
Advanced Topics in Programming Languages Spring Semester, 2012

Lecture 9: Typed Lambda Calculus
May 8, 2012

Lecturer: Mooly Sagiv Scribe: Guy Golan Gueta and Shachar Itzhaky

1 Defining a Type System for Lambda-Calculus

A type checker, as part of the language compiler, provides many benefits, the most important of which being
detection of compile-time errors to prevent a situation where undefined semantics is encountered at run-time.
In other words, we wish to define a type system such that if a program is well-typed, then it is guaranteed
to have fully defined semantics.

There is no single type system for a given language syntax and operational semantics — instead, choosing
the set of types and typing rules is an important design decision that has to be made by the language designer.
Failure to define a coherent type system may result in a broken or buggy implementation, or in confusing
language semantics. In addition, we would prefer a simple type system, because we would later like to
formally prove some properties of well-typed programs; cluttering the type space will make such proofs
tedious and cumbersome.

Let us re-examine the compact language of (untyped) lambda-calculus.

t ::= x | λx. t | t t

Recall that we defined a value to be an abstraction lambda term, that is, v ::= λx. t. The distinction
of value terms is crucial because they determine when a program is allowed to “terminate”. A value term
is not expected to have any further derivations — it is then considered as the outcome of the program. If
non-value term, on the other hand, does not have a valid derivation according to the operational semantics,
it is regarded as a “stuck” state. In the context of type systems, we want to avoid such states by making
appropriate type checks beforehand.

It is easy to show stuck states in lambda-calculus: the SOS only defines application of a λ-term; the
semantics gets stuck when it is a variable instead. Here are some examples:

x y x λx. x z ((λy. y) z)

Note We are assuming call-by-value semantics. in these variant, when we have an application term t1 t2,
derivation of the argument t2 can proceed only when the applicant t1 is a value type. Therefore the third
term is also stuck.

Still, this case is a little degenerate, since programs containing free variables are not all that interesting.
Indeed, closed terms (terms with no free variables, that is, all the variables are bound by λ), never get
stuck in call-by-value semantics of untyped lambda-calculus. We make things a little more interesting (and
complex) by also introducing primitives into the lambda-calculus: remember that we can represent boolean
values and natural numbers directly using the lambda-calculus syntax:

tru = λt. λf. t fls = λt. λf. f
′0′ = λs.λz. z ′1′ = λs.λz. s z ′2′ = λs.λz. s (s z) ′3′ = λs.λz. s (s (s z)) . . .

Similarly encoding control structures such as ite(cond, t1, t2) (if cond then t1 else t2) and arithmetic
operations such as succ, plus, mult. We can see one shortcoming of this approach by considering the
function:

1



g = λb. λx. λy. ite b (x+ y) (x · y)

Clearly, g tru ′3′ ′5′ = ′8′ and g fls ′9′ ′6′ = ′54′. But what is g ′7′ fls tru? Since this is a closed
term it must hold a meaning in lambda-calculus, but a programmer will find it very hard to trace. Breaking
the abstraction we defined for booleans and numerals renders this program’s behavior unpredictable. The
correct answer (calculated mechanically) is in fact

λx. λi0. λi1. λi2. λi3. λi4. λi5. fls

This small example illustrates the need for type abstraction in programming. So we choose an alternative
to using the Church numerals, which is to define opaque constant symbols true and false, as well as
0, 1, 2, . . ., and extend the language syntax with new constructs that express operations on these symbols.
When defining a new language construct, one has two options for defining its semantics:

1. By reducing it to an existing construct. These are called derived forms (or, in some contexts, syntactic
sugar).

2. By introducing new operational semantics derivation rules for it.

For example, we can introduce a syntax for booleans:

t::= . . . | true | false | if t then t else t

and then use the second method to define their meaning:

if true then t1 else t2 → t1 (E-IF-THEN)

if false then t1 else t2 → t2 (E-IF-ELSE)

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

(E-IF-COND)

To distinguish the valid runs, we also have to extend the set of values, otherwise we will consider even
the simple program true as undefined behavior.

v ::= . . . | true | false

Note that using this setting, the previous g 7 false true will reach a stuck state:

g 7 false true→ if 7 then false + true else false · true

Because 7 is neither true nor false and cannot be reduced to anything. To prevent these stuck states
we want the type checker to reject this program.

