Functional Programming

Mooly Sagiv
Original slides by John Mitchell
Topics

• Lambda Calculus
• Continuations
 – Function representing the rest of the program
 – Generalized form of tail recursion
Model of Computations

• Turing Machines

• Wang Machines

• Lambda Calculus
Historical Context

Like Alan Turing, another mathematician, Alonzo Church, was very interested, during the 1930s, in the question “What is a computable function?”

He developed a formal system known as the pure lambda calculus, in order to describe programs in a simple and precise way.

Today the Lambda Calculus serves as a mathematical foundation for the study of functional programming languages, and especially for the study of “denotational semantics.”

Reference: http://en.wikipedia.org/wiki/Lambda_calculus
What is \(\lambda \) calculus

- A complete computational model
- An assembly language for functional programming
 - Powerful
 - Concise
 - Counterintuitive
- Can explain many interesting PL features
Basics

• Repetitive expressions can be compactly represented using functional abstraction

• Example:

 – (5 * 4 * 3 * 2 * 1) + (7 * 6 * 5 * 4 * 3 * 2 * 1) =
 – factorial(5) + factorial(7)
 – factorial(n) = if n = 0 then 1 else n * factorial(n-1)
 – factorial = \(\lambda n. \) if n = 0 then 0 else n * factorial(n-1)
 – factorial = \(\lambda n. \) if n = 0 then 0 else n * apply (factorial, (n-1))
Untyped Lambda Calculus

t ::= terms
 x variable
 \(\lambda x. t \) abstraction
 t t application

Terms can be represented as abstract syntax trees

Syntactic Conventions

- Applications associates to left
 \(e_1 e_2 e_3 \equiv (e_1 e_2) e_3 \)

- The body of abstraction extends as far as possible
 \(\lambda x. \lambda y. x \ y \ x \equiv \lambda x. (\lambda y. (x \ y) \ x) \)
Untyped Lambda Calculus

t ::= terms
 x variable
 λ x. t abstraction
 t t application

Terms can be represented as abstract syntax trees

Syntactic Conventions

• Applications associates to left
 e₁ e₂ e₃ ≡ (e₁ e₂) e₃

• The body of abstraction extends as far as possible
 • λx. λy. x y x ≡ λx. (λy. (x y) x)
Example Lambda Expressions

- $\lambda x."1"
- $\lambda x.x$
- $\lambda x.y$
- $\lambda x.s\ x$
- $\lambda x.s\ (s\ x)$
- $\lambda f.\ \lambda g. f\ g$
- $\lambda b. \ "if\"\ b\ "fls\"\ "tru\"$
- $\lambda b. \ \lambda b'. \ "if\"\ b\ b'\ "fls\"$
Lambda Calculus in Python

\((\lambda \ x. \ x) \ y \) \hspace{1cm} \text{(lambda} \ x: \ x) \ (y) \)
Substitution

• Replace a term by a term

 \[- x + ((x + 2) * y)[x \mapsto 3, y \mapsto 7] = ?\]
 \[- x + ((x + 2) * y)[x \mapsto z + 2] = ?\]
 \[- x + ((x + 2) * y)[t \mapsto z + 2] = ?\]
 \[x + ((x + 2) * y)[x \mapsto y]\]

 – More tricky in programming languages
 – Why?
Free vs. Bound Variables

• An occurrence of \(x \) is **bound** in \(t \) if it occurs in \(\lambda x. \ t \)
 – otherwise it is **free**
 – \(\lambda x \) is a **binder**

• Examples
 – \(\text{Id} = \lambda x. \ x \)
 – \(\lambda y. \ x \ (y \ z) \)
 – \(\lambda z. \ \lambda x. \ \lambda y. \ x \ (y \ z) \)
 – \((\lambda x. \ x) \ x \)

