Iterative Program Analysis
Abstract Interpretation

Mooly Sagiv

Textbook: Principles of Program Analysis
Chapter 4
CC79, CC92
Fixed Points

- A monotone function $f: L \rightarrow L$ where $(L, \sqsubseteq, \sqcup, \forall, \bot, \top)$ is a complete lattice
- $\text{Fix}(f) = \{ l: l \in L, f(l) = l \}$
- $\text{Red}(f) = \{ l: l \in L, f(l) \sqsubseteq l \}$
- $\text{Ext}(f) = \{ l: l \in L, l \sqsubseteq f(l) \}$
 - $l_1 \sqsubseteq l_2 \Rightarrow f(l_1) \sqsubseteq f(l_2)$
- Tarski’s Theorem 1955: if f is monotone then:
 - $\text{lfp}(f) = \sqcap \text{Fix}(f) = \sqcap \text{Red}(f) \in \text{Fix}(f)$
 - $\text{gfp}(f) = \sqcup \text{Fix}(f) = \sqcup \text{Ext}(f) \in \text{Fix}(f)$
Chaotic Iterations

- A lattice $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \tau)$ with finite strictly increasing chains
- $L^n = L \times L \times \ldots \times L$
- A monotone function $f: L^n \rightarrow L^n$
- Compute $\text{lf}(f)$
- The simultaneous least fixed of the system \{ $x[i] = f_i(x)$: $1 \leq i \leq n$ \}

```plaintext
for i := 1 to n do
    x[i] = \bot

WL = \{ 1, 2, \ldots, n \}

x := (\bot, \bot, \ldots, \bot) while (WL \neq \emptyset) do
    select and remove an element $i \in WL$
    new := $f_i(x)$
    if (new \neq x[i]) then
        x[i] := new;
    Add all the indexes that directly depends on $i$ to WL
```

while ($f(x) \neq x$) do
Specialized Chaotic Iterations
System of Equations

\[S = \]
\[\begin{cases}
\text{df}_{\text{entry}}[s] = \tau \\
\text{df}_{\text{entry}}[v] = \bigsqcup \{ f(u, v) \left(\text{df}_{\text{entry}}[u] \right) \mid (u, v) \in E \}
\end{cases} \]

\[F_S : L^n \rightarrow L^n \]

\[F_S (X)[s] = \tau \]

\[F_S(X)[v] = \bigsqcup \{ f(u, v)(X[u]) \mid (u, v) \in E \} \]

\[\text{lfp}(S) = \text{lfp}(F_S) \]
Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, \(\tau: L \rightarrow (L \rightarrow L) \)){
 for each \(v \) in V to n do \(df_{entry}[v] := \perp \)
 \(df[s] = \tau \)
 WL = \{s\}
 while (WL \neq \emptyset) do
 select and remove an element \(u \in WL \)
 for each \(v \), such that \((u, v) \in E \) do
 temp = \(f(e)(df_{entry}[u]) \)
 new := \(df_{entry}(v) \parallel temp \)
 if (new \neq df_{entry}[v]) then
 \(df_{entry}[v] := new; \)
 WL := WL \cup \{v\}
Specialized Chaotic Iterations
System of Equations

\[S = \begin{cases}
\text{df}_{\text{entry}}[s] = \tau \\
\text{df}_{\text{entry}}[v] = \bigsqcup \{ f(u, v) (\text{df}_{\text{entry}}[u]) \mid (u, v) \in E \}
\end{cases} \]

\[F_S : \mathbb{L}^n \rightarrow \mathbb{L}^n \]

\[F_S(X)[s] = \tau \]

\[F_S(X)[v] = \bigsqcup \{ f(u, v)(X[u]) \mid (u, v) \in E \} \]

\[\text{lfp}(S) = \text{lfp}(F_S) \]
Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: Lattice, \(i\): L, f: E \(\rightarrow\) (L \(\rightarrow\) L))

\[
\text{for each } v \text{ in } V \text{ to } n \text{ do } df_{\text{entry}}[v] := \bot
\]

\[
df[s] = i
\]

\[
WL = \{s\}
\]

