Types and Type Inference

Mooly Sagiv

Slides by Kathleen Fisher and John Mitchell

Reading: “Concepts in Programming Languages”, Revised Chapter 6 - handout on Web!!
Outline

• General discussion of types
 – What is a type?
 – Compile-time versus run-time checking
 – Conservative program analysis

• Type inference
 – Discuss algorithm and examples
 – Illustrative example of static analysis algorithm

• Polymorphism
 – Uniform versus non-uniform implementations
Language Goals and Trade-offs

• Thoughts to keep in mind
 – What features are convenient for programmer?
 – What other features do they prevent?
 – What are design tradeoffs?
 • Easy to write but harder to read?
 • Easy to write but poorer error messages?
 – What are the implementation costs?
What is a type?

- A type is a collection of computable values that share some structural property.

<table>
<thead>
<tr>
<th>Examples</th>
<th>Non-examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>{3, True, \ x->x}</td>
</tr>
<tr>
<td>String</td>
<td>Even integers {f: Int \rightarrow Int \mid x>3 \Rightarrow f(x) > x *(x+1)}</td>
</tr>
<tr>
<td>Int \rightarrow Bool</td>
<td></td>
</tr>
<tr>
<td>(Int \rightarrow Int) \rightarrow Bool</td>
<td></td>
</tr>
<tr>
<td>[a] \rightarrow a</td>
<td></td>
</tr>
<tr>
<td>[a] \times a \rightarrow [a]</td>
<td></td>
</tr>
</tbody>
</table>

Distinction between sets of values that are types and sets that are not types is language dependent.
Advantages of Types

• Program organization and documentation
 – Separate types for separate concepts
 • Represent concepts from problem domain
 – Document intended use of declared identifiers
 • Types can be checked, unlike program comments

• Identify and prevent errors
 – Compile-time or run-time checking can prevent meaningless computations such as $3 + \text{true} =$ “Bill”

• Support optimization
 – Example: short integers require fewer bits
 – Access components of structures by known offset
What is a type error?

• Whatever the compiler/interpreter says it is?
• Something to do with bad bit sequences?
 – Floating point representation has specific form
 – An integer may not be a valid float
• Something about programmer intent and use?
 – A type error occurs when a value is used in a way that is inconsistent with its definition
 • Example: declare as character, use as integer
Type errors are language dependent

• Array out of bounds access
 – C/C++: runtime errors
 – Haskell/Java: dynamic type errors

• Null pointer dereference
 – C/C++: run-time errors
 – Haskell/ML: pointers are hidden inside datatypes
 • Null pointer dereferences would be incorrect use of these datatypes, therefore static type errors
Compile-time vs Run-time Checking

• JavaScript and Lisp use run-time type checking
 – $f(x)$ Make sure f is a function before calling f

 ![JavaScript example]

• Haskell and Java use compile-time type checking
 – $f(x)$ Must have $f : A \rightarrow B$ and $x : A$

• Basic tradeoff
 – Both kinds of checking prevent type errors
 – Run-time checking slows down execution
 – Compile-time checking restricts program flexibility
 • JavaScript array: elements can have different types
 • Haskell list: all elements must have same type
 – Which gives better programmer diagnostics?
Expressiveness

- In JavaScript, we can write a function like

```javascript
function f(x) { return x < 10 ? x : x(); }
```

Some uses will produce type error, some will not

- Static typing always conservative

```javascript
if  (complicated-boolean-expression)
    then  f(5);
else  f(15);
```
Relative Type-Safety of Languages

- **Not safe:** BCPL family, including C and C++
 - Casts, unions, pointer arithmetic
- **Almost safe:** Algol family, Pascal, Ada
 - Dangling pointers
 - Allocate a pointer \(p \) to an integer, deallocate the memory referenced by \(p \), then later use the value pointed to by \(p \)
 - Hard to make languages with explicit deallocation of memory fully type-safe
- **Safe:** Lisp, Smalltalk, ML, Haskell, Java, JavaScript
 - Dynamically typed: Lisp, Smalltalk, JavaScript
 - Statically typed: ML, Haskell, Java

If code accesses data, it is handled with the type associated with the creation and previous manipulation of that data.
Type Checking vs Type Inference

• Standard type checking:

```c
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

– Examine body of each function
– Use declared types to check agreement

• Type inference:

```c
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

– Examine code without type information
– Infer the most general types that could have been declared

