by Chaotic iteration satisfies for every v:
 - \(JOP[v] \subseteq df(v) \)

- A function \(f^\# \) is additive (distributive) if
 - \(f^\#(\cup\{x| x \in X\}) = \cup\{f^\#(x) | \in X\} \)

- If every \(f^\#_{(u,v)} \) is additive (distributive) for all the edges (u,v)
 - \(JOP[v] = df(v) \)

- Examples
 - Maybe garbage
 - Constant Propagation
 - Points-to
Notions of precision

- $CS = \gamma (df)$
- $\alpha(CS) = df$
- Meet(Join) over all paths
- Using best transformers
- Good enough
Complexity of Chaotic Iterations

- Usually depends on the height of the lattice
- In some cases better bound exist
- A function \(f \) is fast if \(f(f(l)) \subseteq l \cup f(l) \)
- For fast functions the Chaotic iterations can be implemented in \(O(\text{nest} \times |V|) \) iterations
 - \(\text{nest} \) is the number of nested loop
 - \(|V| \) is the number of control flow nodes
Conclusion

- Chaotic iterations is a powerful technique
- Easy to implement
- Rather precise
- But expensive
 - More efficient methods exist for structured programs
- Abstract interpretation relates runtime semantics and static information
- The concrete semantics serves as a tool in designing abstractions