while (WL \(\neq\) \(\emptyset\)) do

select and remove an element \(u \in WL\)

for each v, such that. \((u, v) \in E\) do

\[
temp = f(e)(df_{\text{entry}}[u])
\]

\[
\text{new} := df_{\text{entry}}(v) \sqcup temp
\]

if (new \(\neq\) df_{\text{entry}}[v]) then

\[
df_{\text{entry}}[v] := \text{new};
\]

\[
WL := WL \cup \{v\}
\]
\[z = 3\]
\[x = 1\]
\[\text{while } (x > 0)\]
\[\text{if } (x = 1)\]
\[y = 7\]
\[y = z + 4\]
\[\text{print } y\]
The Abstract Interpretation Technique (Cousot & Cousot)

- The foundation of program analysis
- Defines the meaning of the information computed by static tools
- A mathematical framework
- Allows proving that an analysis is sound in a local way
- Identify design bugs
- Understand where precision is lost
- New analysis from old
- Not limited to certain programming style
Abstract (Conservative) interpretation

Operational semantics

Set of states

abstraction

abstract representation

statement \(s \)

Set of states

abstraction

abstract representation

Abstract semantics

statement \(s \)

abstract representation
Abstract (Conservative) interpretation

Set of states \(\subseteq \) Set of states

abstract representation \(\supseteq \) abstract representation

Operational semantics

concretization

Abstract semantics

statement \(s \)
Abstract Interpretation

Concrete
Sets of stores

Abstract
Descriptors of sets of stores
Galois Connections

- Lattices C and A and functions \(\alpha : C \to A \) and \(\gamma : A \to C \)

- The pair of functions \((\alpha, \gamma) \) form a Galois connection if
 - \(\alpha \) and \(\gamma \) are monotone
 - \(\forall a \in A \) \(\implies \alpha(\gamma(a)) \subseteq a \)
 - \(\forall c \in C \) \(\implies c \subseteq \gamma(\alpha(C)) \)

- Alternatively if:
 \(\forall c \in C \)
 \(\forall a \in A \)
 \(\alpha(c) \subseteq a \) iff \(c \subseteq \gamma(a) \)

- \(\alpha \) and \(\gamma \) uniquely determine each other
The Abstraction Function (CP)

- Map collecting states into constants
- The abstraction of an individual state
 \[\beta_{CP} : [\text{Var}_* \rightarrow Z] \rightarrow [\text{Var}_* \rightarrow Z \cup \{\bot, \top\}] \]
 \[\beta_{CP}(\sigma) = \sigma \]
- The abstraction of set of states
 \[\alpha_{CP} : \text{P}([\text{Var}_* \rightarrow Z]) \rightarrow [\text{Var}_* \rightarrow Z \cup \{\bot, \top\}] \]
 \[\alpha_{CP}(CS) = \bigcup \{ \beta_{CP}(\sigma) \mid \sigma \in CS \} = \bigcup \{\sigma \mid \sigma \in CS\} \]
- Soundness
 \[\alpha_{CP}(\text{Reach}(v)) \subseteq \text{df}(v) \]
- Completeness
The Concretization Function

- Map constants into collecting states
- The formal meaning of constants
- The concretization
 \[\gamma_{CP} : [\text{Var}_* \rightarrow \mathbb{Z} \cup \{\bot, \top\}] \rightarrow \mathcal{P}([\text{Var}_* \rightarrow \mathbb{Z}]) \]
 \[\gamma_{CP}(df) = \{ \sigma | \beta_{CP}(\sigma) \subseteq df \} = \{ \sigma | \sigma \subseteq df \} \]
- Soundness
 Reach (v) \subseteq \gamma_{CP}(df(v))
- Completeness
Galois Connection Constant Propagation

- α_{CP} is monotone
- γ_{CP} is monotone
- $\forall \ df \in [Var_\ast \rightarrow Z \cup \{\bot, \top\}]$
 - $\alpha_{CP}(\gamma_{CP}(df)) \subseteq df$
- $\forall \ c \in P([Var_\ast \rightarrow Z])$
 - $c_{CP} \subseteq \gamma_{CP}(\alpha_{CP}(C))$
Upper Closures