FV: \(t \rightarrow 2^{\text{Var}} \) is the set free variables of \(t \)

\[
\begin{align*}
FV(x) & = \{x\} \\
FV(\lambda x. t) & = FV(t) - \{x\} \\
FV(t_1 \ t_2) & = FV(t_1) \cup FV(t_2) \\
\end{align*}
\]
Beta-Reduction

\[(\lambda x. t_1) t_2 \Rightarrow_\beta [x \mapsto t_2] t_1 \quad (\beta\text{-reduction})\]

\[[x \mapsto s] x = s\]

\[[x \mapsto s] y = y\] if \(y \neq x\)

\[[x \mapsto s] (\lambda y. t_1) = \lambda y. [x \mapsto s] t_1\] if \(y \neq x\) and \(y \notin \text{FV}(s)\)

\[[x \mapsto s] (t_1 t_2) = ([x \mapsto s] t_1) ([x \mapsto s] t_2)\]
Beta-Reduction

$$(\lambda x. \, t_1) \, t_2 \Rightarrow_\beta [x \leftarrow t_2] \, t_1$$ \hspace{1cm} (\beta\text{-reduction})$$

$$[x\mapsto s] \, x = s$$

$$[x\mapsto s] \, y = y$$ \hspace{1cm} \text{if } y \neq x$$

$$[x\mapsto s] \, (\lambda y. \, t_1) = \lambda y. \, [x \mapsto s] \, t_1$$ \hspace{1cm} \text{if } y \neq x \text{ and } y \not\in \text{FV}(s)$$

$$[x\mapsto s] \, (t_1 \, t_2) = ([x\mapsto s] \, t_1) \, ([x\mapsto s] \, t_2)$$

$$[x\mapsto s]$$

apply

$$t_1$$ \hspace{1cm} $$t_2$$

apply

$$[x\mapsto s] \, t_1$$ \hspace{1cm} $$[x\mapsto s] \, t_2$$
Example Beta-Reduction

\((\lambda x. t_1) \ t_2 \Rightarrow_{\beta} [x \mapsto t_2] \ t_1 \) \hspace{1cm} (\beta\text{-reduction})

redex

\((\lambda x. x) \ y \Rightarrow_{\beta} y\)
Example Beta-Reduction (ex 2)

$$(\lambda x. t_1) t_2 \Rightarrow_{\beta} [x \mapsto t_2] t_1 \quad (\beta\text{-reduction})$$

redex

$$(\lambda x. x \ (\lambda x. x)) \ (u \ r) \Rightarrow_{\beta} u \ r \ (\lambda x. x)$$
Example Beta-Reduction (ex 3)

\[(\lambda \, x. \, t_1) \; t_2 \Rightarrow_{\beta} \; [x \mapsto t_2] \; t_1 \quad \text{(\(\beta\)-reduction)}\]

redex

\[(\lambda \, x \, (\lambda \, w. \, x \, w)) \; (y \; z) \Rightarrow_{\beta} \; \lambda \, w. \, y \; z \; w\]
Alpha- Conversion

Alpha conversion:
Renaming of a bound variable and its bound occurrences

$$\lambda x. \lambda y. y \Rightarrow_{\alpha} \lambda x. \lambda z. z$$
Simple Exercise

• Adding scopes to λ expressions
• Proposed syntax “let x = t₁ in t₂”
• Informal meaning:
 – all the occurrences of x in t₂ are replaced by t₁
• Example: let a = λ x. (λw. x w) in a a =
• How can we simulate let?
Another Exercise

• Simulate a function which composes two functions $f : D_1 \rightarrow D_2$ and $g : D_2 \rightarrow D_3$ in Lambda calculus
Back to Haskel