1.1 Simple Type System with 2 Types

In an attempt to locally fix this stuck condition, we define one type “Bool” that will be assigned to boolean
values, and one type “→” that will be assigned to functions, λx. t.

T ::= Bool | →

With the typing rules:

2



true : Bool (T-TRUE)

false : Bool (T-FALSE)

λx. t :→ (T-ABS)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-IF)

But now we encounter a problem when trying to state the typing rule for application (t t). The terms
f1 = λx. true and f2 = λx. x both receive the type → according to T-ABS. However, f1 f2 → true (type
Bool) while f2 f1 → λx. true (type→). This example shows that we cannot precisely type a term using the
types of the sub-terms. In other words, we cannot define the typing rule for an application compositionally
in this type system. This is not a good property, hinting that we should improve our selection of types.

1.2 Complicating Things: an Unbounded Type System

Our major setback during the previous attempt was that all functions are mapped to the same type, regardless
of the value they operate on and the value they produce. Have we had somehow “remember” the fact that
f1 returns a value of type Bool, while f2 returns a value of the same type as its argument, we would have
been able to correctly distinguish the type of the application term.

We therefore define the following set of types, using a BNF grammar.

T ::= Bool
∣∣ T → T

Notice, now instead of T being a set of two types, it contains infinitely many types, because we can
always apply the operator→ to existing types to receive a new type. This will not stand in our way, however,
because we will only deal with finite programs, and such programs will have only a finite number of types
out of T .

One problem still remains — typing value terms, where a λ-abstraction term is not applied to any value.
How can we know the type of the argument? Consider f1 = λx. true. This function can be successfully
applied to an argument of type “Bool” or “Bool → Bool” (and in fact any other type as well), so shall we
say f1 : Bool → Bool or f1 : (Bool → Bool) → Bool? Similarly, we have equally the same justification for
f2 : Bool→ Bool as we have for f2 : (Bool→ Bool)→ (Bool→ Bool) (recall that f2 = λx. x).

To circumvent this issue, we choose to change the language itself for the sake of making typing easier.
In this case, we require the programmer to annotate function parameter types in abstraction terms. So,
instead of λx. t we shall have λx : T . t

Before we formally define the association of types to terms, here are several examples of terms with the
type they should have, intuitively:

t τ
λx : Bool. true Bool→ Bool
λx : Bool→ Bool. true (Bool→ Bool)→ Bool
λx : Bool→ Bool. x (Bool→ Bool)→ (Bool→ Bool)
λx : Bool. λy : Bool.
if x then y else false

Bool→ (Bool→ Bool)

Note The → operator is not associative, (Bool → Bool) → Bool has a strictly different meaning from
Bool → (Bool → Bool). In order to reduce the use parenthesis, for readability, we say that → associates
to the right, that is T1 → T2 → T3 ≡ T1 → (T2 → T3). This allows us to express the type of the last term
simply as Bool→ Bool→ Bool (similar to Haskell and ML).

3



2 Formulating the Typing Relation

To preserve the desired property of compositionality, we have to mind function bodies (the t in λx. t).
Clearly, the type of the body depends on the type of the argument; on the other hand, the type of the whole
function term depends on both the type of the argument and the type of the body. This cross-dependency
means that type information has to be propagated from the term down to its sub-terms, as well as from the
sub-terms back to the root.

To this end, we define the context Γ of the typing as a finite mapping of variables to types. Intuitively,
Γ will be used to assign types to free variables in sub-terms. We formally define a context using the BNF
grammar:

Γ ::= ∅
∣∣ x : T

but you can thing of it as just another form to represent a function from some finite domain of variable
symbols to the set of types; this observation is denoted as dom(Γ)→ T .

Note We ignore the corner case where a single variable x occurs more than once in Γ. We are not going
to use such contexts anyway. So when we write Γ, x : T , it is implied that x 6∈ dom(Γ).