- Define abstractions on sets of concrete states
- \[\uparrow: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma) \] such that
 - \[\uparrow \text{ is monotone, i.e., } X \subseteq Y \to \uparrow X \subseteq \uparrow Y \]
 - \[\uparrow \text{ is extensive, i.e., } \uparrow X \supseteq X \]
 - \[\uparrow \text{ is closure, i.e., } \uparrow(\uparrow X) = \uparrow X \]
- Every Galois connection defines an upper closure
Proof of Soundness

- Define an “appropriate” operational semantics
- Define “collecting” operational semantics by pointwise extension
- Establish a Galois connection between collecting states and abstract states
- (Local correctness) Show that the abstract interpretation of every atomic statement is sound w.r.t. the collecting semantics
- (Global correctness) Conclude that the analysis is sound
Collecting Semantics

- The input state is not known at compile-time
- “Collect” all the states for all possible inputs to the program
- No lost of precision
A Simple Example Program

\{[x \mapsto 0, y \mapsto 0, z \mapsto 0]\}\n
\begin{align*}
z &= 3 \\
\{[x \mapsto 0, y \mapsto 0, z \mapsto 3]\} \\
x &= 1 \\
\{[x \mapsto 1, y \mapsto 0, z \mapsto 3]\} \quad \text{while (}x > 0\text{)} (\\
\quad \{[x \mapsto 1, y \mapsto 0, z \mapsto 3], [x \mapsto 3, y \mapsto 0, z \mapsto 3]\}, \\
\quad \text{if (}x = 1\text{) then } y = 7 \\
\quad \{[x \mapsto 1, y \mapsto 7, z \mapsto 3], [x \mapsto 3, y \mapsto 7, z \mapsto 3]\} \\
\quad \text{else } y = z + 4 \\
\quad \{[x \mapsto 1, y \mapsto 7, z \mapsto 3], [x \mapsto 3, y \mapsto 7, z \mapsto 3]\} \\
x &= 3 \\
\{[x \mapsto 1, y \mapsto 7, z \mapsto 3], [x \mapsto 3, y \mapsto 7, z \mapsto 3]\} \\
\text{print } y \\
\{[x \mapsto 3, y \mapsto 7, z \mapsto 3]\} \quad)
Another Example

\[
x = 0
\]

while (true) do

\[
x = x + 1
\]
An “Iterative” Definition

- Generate a system of monotone equations
- The least solution is well-defined
- The least solution is the collecting interpretation
- But may not be computable
Equations Generated for Collecting Interpretation

◆ Equations for elementary statements
 - [skip]
 \[CS_{exit}(1) = CS_{entry}(l) \]
 - [b]
 \[CS_{exit}(1) = \{ \sigma: \sigma \in CS_{entry}(l), \[b]\sigma=tt \} \]
 - [x := a]
 \[CS_{exit}(1) = \{ (s[x \mapsto A[a][s]]) | s \in CS_{entry}(l) \} \]

◆ Equations for control flow constructs
 \[CS_{entry}(l) = \bigcup CS_{exit}(l') \]
 where \(l' \) immediately precedes \(l \) in the control flow graph

◆ An equation for the entry
 \[CS_{entry}(1) = \{ \sigma | \sigma \in Var \ast \rightarrow Z \} \]
Specialized Chaotic Iterations System of Equations (Collecting Semantics)

\[S = \]

\[
\begin{align*}
\text{CS}_{\text{entry}}[s] &= \{\sigma_0\} \\
\text{CS}_{\text{entry}}[v] &= \bigcup \{ f(e)(\text{CS}_{\text{entry}}[u]) \mid (u, v) \in E \}
\end{align*}
\]

where \(f(e) = \lambda X. \{ \sem{\text{st}(e)} \sigma \mid \sigma \in X \} \) for atomic statements

\[
f(e) = \lambda X. \{ \sigma \mid \sem{\text{b}(e)} \sigma = \text{tt} \}
\]

\[F_S : L^n \rightarrow L^n \]

\[F_S(X)[v] = \bigcup \{ f(e)[u] \mid (u, v) \in E \} \]

\[\text{lfp}(S) = \text{lfp}(F_S) \]
The Least Solution

- 2n sets of equations
 \[\text{CS}_{\text{entry}}(1), \ldots, \text{CS}_{\text{entry}}(n), \text{CS}_{\text{exit}}(1), \ldots, \text{CS}_{\text{exit}}(n) \]