• Can be embedded in typed lambda calculus

\[t ::=\] terms
\[x\] variable
\[\lambda x : T . t\] abstraction
\[t t\] application

\[T ::=\] Types
\[\text{Int, Bool, ...}\] Primitive Types
\[\alpha\] Polymorphic Types
\[\text{Id } T^*\] Algebraic types
\[T \to T\] Function types
Divergence

\[(\lambda \, x. \, t_1) \, t_2 \Rightarrow_\beta [x \mapsto t_2] \, t_1 \quad (\beta\text{-reduction})\]

\[(\lambda \, x.y) \, ((\lambda \, x.(x \, x)) \, (\lambda \, x.(x \, x)))\]
Divergence

\[(\lambda x. t_1) t_2 \Rightarrow_\beta [x \mapsto t_2] t_1\]
\[(\lambda x.(x \ x)) (\lambda x.(x \ x))\]

(\beta\text{-reduction})
Different Evaluation Orders

\[(\lambda \, x \cdot \, \text{t}_1) \, \text{t}_2 \, \Rightarrow_\beta \, [x \rightarrow \text{t}_2] \, \text{t}_1 \quad \text{(\(\beta\)-reduction)}\]

\[(\lambda \, x \cdot y) \, ((\lambda \, x \cdot (x \, x)) \, (\lambda \, x \cdot (x \, x)))\]
Different Evaluation Orders

$$(\lambda\, x.\, t_1)\, t_2 \Rightarrow_\beta [x \mapsto t_2] \, t_1 \quad (\beta\text{-reduction})$$

$$(\lambda\, x.y) \ ((\lambda\, x.(x\, x)) \ (\lambda\, x.(x\, x)))$$
Different Evaluation Orders

\[(\lambda \ x \ . \ t_1) \ t_2 \Rightarrow_{\beta} [x \mapsto t_2] \ t_1 \quad (\beta\text{-reduction})\]

\[(\lambda \ x . \ y) \ ((\lambda \ x . (x \ x)) \ (\lambda \ x . (x \ x)))\]

def f():
 while True:
 pass

def g(x):
 return 2

print g(f())
Different Evaluation Orders

\[(\lambda x. t_1) t_2 \Rightarrow [x \mapsto t_2] t_1\] \hspace{1cm} (\beta\text{-reduction})

\[(\lambda x. x) ((\lambda x. x) (\lambda z. (\lambda x. x) z)) \equiv id (id (\lambda z. id z))\]
Order of Evaluation

- Full-beta-reduction
 - All possible orders
- Applicative order call by value (Eager)
 - Left to right
 - Fully evaluate arguments before function
- Normal order
 - The leftmost, outermost redex is always reduced first
- Call by name
 - Evaluate arguments as needed
- Call by need
 - Evaluate arguments as needed and store for subsequent usages
 - Implemented in Haskel
Different Evaluation Orders

\((\lambda \ x. \ \lambda \ y. \ (\lambda \ z. \ z) \ y) \ ((\lambda \ u. \ u) \ (\lambda \ w. \ w))\)
Call By Value

$$(\lambda\ x.\ \lambda\ y.\ (\lambda\ z.\ z)\ y)\ ((\lambda\ u.\ u)\ (\lambda\ w.\ w))$$
Call By Name (Lazy)

\((\lambda \ x. \ \lambda \ y. \ (\lambda \ z. \ z) \ y) \ ((\lambda \ u. \ u) \ (\lambda \ w. \ w))\)
Normal Order

\((\lambda x. \lambda y. (\lambda z. z) y) ((\lambda u. u) (\lambda w. w))\)
Call-by-value Operational Semantics

\[
\begin{align*}
t & ::= \\
 & \text{terms} \\
 x & \quad \text{variable} \\
 \lambda x. t & \quad \text{abstraction} \\
 t t & \quad \text{application}
\end{align*}
\]

\[
\begin{align*}
(\lambda x. t_1) v_2 & \Rightarrow [x \mapsto v_2] t_1 & \text{(E-AppAbs)} \\
 t_1 & \Rightarrow t_1' & \text{(E-APPL1)} \\
 t_1 t_2 & \Rightarrow t_1' t_2 \\
 t_2 & \Rightarrow t_2' & \text{(E-APPL2)} \\
 v_1 t_2 & \Rightarrow v_1 t_2'
\end{align*}
\]
Call By Value