The use of contexts then becomes clear — contexts will provide the missing type information for function
arguments which have not yet been bound. That is, if t1 = λx : T. t2, then x is free in t2 (but bound in
t1). Its type is then determined from context. This leads to the type of non-closed terms depending on the
context, making the typing relation a ternary one, instead of binary: it is now a relation between a context
Γ, term t, and type τ . The accepted notation for the typing relation is:

Γ ` t : τ

Formal definitions will come in a minute, but before that here are some more examples to give the
intuition:

Γ t τ
x : Bool x Bool
x : Bool λx : Bool→ Bool. true (Bool→ Bool)→ Bool
x : Bool→ Bool,
y : Bool

x y Bool

y : Bool→ Bool λx : Bool. y (y x) Bool→ Bool

2.1 Type Rules

The typing relation Γ ` t : T is defined by the following rules:

Γ ` true : Bool (T-TRUE)

Γ ` false : Bool (T-FALSE)

if x : T ∈ Γ,
Γ ` x : T (T-VAR)

Γ, x : T1 ` t : T2
Γ ` λx. t : T1 → T2

(T-ABS)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T-IF)

Γ ` t1 : T1 → T2 Γ ` t2 : T1
Γ ` t1 t2 : T2

(T-APP)

4



λ

x : Bool→ Bool λ

y : Bool @

x y

Γ1 = ∅

Γ2 = x : Bool→ Bool

Γ3 = x : Bool→ Bool, y : Bool

T1 = Bool→ Bool T2 = Bool

T12 = Bool

T3 = Bool→ Bool

T4 = (Bool→ Bool)→ Bool→ Bool

Figure 1: Type information flowing between sub-terms of λx : Bool→ Bool. λy : Bool. x y

Here is how we prove that λx : Bool→ Bool. λy : Bool. x y : (Bool→ Bool)→ Bool→ Bool using the
rules above.

(T-VAR)

x : Bool→ Bool, y : Bool ` x : Bool→ Bool
(T-VAR)

x : Bool→ Bool, y : Bool ` y : Bool

x : Bool→ Bool, y : Bool ` x y : Bool

x : Bool→ Bool ` (λy : Bool. x y) : Bool→ Bool
(T-ABS)

` (λx : Bool→ Bool. λy : Bool. x y) : (Bool→ Bool)→ Bool→ Bool
(T-ABS)

(T-APP)

Explanation From the types of the arguments we see that we have to prepare the context:

Γ3 = x : Bool→ Bool, y : Bool

From the application rule T-APP we conclude that Γ3 ` x y. T-APP never changes the context, but T-ABS
does; when we compute the type of an abstraction, we remove the parameter from the context to receive
the function type. Parameters are removed from the inside out: first we remove y, and get a new context
Γ2 = x : Bool → Bool. By T-ABS, Γ2 ` (λy : Bool. x y) : Bool → Bool. A second application of T-ABS
eliminates x from context and the resulting type is (Bool → Bool) → Bool → Bool. Note that the context
at the end of the proof is empty, and that the term contains no free variables.

Figure 2.1 gives the intuition behind the proof by demonstrating how information passes between nodes
of the expression tree. The blue arrows show the contexts being built, and the orange arrows denote use of
the rules T-ABS and T-APP.

5



3 Types and Operational Semantics

The formal definition of structural operational semantics for untyped lambda- calculus no longer applies to
the typed variant: the two do not even share the same language anymore, due to the introduction of a new
term scheme and the abolishing of another (λx. t is replaced with λx : T. t). Fortunately, this change is quite
simple to overcome: in order to preserve the original semantics, just ignore the type at evaluation time.

Untyped Typed

t1 → t′1
t1 t2 → t′1 t2

(E-APP1)
t1 → t′1

t1 t2 → t′1 t2
(E-APP1)

t1 → t′1
t1 t2 → t′1 t2

(E-APP2)
t2 → t′2

v1 t2 → v′1 t2
(E-APP2)

(λx. t) v → [x 7→ v]t (E-APPABS) (λx : T. t) v → [x 7→ v]t (E-APPABS)

To this should be added the derivation rules for the Bool-typed expressions, and in fact any other base
type should we wish to support it.

Type Bool

if true then t1 else t2 → t1 (E-IF-THEN)

if false then t1 else t2 → t2 (E-IF-ELSE)

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

(E-IF-COND)

The property that the operational semantics completely ignore types gives rise to an interesting concept
involving programs:

Definition 3.1. Given a typed lambda-calculus term t, the erasure of t is the untyped lambda-calculus term
obtained from t by removing all type annotations, that is, replacing every λx : T by λx.