- Can be written in vectorial form

- The least solution \(\text{lfp}(F_{cs}) \) is well-defined

- Every component is minimal

- Since \(F_{cs} \) is monotone such a solution always exists

\[\text{CS}_{\text{entry}}(v) = \{ s | \exists s_0 \ such \ that \ <P, s_0> \Rightarrow^* (S', s), \ init(S') = v \} \]

- Simplify the soundness criteria
∀a: f(γ(a)) ⊆ γ(f#(a))
Finite Height Case
Soundness Theorem (1)

1. Let \((\alpha, \gamma)\) form Galois connection from \(C\) to \(A\)
2. \(f: C \to C\) be a monotone function
3. \(f^\#: A \to A\) be a monotone function
4. \(\forall a \in A: f(\gamma(a)) \sqsubseteq \gamma(f^\#(a))\)

\[
\text{lfp}(f) \sqsubseteq \gamma(\text{lfp}(f^\#))
\]

\[
\alpha(\text{lfp}(f)) \sqsubseteq \text{lfp}(f^\#)
\]
Soundness Theorem (2)

1. Let \((\alpha, \gamma)\) form Galois connection from \(C\) to \(A\)
2. \(f: C \to C\) be a monotone function
3. \(f^\#: A \to A\) be a monotone function
4. \(\forall c \in C: \alpha(f(c)) \subseteq f^\#(\alpha(c))\)

\[\alpha(lfp(f)) \subseteq lfp(f^\#)\]

\[lfp(f) \subseteq \gamma(lfp(f^\#))\]
Soundness Theorem (3)

1. Let \((\alpha, \gamma)\) form Galois connection from \(C\) to \(A\)
2. \(f: C \rightarrow C\) be a monotone function
3. \(f^#: A \rightarrow A\) be a monotone function
4. \(\forall a \in A: \alpha(f(\gamma(a))) \subseteq f^#(a)\)

\[\alpha(\text{lfp}(f)) \subseteq \text{lfp}(f^#)\]

\[\text{lfp}(f) \subseteq \gamma(\text{lfp}(f^#))\]
Proof of Soundness (Summary)

- Define an “appropriate” operational semantics for atomic statements
- Define “collecting” operational semantics
- Establish a Galois connection between collecting states and abstract domains
- (Local correctness) Show that the abstract interpretation of every atomic statement is sound w.r.t. the collecting semantics
- (Global correctness) Conclude that the analysis is sound
Completeness

\[\alpha(\text{lfp}(f)) = \text{lfp}(f^\#) \]

\[\text{lfp}(f) = \gamma(\text{lfp}(f^\#)) \]
Constant Propagation

- $\beta: [\text{Var} \rightarrow Z] \rightarrow [\text{Var} \rightarrow Z \cup \{\top, \bot\}]$
 - $\beta(\sigma) = (\sigma)$
- $\alpha: \mathcal{P}(\text{[Var} \rightarrow Z]) \rightarrow [\text{Var} \rightarrow Z \cup \{\top, \bot\}]$
 - $\alpha(X) = \bigcup \{ \beta(\sigma) \mid \sigma \in X \} = \bigcup \{ \sigma \mid \sigma \in X \}$
- $\gamma: [\text{Var} \rightarrow Z \cup \{\top, \bot\}] \rightarrow \mathcal{P}(\text{[Var} \rightarrow Z])$
 - $\gamma(\sigma^\#) = \{ \sigma \mid \beta(\sigma) \subseteq \sigma^\# \} = \{ \sigma \mid \sigma \subseteq \sigma^\# \}$

- **Local Soundness**
 - $\llbracket \text{st} \rrbracket^\#(\sigma^\#) \supseteq \alpha(\{ \llbracket \text{st} \rrbracket \sigma \mid \sigma \in \gamma(\sigma^\#) \}) = \bigcup \{ \llbracket \text{st} \rrbracket \sigma \mid \sigma \subseteq \sigma^\# \}$