$$(\lambda\ x.\ \lambda\ y.\ (\lambda\ z.\ z)\ y)\ ((\lambda\ u.\ u)\ (\lambda\ w.\ w))$$
Call By Value OS

\[(\lambda x. \lambda y. (\lambda z. z) \ y) \ ((\lambda u. u) \ (\lambda w. w))\]
Call By Value OS (2)

\[v_1 (\lambda x. \lambda y. (\lambda z. z) y) ((\lambda u. u) (\lambda w. w)) \]

Apply

\[\lambda u \quad \lambda w \]

\[u \quad w \]

\[\Rightarrow \]

\[\lambda w \]

\[w \]

Apply

\[\lambda x \quad \lambda y \quad \lambda u \quad \lambda w \]

\[u \quad w \]

\[\Rightarrow \] E-Appl2

Apply

\[\lambda x \quad \lambda w \]

\[\lambda y \quad w \]

Apply

\[\lambda z \quad y \]

\[z \]
Call By Value OS (3)

\((\lambda x. \lambda y. (\lambda z. z) y) \ ((\lambda u. u) \ (\lambda w. w))\)

\[
\Rightarrow \\
\text{EAppAbs}
\]

\[
\begin{array}{c}
\text{Apply} \\
\text{Apply} \\
\text{Apply} \\
\end{array}
\]

\[
\begin{array}{c}
\lambda y \\
\lambda z \\
z \\
\end{array}
\]
Lazy Evaluation

• How to enforce lazy order of beta reductions?
Lazy operational semantics

\[\lambda x. e \rightarrow^1 \lambda x. e \quad \text{(L-Reflexive)} \]

\[
\begin{array}{c}
e_1 \rightarrow^1 \lambda x. e \\
[x \mapsto e_2]e \rightarrow^1 e' \\
e_1 e_2 \rightarrow^1 e'
\end{array}
\]

\(\text{(L-Apply)} \)

\[(\lambda x. \lambda y. (\lambda z. z) y) (\lambda u. u) (\lambda w. w))\]
Eager operational semantics

\[\lambda x. e \xrightarrow{eg} \lambda x. e \] (E-Reflexive)

\[e_1 \xrightarrow{eg} \lambda x. e \quad e_2 \xrightarrow{eg} e'[x \mapsto e']e \xrightarrow{eg} e'' \]

\[\frac{e_1 \xrightarrow{eg} \lambda x. e \quad e_2 \xrightarrow{eg} e''}{e_1 e_2 \xrightarrow{eg} e''} \] (E-Apply)

\((\lambda x. \lambda y. (\lambda z. z) y) \ ((\lambda u. u) (\lambda w. w))\)
Lazy vs eager in practice

• Lazy evaluation (call by name, call by need)
 – Has some nice theoretical properties
 – Terminates more often
 – Lets you play some tricks with “infinite” objects
 – Domain specific languages
 – Main example: Haskell
 – Support in Scala

• Eager evaluation (call by value)
 – Is generally easier to implement efficiently
 – Blends more easily with side-effects
 – Main examples: Most languages (C, Java, ML, . . .)
Continuation
Two Haskel Versions of Factorial

\[
\text{fac1 } n = \text{if } n = 0 \text{ then } 1 \text{ else } n \ast \text{fac } n - 1
\]

\[
\text{fac2 } n = \\
\quad \text{let aux } n \text{ acc } = \text{if } n = 1 \text{ then acc else aux } n - 1 \text{ n } \ast \text{acc in}
\]

\[
\quad \text{aux } n \text{ 1}
\]

• Which version is more efficient?
• How does one go from fac1 to fac2
Continuations

• Idea:
 – The continuation of an expression is “the remaining work to be done after evaluating the expression”
 – Continuation of e is a function normally applied to e