ML and Haskell are *designed* to make type inference feasible
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 • Eliminated sources of unsoundness
 • Become substantially more expressive
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types
 – Guaranteed to produce most general type
 – Widely regarded as important language innovation
 – Illustrative example of a flow-insensitive static analysis algorithm
History

• Original type inference algorithm
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958
• In 1969, Hindley
 – extended the algorithm to a richer language and proved it always produced the most general type
• In 1978, Milner
 – independently developed equivalent algorithm, called algorithm W, during his work designing ML
• In 1982, Damas proved the algorithm was complete.
 – Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, C++0x,...
uHaskell

- Subset of Haskell to explain type inference.
 - Haskell and ML both have overloading
 - Will not cover type inference with overloading

\[
\text{<decl> } ::= \left[\text{<name>} \ \text{<pat>} \ = \ \text{<exp>} \right]
\]
\[
\text{<pat>} ::= \ \text{Id} \ \mid \ \left(\text{<pat>}, \ \text{<pat>} \right) \ \mid \ \text{<pat>} : \ \text{<pat>} \ \mid \ \text{[]}
\]
\[
\text{<exp>} ::= \ \text{Int} \ \mid \ \text{Bool} \ \mid \ \text{[]} \ \mid \ \text{Id} \ \mid \ \left(\text{<exp>} \right)
\]
\[
\ \mid \ \text{<exp>} \ \text{<op>} \ \text{<exp>}
\]
\[
\ \mid \ \text{<exp>} \ \text{<exp>} \ \mid \ \left(\text{<exp>}, \ \text{<exp>} \right)
\]
\[
\ \mid \ \text{if} \ \text{<exp>} \ \text{then} \ \text{<exp>} \ \text{else} \ \text{<exp>}
\]
Type Inference: Basic Idea

- Example

```
f x = 2 + x
>f :: Int -> Int
```

- What is the type of f?

+ has type: \(\text{Int} \rightarrow \text{Int} \rightarrow \text{Int}\)

2 has type: \(\text{Int}\)

Since we are applying + to x we need \(x :: \text{Int}\)

Therefore \(f x = 2 + x\) has type \(\text{Int} \rightarrow \text{Int}\)
Type Inference: Basic Idea

• Another Example

\[
f (g, h) = g \ (h(0))
\]

> \(f :: (a \to b, \text{Int} \to a) \to b \)
Imperative Example

\[x := b[z] \]
\[a [b[y]] := x \]
Step 1: Parse Program

- Parse program text to construct parse tree

Infix operators are converted to Curied function application during parsing:

\[f \ x = 2 + x \Rightarrow (+) \ 2 \ x \]
Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence
Step 3: Add Constraints

\[\begin{align*}
t_0 &= t_1 \rightarrow t_6 \\
t_4 &= t_1 \rightarrow t_6 \\
t_2 &= t_3 \rightarrow t_4 \\
t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
t_3 &= \text{Int}
\end{align*}\]
Step 4: Solve Constraints

- $t_0 = t_1 \rightarrow t_6$
- $t_4 = t_1 \rightarrow t_6$
- $t_2 = t_3 \rightarrow t_4$
- $t_2 = \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}$
- $t_3 = \text{Int}$
- $t_3 \rightarrow t_4 = \text{Int} \rightarrow (\text{Int} \rightarrow \text{Int})$
- $t_0 = t_1 \rightarrow t_6$
- $t_4 = t_1 \rightarrow t_6$
- $t_4 = \text{Int} \rightarrow \text{Int}$
- $t_2 = \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}$
- $t_3 = \text{Int}$
- $t_3 = \text{Int}$
- $t_4 = \text{Int} \rightarrow \text{Int}$
- $t_1 \rightarrow t_6 = \text{Int} \rightarrow \text{Int}$
- $t_0 = \text{Int} \rightarrow \text{Int}$
- $t_1 = \text{Int}$
- $t_6 = \text{Int}$
- $t_4 = \text{Int} \rightarrow \text{Int}$
- $t_2 = \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}$
- $t_3 = \text{Int}$
- $t_1 = \text{Int}$
- $t_6 = \text{Int}$
Step 5: Determine type of declaration

\[
\begin{align*}
t_0 &= \text{Int} \rightarrow \text{Int} \\
t_1 &= \text{Int} \\
t_6 &= \text{Int} \rightarrow \text{Int} \\
t_4 &= \text{Int} \rightarrow \text{Int} \\
t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
t_3 &= \text{Int} \\
f &= f :: \text{Int} \rightarrow \text{Int} \\
2 &= 2 :: t_3 \\
x &= x :: t_1 \\
(+) &= (+) :: t_2 \\
(\oplus) &= (\oplus) :: t_4 \\
\end{align*}
\]
Unification