- **Optimality (Induced)**
 - $\llbracket \text{st} \rrbracket^\#(\sigma^\#) = \alpha(\{ \llbracket \text{st} \rrbracket \sigma \mid \sigma \in \gamma(\sigma^\#) \}) = \bigcup \{ \llbracket \text{st} \rrbracket \sigma \mid \sigma \subseteq \sigma^\# \}$

- **Soundness**
- **Completeness**
Proof of Soundness (Summary)

- Define an “appropriate” structural operational semantics
- Define “collecting” structural operational semantics
- Establish a Galois connection between collecting states and reaching definitions
- (Local correctness) Show that the abstract interpretation of every atomic statement is sound w.r.t. the collecting semantics
- (Global correctness) Conclude that the analysis is sound
Best (Conservative) interpretation

Set of states

Abstract representation

Operational semantics

Statement s

Concretization

Abstract semantics

Set of states

Set of states

Abstraction

Concretization
Induced Analysis (Relatively Optimal)

- It is sometimes possible to show that a given analysis is not only sound but optimal w.r.t. the chosen abstraction
 - but not necessarily optimal!
- Define
 \[[S]^#(df) = \alpha(\{ [S] \sigma \mid \sigma \in \gamma(df) \}) \]
- But this \([S]^#\) may not be computable
- Derive (at compiler-generation time) an alternative form for \([S]^#\)
- A useful measure to decide if the abstraction must lead to overly imprecise results
Numeric Abstract Domain Examples

- **signs**
 - $x \geq 0$

- **intervals**
 - $x \in [a, b]$

- **octagons**
 - $\pm x \pm y \leq c$

- **polyhedra**
 - $\sum a_i x_i \leq c$
Example Dataflow Problem

- Formal available expression analysis
- Find out which expressions are available at a given program point
- Example program

 \[
 \begin{align*}
 x &= y + t \\
 z &= y + r \\
 \text{while (…)} \{ \\
 & \quad t = t + (y + r) \\
 \}
 \end{align*}
 \]

- Lattice
- Galois connection
- Basic statements
- Soundness
Example: May-Be-Garbage

◆ A variable x may-be-garbage at a program point v if there exists a execution path leading to v in which x’s value is unpredictable:
 – Was not assigned
 – Was assigned using an unpredictable expression

◆ Lattice
◆ Galois connection
◆ Basic statements
◆ Soundness
Points-To Analysis

- Determine if a pointer variable p may point to q on some path leading to a program point

- “Adapt” other optimizations
 - Constant propagation

    ```
    x = 5;
    *p = 7;
    ...
    x ...
    ```

- Pointer aliases
 - Variables p and q are may-aliases at v if the points-to set at v contains entries (p, x) and (q, x)

- Side-effect analysis

  ```
  *p = *q + **t
  ```
The **PWhile** Programming Language

Abstract Syntax

\[a := x \mid \ast x \mid \& x \mid n \mid a_1 \text{ op}_a a_2 \]

\[b := \text{true} \mid \text{false} \mid \text{not} \; b \mid b_1 \text{ op}_b b_2 \mid a_1 \text{ op}_r a_2 \]

\[S := x := a \mid \ast x := a \mid \text{skip} \mid S_1 ; S_2 \mid \text{if} \; b \; \text{then} \; S_1 \; \text{else} \; S_2 \mid \text{while} \; b \; \text{do} \; S \]
Concrete Semantics 1 for PWhile

State1 = [Loc → Loc ∪ Z]

For every atomic statement S

\[[S]\] : States1 → States1

\[[x := a]\](\sigma) = \sigma[\text{loc}(x) → A[a] \sigma]

\[[x := &y]\](\sigma)

\[[x := *y]\](\sigma)

\[[x := y]\](\sigma)

\[[*x := y]\](\sigma)
Points-To Analysis

- Lattice $L_{pt} =$
- Galois connection
Abstract Semantics for PWhile

• For every atomic statement S

$\left[S \right] \# : P(\text{Var}* \times \text{Var}*) \rightarrow P(\text{Var}* \times \text{Var}*)$