• General programming technique
 – Capture the continuation at some point in a program
 – Use it later: “jump” or “exit” by function call

• Useful in
 – Denotational Semantics
 – Compiler optimization: make control flow explicit
 – Operating system scheduling, multiprogramming
 – Web site design, other applications
Example of Continuation Concept

• Expression
 – $2x + 3y + \frac{1}{x} + \frac{2}{y}$

• What is continuation of $\frac{1}{x}$?
 – Remaining computation after division

```javascript
var before = 2*x + 3*y;
function cont(d) {return (before + d + 2/y)};
cont (1/x);
```
Example of Continuation Concept

• Expression
 – \(2x + 3y + \frac{1}{x} + \frac{2}{y}\)

• What is continuation of \(1/x\)?
 – Remaining computation after division

```ml
let val before = 2*x + 3*y
    fun continue(d) = before + d + 2/y
    in
    continue (1/x)
end
```
fun divide (numerator, denominator, normal_cont, error_con) =
 if denominator > 0.0001
 then normal_cont(numerator/denominator)
 else error_con()

fun f(x, y) let
 val before = 2.0 *x + 3.0 *y
 fun continue(quote) = before + quote + 2.0/y
 fun error_continu() = before/5.2
 in
 divide(1.0, x, continue, error_continu)
 end
Example: Tail Recursive Factorial

• Standard recursive function
 \[\text{fact}(n) = \begin{cases}
 1 & \text{if } n=0 \\
 n \times \text{fact}(n-1) & \text{else}
\end{cases} \]

• Tail recursive
 \[\text{f}(n,k) = \begin{cases}
 k & \text{if } n=0 \\
 \text{f}(n-1, n \times k) & \text{else}
\end{cases} \]
 \[\text{fact}(n) = \text{f}(n,1) \]

• How could we derive this?
 – Transform to continuation-passing form (automatic)
 – Optimize continuation function to single integer
Continuation view of factorial

\[\text{fact}(n) = \begin{cases} 1 & \text{if } n=0 \\ n \times \text{fact}(n-1) & \text{else} \end{cases} \]

\[
\begin{array}{|c|c|}
\hline
\text{fact(9)} & \text{return} \\
 \text{n} & 9 \\
\ldots & \\
\hline
\end{array}
\]

This invocation multiplies by 9 and returns
Continuation of \(\text{fact}(8) \) is
\[\lambda x. 9\times x \]

\[
\begin{array}{|c|c|}
\hline
\text{fact(8)} & \text{return} \\
 \text{n} & 8 \\
\ldots & \\
\hline
\end{array}
\]

Multiplies by 8 and returns
Continuation of \(\text{fact}(7) \) is
\[\lambda y. (\lambda x. 9\times x) (8\times y) \]

\[
\begin{array}{|c|c|}
\hline
\text{fact(7)} & \text{return} \\
 \text{n} & 7 \\
\ldots & \\
\hline
\end{array}
\]

Multiplies by 7 and returns
Continuation of \(\text{fact}(6) \) is
\[\lambda z. (\lambda y. (\lambda x. 9\times x) (8\times y)) (7\times z) \]

\[\text{continuation} \ \text{fact}(n-1) = \text{continuation} \ \text{fact}(n) \circ \lambda x. n\times x \]
Derivation of tail recursive form

- Standard function
 \[\text{fact}(n) = \text{if } n=0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1) \]

- Continuation form
 \[\text{fact}(n, k) = \text{if } n=0 \text{ then } k(1) \text{ else } \text{fact}(n-1, \lambda x.k(n \times x)) \]

 \[\text{fact}(n, \lambda x.x) \text{ computes } n! \]