• Given two type terms \(t_1, t_2 \)
• Compute the most general unifier of \(t_1 \) and \(t_2 \)
 – A mapping \(m \) from type variables to typed terms such that
 • \(t_1 \{m\} \equiv t_2 \{m\} \)
 • Every other unifier is a refinement of \(m \)

• Example
 \[
 \text{mgu}(t_3 \to t_4, \text{Int} \to (\text{Int} \to \text{Int}) = [t_3 \mapsto \text{Int}, t_4 \mapsto \text{Int} \to \text{Int}] =
 \]
Type Inference Algorithm

- Parse program to build parse tree
- Assign type variables to nodes in tree
- Generate constraints:
 - From environment: literals (2), built-in operators (+), known functions (tail)
 - From form of parse tree: e.g., application and abstraction nodes
- Solve constraints using unification
- Determine types of top-level declarations
Constraints from Application Nodes

• Function application (apply f to x)
 – Type of f \((t_0\text{ in figure})\) must be domain \(\rightarrow\) range
 – Domain of f must be type of argument x \((t_1\text{ in fig})\)
 – Range of f must be result of application \((t_2\text{ in fig})\)
 – Constraint: \(t_0 = t_1 \rightarrow t_2\)
Constraints from Abstractions

- **Function declaration:**
 - Type of f (t_0 in figure) must domain \rightarrow range
 - Domain is type of abstracted variable x (t_1 in fig)
 - Range is type of function body e (t_2 in fig)
 - Constraint: $t_0 = t_1 \rightarrow t_2$
Inferring Polymorphic Types

• Example:
 \[f \circ g = g \ 2 \]
 \[> f :: (\text{Int} \to t_4) \to t_4 \]

• Step 1:
 Build Parse Tree
Inferring Polymorphic Types

• Example:
 \[f \ g = g\ 2 \]
 \[\Rightarrow f :: (\text{Int} \to t_4) \to t_4 \]

• Step 2:
 Assign type variables
Inferring Polymorphic Types

• Example:

\[f \ g = g \ 2 \]
\[> f :: (\text{Int} \to t_4) \to t_4 \]

• Step 3:
Generate constraints
Inferring Polymorphic Types

• Example:
 \[f \cdot g = g \ 2 \]
 \[> f :: (\text{Int} \to t_4) \to t_4 \]

• Step 4:
 Solve constraints

\[
\begin{align*}
 t_0 &= t_1 \to t_4 \\
 t_1 &= t_3 \to t_4 \\
 t_3 &= \text{Int}
\end{align*}
\]

\[
\begin{align*}
 t_0 &= (\text{Int} \to t_4) \to t_4 \\
 t_1 &= \text{Int} \to t_4 \\
 t_3 &= \text{Int}
\end{align*}
\]
Inferring Polymorphic Types

- Example:

 \[f \cdot g = g \, 2 \]
 \[> f :: (\text{Int} \to t_4) \to t_4 \]

- Step 5:
 Determine type of top-level declaration

Unconstrained type variables become polymorphic types

\[t_0 = (\text{Int} \to t_4) \to t_4 \]
\[t_1 = \text{Int} \to t_4 \]
\[t_3 = \text{Int} \]
Using Polymorphic Functions

• Function:

 \[f \ g = g \ 2 \]
 \[> f \ : \ : (\text{Int} \ -\to \ t_4) \ -\to \ t_4 \]

• Possible applications:

 \[\text{add} \ x = 2 + x \]
 \[> \ \text{add} \ : \ : \text{Int} \ -\to \ \text{Int} \]

 \[f \ \text{add} \]
 \[> 4 \ : \ : \text{Int} \]

 \[\text{isEven} \ x = \text{mod} \ (x, \ 2) == 0 \]
 \[> \ \text{isEven}:: \ \text{Int} \ -\to \ \text{Bool} \]

 \[f \ \text{isEven} \]
 \[> \ True \ : \ : \text{Bool} \]
Recognizing Type Errors

• Function:

\[
\begin{align*}
 f & \cdot g = g \ 2 \\
 > f & : (\text{Int} \rightarrow t_4) \rightarrow t_4
\end{align*}
\]