$\left[x := \& y \right] \#$

$\left[x := \ast y \right] \#$

$\left[x := y \right] \#$

$\left[\ast x := y \right] \#$
t := &a;
y := &b;
z := &c;

if x > 0;
 then p := &y;
 else p := &z;

*p := t;
```c
/* ∅ */ t := &a; /* {(t, a)} */
/* {(t, a)} */ y := &b; /* {(t, a), (y, b)} */
/* {(t, a), (y, b)} */ z := &c; /* {(t, a), (y, b), (z, c)} */
if x > 0;
    then p := &y; /* {(t, a), (y, b), (z, c), (p, y)} */
    else p := &z; /* {(t, a), (y, b), (z, c), (p, z)} */
/* {(t, a), (y, b), (z, c), (p, y), (p, z)} */
*p := t;
/* {(t, a), (y, b), (y, c), (p, y), (p, z), (y, a), (z, a)} */
```
Flow insensitive points-to-analysis
Steengard 1996

- Ignore control flow
- One set of points-to per program
- Can be represented as a directed graph
- Conservative approximation
 - Accumulate pointers
- Can be computed in almost linear time
t := &a;
y := &b;
z := &c;

if x > 0;
 then p := &y;
 else p := &z;

*p := t;
Precision

- We cannot usually have $\alpha(CS) = DF$ on all programs
- But can we say something about precision in all programs?
- Precision criteria
 - Join over all paths
 - Induced analysis
Summary

- Abstract interpretation Connects Abstract and Concrete Semantics
- Galois Connection
- Local Correctness
- Global Correctness
Widening

- Accelerate the termination of Chaotic iterations by computing a more conservative solution
- Can handle lattices of infinite heights
Specialized Chaotic Iterations

Chaotic(G(V, E): Graph, s: Node, L: lattice, \(\iota: L \), f: E \(\rightarrow \) (L \(\rightarrow \) L)){
 for each v in V to n do df_entry[v] := \bot
 In[v] = \iota
 WL = \{s\}
 while (WL \neq \emptyset) do
 select and remove an element u \in WL
 for each v, such that. (u, v) \in E do
 temp = f(e)(df_entry[u])
 new := df_entry(v) \(\triangledown \) temp
 if (new \neq df_entry[v]) then
 df_entry[v] := new;
 WL := WL \cup \{v\}
 WL := WL \cup \{v\}
Example Interval Analysis

- Find a lower and an upper bound of the value of a variable
- Usages?
- Lattice

\[L = (\mathbb{Z} \cup \{ -\infty, \infty \} \times \mathbb{Z} \cup \{ -\infty, \infty \}, \sqsubseteq, \sqcup, \sqcap, \top, \bot) \]

- \([a, b] \sqsubseteq [c, d]\) if \(c \leq a\) and \(d \geq b\)
- \([a, b] \sqcup [c, d] = [\min(a, c), \max(b, d)]\)
- \([a, b] \sqcap [c, d] = [\max(a, c), \min(b, d)]\)
- \(\top = \)
- \(\bot = \)
Example Program

Interval Analysis

\[x := 1 \]

while \[x \leq 1000 \] do

\[x := x + 1; \]

\begin{align*}
\text{IntEntry}(1) &= [\text{minint}, \text{maxint}] \\
\text{IntExit}(1) &= [1,1] \\
\text{IntEntry}(2) &= \text{IntExit}(1) \sqcup \text{IntExit}(3) \\
\text{IntExit}(2) &= \text{IntEntry}(2) \\
\text{IntEntry}(3) &= \text{IntExit}(2) \sqcap [\text{minint},1000] \\
\text{IntExit}(3) &= \text{IntEntry}(3) + [1,1] \\
\text{IntEntry}(4) &= \text{IntExit}(2) \sqcap [1001, \text{maxint}] \\
\text{IntExit}(4) &= \text{IntEntry}(4)
\end{align*}
Widening for Interval Analysis