Formally:
erase(v) = v
erase(t1 t2) = erase(t1) erase(t2)
erase(λx : T. t) = λx. erase(t)

Of course erase(t) is not even defined for terms containing extensions to the calculus (true/false/if, in the
case of booleans); but when it is defined, we would expect it to mean the same thing as the original (typed)
term.

Theorem 3.2 (Evaluation commutes with erasure). (see Figure 3).

• If t→ t′ (under the typed evaluation relation), then erase(t)→ erase(t′) (under the untyped evaluation
relation).

• If erase(t) = m and m→ m′ (under the untyped evaluation relation), then there is a simply typed term
t′ such that t→ t′ (under the typed evaluation relation) and erase(t′) = m′.

6



t t′

m m′

→

→

erase erase

Figure 2: Evaluation-erasure commutativity

Proof. Done by induction on the derivation tree for the evaluation relation corresponding to either t→ t′ or
m→ m′. The interesting induction step is when a derivation utilizes the derivation rule E-APPABS, which
is different between the typed and untyped variants. In this case, because evaluation completely ignores
types, the untyped version of E-APPABS is applicable in exactly the same cases where the typed one is, so
transforming a derivation in the typed calculus to a derivition in the untyped calculus is straightforward —
just apply erase() to all the terms involved.

Furthermore, if you also substitute true/false/if-then-else with their untyped derived counterparts tru/
fls/ite, you still preserve the semantics — assuming this time that the original term is well-typed. We will
not prove this property but we will give an example.

Example 3.3.

(untyped) maj = λp. λq. λr. ite p (ite q tru r) (ite q r fls)

(typed)

maj(T ) = λp : Bool. λq : Bool. λr : Bool.

if p then (if q then true else r)

else (if q then r else false)

The term maj represents a function that computes the majority of three boolean values. By typing rules,
maj(T ) : Bool → Bool → Bool → Bool, so for every three boolean values b1, b2, b3 we expect maj b1 b2 b3
and maj(T ) b1 b2 b3 to be consistent. Let’s try with b1 = true, b2 = true, b3 = false.

In the untyped setting we will carry out the entire derivation with E-ABSAPP.

maj tru tru fls

→ (λq. λr. ite tru (ite q tru r) (ite q r fls)) tru fls

→ (λr. ite tru (ite tru tru r) (ite tru r fls)) fls

→ ite tru (ite tru tru fls) (ite tru fls fls)

= (λc. λt. λe. c t e) tru (ite tru tru fls) (ite tru fls fls)

→ (λt. λe. tru t e) (ite tru tru fls) (ite tru fls fls)

= (λt. λe. tru t e) ((λc. λt. λe. c t e) tru tru fls) (ite tru fls fls)

→ (λt. λe. tru t e) ((λt. λe. tru t e) tru fls) (ite tru fls fls)

→ (λt. λe. tru t e) ((λe. tru tru e) fls) (ite tru fls fls)

→ (λt. λe. tru t e) (tru tru fls) (ite tru fls fls)

= (λt. λe. tru t e) ((λt. λf. t) tru fls) (ite tru fls fls)

→ (λt. λe. tru t e) ((λf. tru) fls) (ite tru fls fls)

→ (λt. λe. tru t e) tru (ite tru fls fls)

→ · · · → (λt. λe. tru t e) tru fls→ · · · → tru

7



In the typed frontier, we have more powerful rules, making the derivation somewhat shorter.

maj(T ) tru tru fls

=
(
λp : Bool. λq : Bool. λr : Bool.

if p then (if q then true else r)

else (if q then r else false)
)
true true false

→
(
λq : Bool. λr : Bool.

if true then (if q then true else r)

else (if q then r else false)
)
true false

→
(
λr : Bool.

if true then (if true then true else r)

else (if true then r else false)
)
false

→ if true then (if true then true else false)

else (if true then false else false)

→ if true then true

else (if true then false else false)

→ if true then true else false → true

4 Properties of Typing

In this section we describe several properties of the typed lambda-calculus presented in previous section.

Inversion Lemma The inversion lemma describes several simple structure properties of typable terms.
For each syntactic form, the lemma tells us: ”if a term of this form is typable, then its subterms must have
types of these forms . . .”.

Lemma 4.1 (Inversion Lemma). 1. If Γ ` x : R, then x : R ∈ Γ.