• Incorrect use

\[
\begin{align*}
 \text{not } x & = \text{if } x \text{ then True else False} \\
 > \text{not} & : \text{Bool} \rightarrow \text{Bool} \\
 f \ \text{not} \\
 > \text{Error: operator and operand don’t agree} \\
 & \text{operator domain: Int} \rightarrow a \\
 & \text{operand: Bool} \rightarrow \text{Bool}
\end{align*}
\]

• Type error:
cannot unify \text{Bool} \rightarrow \text{Bool} and \text{Int} \rightarrow t
Another Example

• Example:
 \[f \ (g, x) = g \ (g \ x) \]
 \[\Rightarrow f :: (t_8 \rightarrow t_8, t_8) \rightarrow t_8 \]

• Step 1:
 Build Parse Tree

\[\text{Fun} \rightarrow f \rightarrow \text{Pair} \rightarrow g \rightarrow x \]
Another Example

• Example:

\[f \ (g, x) = g \ (g \ x) \]
\[\Rightarrow f :: (t_8 \to t_8, t_8) \to t_8 \]

• Step 2:
 Assign type variables
Another Example

• Example:
 \(f \ (g, x) = g \ (g \ x) \)
 \(\implies f :: (t_8 \rightarrow t_8, t_8) \rightarrow t_8 \)

• Step 3:
 Generate constraints

```
t_0 = t_3 \rightarrow t_8
(t_3 = (t_1, t_2))
t_1 = t_7 \rightarrow t_8
(t_1 = t_2 \rightarrow t_7)
```
Another Example

• Example:
 \[f(g, x) = g(g(x)) \]
 \[\Rightarrow f :: (t_8 \to t_8, t_8) \to t_8 \]

• Step 4:
 Solve constraints

```
t_0 = t_3 \to t_8
f :: t_0
Pair :: t_3
f :: t_0
g :: t_1
Pair :: t_3
x :: t_2
Pair :: t_3
g :: t_1
(три) :: t_8
(три) :: t_8
(три) :: t_7
h :: t_1
(три) :: t_7
h :: t_1
g :: t_1
x :: t_2
(три) :: t_7
t_0 = (t_8 \to t_8, t_8) \to t_8
```
Another Example

- Example:
 \[f (g, x) = g (g x) \]
 \[> f :: (t_8 \rightarrow t_8, t_8) \rightarrow t_8 \]

- Step 5:
 Determine type of \(f \)

\[t_0 = t_3 \rightarrow t_8 \]
\[t_3 = (t_1, t_2) \]
\[t_1 = t_7 \rightarrow t_8 \]
\[t_1 = t_2 \rightarrow t_7 \]

\[t_0 = (t_8 \rightarrow t_8, t_8) \rightarrow t_8 \]
Polymorphic Datatypes

• Functions may have multiple clauses

\[
\begin{align*}
\text{length } [] &= 0 \\
\text{length } (x:\text{rest}) &= 1 + (\text{length rest})
\end{align*}
\]

• Type inference
 – Infer separate type for each clause
 – Combine by adding constraint that all clauses must have the same type
 – Recursive calls: function has same type as its definition
Type Inference with Datatypes

- Example:
 \[\text{length} \ (x: \text{rest}) = 1 + (\text{length} \ \text{rest}) \]

- Step 1: Build Parse Tree
Type Inference with Datatypes

- Example:
 \[\text{length} \ (x: \text{rest}) = 1 + (\text{length} \ \text{rest}) \]

- Step 2: Assign type variables
Type Inference with Datatypes

- Example:

- Step 3: Generate constraints

\[
\text{length (x:rest) = 1 + (length rest)}
\]

- \(t_0 = t_3 \rightarrow t_{10} \)
- \(t_3 = t_2 \)
- \(t_3 = [t_1] \)
- \(t_6 = t_9 \rightarrow t_{10} \)
- \(t_4 = t_5 \rightarrow t_6 \)
- \(t_4 = \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \)
- \(t_5 = \text{Int} \)
- \(t_0 = t_2 \rightarrow t_9 \)
Type Inference with Datatypes

• Example:

\[
\text{length } (x: \text{rest}) = 1 + (\text{length } \text{rest})
\]