- $\bot \nabla [c, d] = [c, d]$
- $[a, b] \nabla [c, d] = [\begin{array}{l}
\text{if } a \leq c \\
\hspace{1em} \text{then } a \\
\hspace{1em} \text{else } -\infty,
\end{array} \begin{array}{l}
\text{if } b \geq d \\
\hspace{1em} \text{then } b \\
\hspace{1em} \text{else } \infty
\end{array}]$
Example Program
Interval Analysis

[x := 1]

while [x ≤ 1000]
do
[x := x + 1;]

IntEntry(1) = [-∞, ∞]
IntExit(1) = [1,1]
IntEntry(2) = IntExit(2) ∨ (IntExit(1) ∪ IntExit(3))
IntExit(2) = IntEntry(2)
IntEntry(3) = IntExit(2) ∩ [-∞,1000]
IntExit(3) = IntEntry(3)+[1,1]
IntEntry(4) = IntExit(2) ∩ [1001, ∞]
IntExit(4) = IntEntry(4)
Requirements on Widening

- For all elements \(l_1 \sqcup l_2 \sqsubseteq l_1 \sqcap l_2 \)
- For all ascending chains \(l_0 \sqsubseteq l_1 \sqsubseteq l_2 \sqsubseteq \ldots \)
 the following sequence is finite
 - \(y_0 = l_0 \)
 - \(y_{i+1} = y_i \sqcap l_{i+1} \)
- For a monotonic function \(f: L \rightarrow L \)
 define
 - \(x_0 = \bot \)
 - \(x_{i+1} = x_i \sqcap f(x_i) \)

- Theorem:
 - There exits \(k \) such that \(x_{k+1} = x_k \)
 - \(x_k \in \text{Red}(f) = \{ l : l \in L, f(l) \sqsubseteq l \} \)
Narrowing

◆ Improve the result of widening
◆ $y \subseteq x \Rightarrow y \subseteq (x \triangle y) \subseteq x$
◆ For all decreasing chains $x_0 \sqsupseteq x_1 \sqsupseteq \ldots$
 the following sequence is finite
 - $y_0 = x_0$
 - $y_{i+1} = y_i \triangle x_{i+1}$
◆ For a monotonic function $f: L \rightarrow L$ and $x \in \text{Red}(f) = \{l: l \in L, f(l) \sqsubseteq l\}$
 define
 - $y_0 = x$
 - $y_{i+1} = y_i \triangle f(y_i)$
◆ Theorem:
 - There exists k such that $y_{k+1} = y_k$
 - $y_k \in \text{Red}(f) = \{l: l \in L, f(l) \sqsubseteq l\}$
Narrowing for Interval Analysis

- \([a, b] \triangle \perp = [a, b]\)
- \([a, b] \triangle [c, d] = [\]

 if \(a = -\infty\)

 then \(c\)

 else \(a\),

 if \(b = \infty\)

 then \(d\)

 else \(b\)

]
Example Program
Interval Analysis

[x := 1] ;
while [x ≤ 1000] do
 [x := x + 1;]

IntEntry(1) = [-∞, ∞]
IntExit(1) = [1,1]
IntEntry(2) = InExit(2) △ (IntExit(1) ∪ IntExit(3))
IntExit(2) = IntEntry(2)
IntEntry(3) = IntExit(2) ∩ [-∞, 1000]
IntExit(3) = IntEntry(3) + [1,1]
IntEntry(4) = IntExit(2) ∩ [1001, ∞]
IntExit(4) = IntEntry(4)
Non Montonicity of Widening

- $[0,1] \sqcup [0,2] = [0, \infty]$
- $[0,2] \sqcup [0,2] = [0,2]$
Widening and Narrowing

Summary

- Very simple but produces impressive precision
- Sometimes non-monotonic
- The McCarthy 91 function
 \[\text{int } f(x) = \begin{cases} \infty, & \text{if } x > 100 \\ 101, & \text{then } 101, \infty \end{cases} \]
 \[\text{return } x - 10 [91, \infty-10]; \]
 \[\text{else } [-\infty, 100] \text{ return } f(f(x+11)) [91, 91]; \]

- Also useful in the finite case
- Can be used as a methodological tool
Conclusions

- Chaotic iterations is a powerful technique
- Easy to implement
- Rather precise
- But expensive
 - More efficient methods exist for structured programs