- Example computation
 \[\text{fact}(3, \lambda x.x) = \text{fact}(2, \lambda y.((\lambda x.x)(3 \times y))) \]
 \[= \text{fact}(1, \lambda x.((\lambda y.3 \times y)(2 \times x))) \]
 \[= \lambda x.((\lambda y.3 \times y)(2 \times x)) \]
 \[1 = 6 \]
Tail Recursive Form

• Optimization of continuations
 \[
 \text{fact}(n, k) = \begin{cases}
 k(1) & \text{if } n=0 \\
 \text{fact}(n-1, \lambda x. k(n*x)) & \text{else}
 \end{cases}
 \]

 \[
 \downarrow
 \]

 \[
 \text{fact}(n,a) = \begin{cases}
 a & \text{if } n=0 \\
 \text{fact}(n-1, n*a) & \text{else}
 \end{cases}
 \]

 Each continuation is effectively \(\lambda x.(a*x) \) for some \(a \)

• Example computation
 \[
 \text{fact}(3,1) = \text{fact}(2, 3) \quad \text{was} \quad \text{fact}(2, \lambda y.3*y)
 \]

 \[
 = \text{fact}(1, 6) \quad \text{was} \quad \text{fact}(1, \lambda x.6*x)
 \]

 \[
 = 6
 \]
Other uses for continuations

• Explicit control
 – Normal termination -- call continuation
 – Abnormal termination -- do something else

• Compilation techniques
 – Call to continuation is functional form of “go to”
 – Continuation-passing style makes control flow explicit

MacQueen: “Callcc is the closest thing to a ‘come-from’ statement I’ve ever seen.”
Continuations in Mach OS [SOSP’91]

- OS kernel schedules multiple threads
 - Each thread may have a separate stack
 - Stack of blocked thread is stored within the kernel
- Mach “continuation” approach
 - Blocked thread represented as
 - Pointer to a continuation function, list of arguments
 - Stack is discarded when thread blocks
 - Programming implications
 - Sys call such as msg_recv can block
 - Kernel code calls msg_recv with continuation passed as arg
 - Advantage/Disadvantage
 - Saves a lot of space, need to write “continuation” functions
Continuations in Web programming

• Use continuation-passing style to allow multiple returns

 function doXHR(url, succeed, fail) {
 var xhr = new XMLHttpRequest(); // or ActiveX equivalent
 xhr.open("GET", url, true);
 xhr.send(null);
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 if (xhr.status == 200)
 succeed(xhr.responseText);
 else
 fail(xhr);
 }
 };
 }

• See http://marijn.haverbeke.nl/cps/
Continuations in compilation

• SML continuation-based compiler [Appel, Steele]
 1) Lexical analysis, parsing, type checking
 2) Translation to λ-calculus form
 3) Conversion to continuation-passing style (CPS)
 4) Optimization of CPS
 5) Closure conversion – eliminate free variables
 6) Elimination of nested scopes
 7) Register spilling – no expression with $>n$ free vars
 8) Generation of target assembly language program
 9) Assembly to produce target-machine program
Theme Song: Charlie on the MTA

- Let me tell you the story
 Of a man named Charlie
 On a tragic and fateful day
 He put ten cents in his pocket,
 Kissed his wife and family
 Went to ride on the MTA

- Charlie handed in his dime
 At the Kendall Square Station
 And he changed for Jamaica Plain
 When he got there the conductor told him,
 "One more nickel."
 Charlie could not get off that train.

- Chorus:
 Did he ever return,
 No he never returned
 And his fate is still unlearn'd
 He may ride forever
 'neath the streets of Boston
 He's the man who never returned.
Summary

• Functional programming is a powerful concept
• Continuation enables control of executions
• Other useful concepts are Monads
Summary

• **Structured Programming**
 – Go to considered harmful

• **Exceptions**
 – “structured” jumps that may return a value
 – dynamic scoping of exception handler

• **Continuations**
 – Function representing the rest of the program
 – Generalized form of tail recursion
 – Used in Lisp/Scheme compilation, some OS projects, web application development, ...