• Step 3: Solve Constraints

\[
t_0 = t_3 \rightarrow t_{10}
t_3 = t_2
t_3 = [t_1]
t_6 = t_9 \rightarrow t_{10}
t_4 = t_5 \rightarrow t_6
t_4 = \text{Int} \rightarrow \text{Int} \rightarrow \text{Int}
t_5 = \text{Int}
t_0 = t_2 \rightarrow t_9
\]

\[
t_0 = [t_1] \rightarrow \text{Int}
\]
Multiple Clauses

• Function with multiple clauses

\[
\begin{align*}
\text{append } ([], r) &= r \\
\text{append } (x:xs, r) &= x : \text{append } (xs, r)
\end{align*}
\]

• Infer type of each clause
 – First clause:

 \[
 \text{append} :: ([t_1], t_2) \rightarrow t_2
 \]
 – Second clause:

 \[
 \text{append} :: ([t_3], t_4) \rightarrow [t_3]
 \]

• Combine by equating types of two clauses

\[
\text{append} :: ([t_1], [t_1]) \rightarrow [t_1]
\]
Most General Type

• Type inference produces the *most general type*

```
map (f, []) = []
map (f, x:xs) = f x : map (f, xs)
> map :: (t_1 -> t_2, [t_1]) -> [t_2]
```

• Functions may have many less general types

```
> map :: (t_1 -> Int, [t_1]) -> [Int]
> map :: (Bool -> t_2, [Bool]) -> [t_2]
> map :: (Char -> Int, [Char]) -> [Int]
```

• Less general types are all instances of most general type, also called the *principal type*
Type Inference Algorithm

• When Hindley/Milner type inference algorithm was developed, its complexity was unknown
• In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete
• Usually linear in practice though...
 – Running time is exponential in the depth of polymorphic declarations
Information from Type Inference

• Consider this function...

\[
\begin{align*}
\text{reverse} & \colon [] = [] \\
\text{reverse} & \colon (x:xs) = \text{reverse} \ xs
\end{align*}
\]

... and its most general type:

\[
> \text{reverse} \colon [t_1] \rightarrow [t_2]
\]

• What does this type mean?

Reversing a list should not change its type, so there must be an error in the definition of reverse!
Type Inference: Key Points

• Type inference computes the types of expressions
 – Does not require type declarations for variables
 – Finds the most general type by solving constraints
 – Leads to polymorphism

• Sometimes better error detection than type checking
 – Type may indicate a programming error even if no type error

• Some costs
 – More difficult to identify program line that causes error
 – Natural implementation requires uniform representation sizes
 – Complications regarding assignment took years to work out

• Idea can be applied to other program properties
 – Discover properties of program using same kind of analysis
Haskell Type Inference

• Haskell uses type classes
 – supports user-defined overloading, so the inference algorithm is more complicated

• ML restricts the language
 – to ensure that no annotations are required

• Haskell provides additional features
 – like polymorphic recursion for which types cannot be inferred and so the user must provide annotations
Parametric Polymorphism: Haskell vs C++

• Haskell polymorphic function
 – Declarations (generally) require no type information
 – Type inference uses type variables to type expressions
 – Type inference substitutes for type variables as needed to instantiate polymorphic code

• C++ function template
 – Programmer must declare the argument and result types of functions
 – Programmers must use explicit type parameters to express polymorphism
 – Function application: type checker does instantiation
Example: Swap Two Values

• Haskell

```haskell
swap :: (IORef a, IORef a) -> IO ()
swap (x,y) = do {
    val_x <- readIORef x; val_y <- readIORef y;
    writeIORef y val_x; writeIORef x val_y;
    return () }
```

• C++

```cpp
template <typename T>
void swap(T& x, T& y){
    T tmp = x; x=y; y=tmp;
}
```

Declarations both swap two values polymorphically, but they are compiled very differently.
Implementation

- Haskell
 - `swap` is compiled into one function
 - Typechecker determines how function can be used
- C++
 - `swap` is compiled differently for each instance
 (details beyond scope of this course ...)
- Why the difference?
 - Haskell ref cell is passed by pointer. The local `x` is a pointer to value on heap, so its size is constant
 - C++ arguments passed by reference (pointer), but local `x` is on the stack, so its size depends on the type
Summary

• Types are important in modern languages
 – Program organization and documentation
 – Prevent program errors
 – Provide important information to compiler

• Type inference
 – Determine best type for an expression, based on known information about symbols in the expression

• Polymorphism
 – Single algorithm (function) can have many types