2. If Γ ` λx : T1.t2 : R, then R = T1 → R2 for some R2 with Γ, x : T1 ` t2 : R2.

3. If Γ ` t1t2 : R, then there is some type T11 such that Γ ` t1 : T11 → R and Γ ` t2 : T11.

4. If Γ ` true : R, then R = Bool.

5. If Γ ` false : R, then R = Bool.

6. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and Γ ` t2, t3 : R.

Proof. Immediate from definitions.

Example 4.2. Consider the term t = if true then (λx : Bool. x) else (λy : Bool. false). The term t
has the type Bool → Bool. According to the inversion lemma (6) we know that the subterms λx : Bool. x
and λy : Bool. false have the same type as t (i.e., their type is also Bool→ Bool).

Lemma 4.1 is fundamental because it instructs a compiler designer how to build the type checker (see
example implementation in Figure 4).

8



import quali f ied Data .Map as M

−− Language Grammar

type Var iab le = String

data LType = Bool | Func LType LType deriving (Eq,Show)

data LExpr =
Var Var iab le | Abs Var iab le LType LExpr | App LExpr LExpr

| LTrue | LFalse | I f LExpr LExpr LExpr deriving Show

−− Type Checking Rules

typecheck ctx ( Var j ) =
case M. lookup j ctx of

Nothing −> undefined
Just tp −> tp

typecheck ctx (Abs x tp t ) = Func tp ( typecheck (M. insert x tp ctx ) t )

typecheck ctx (App t1 t2 ) =
case ( typecheck ctx t1 , typecheck ctx t2 ) of

( Func tp11 tp12 , tp2 ) −> i f tp11 == tp2 then tp12 else undefined
−> undefined

typecheck ctx LTrue = Bool
typecheck ctx LFalse = Bool
typecheck ctx ( I f tcond tthen t e l s e ) =

l et tc = typecheck ctx
case ( tc tcond , tc tthen , tc t e l s e ) of

(Bool , tp1 , tp2 ) −> i f tp1 == tp2 then tp1 else undefined
−> undefined

Figure 3: Type checker for typed lambda-calculus implemented in Haskell

9



Uniqueness of Types In the presented typed lambda-calculus, every typable term has a unique type.
Moreover, the typing derivation of a term t is uniquely defined by t (and vice versa). This is provided by
the following theorem:

Theorem 4.3. In a given typing context Γ, a term t has at most one type. If t is typable (in Γ), then there
is just one derivation of this typing built from the inference rules that generate the typing relation.

Proof. Let Γ be a typing context, and let t be a term. There is at most one typing rule that can be applied
on t in Γ (immediate from the syntax and the typing rules).

Note that, this property does not hold for all type systems (for example, for some type systems with
subtyping).

Safety The most basic property of type systems is safety — this property ensures that every typable term
will never go wrong. Formally, a typable term can never reach (during evaluation) a term te such that: (i)
te is not designated as a legal final value; (ii) there is no term t′ such that te → t′. This property is shown
by the progress and preservation theorems.

• Progress: A typable term is either a value or it can take a step according to the evaluation rules.

• Preservation: If a typable term takes a step of evaluation, then the resulting term is also typable.

The following lemma is used to prove the progress theorem.

Lemma 4.4 (Canonical Forms).

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1 → T2, then v = λx : T1.t2.

Proof. Immediate from definitions.

The progress property does not hold for the shown type system, since it may fail on terms with free
variables. For example, the term x true is a tyable term (in a context in which x is a function from Bool).
However, this failure is not a problem since complete programs which are the terms we actually care about
evaluating are always closed (i.e., have no free variables).

Theorem 4.5 (Progress).
Suppose t is a closed, typable term (that is, ` t : T for some T ). Then either t is a value or else there is
some t′ with t→ t′.

Proof. Induction on typing derivations. If t is not a value then there are two cases to consider: (1) t is a
variable, (2) t = t1t2. Case (1) cannot occur because t is closed. In case (2), t = t1t2 with ` t1 : T11 → T12
and ` t2 : T11. By the induction hypothesis, either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t. If t1 is a value and t2 can take a step, then
rule E-App2 applies. Finally, if both t1 and t2 are values, then the canonical forms lemma tells us that t1
has to form λx : T11.t12 , and so rule E-AppAbs applies to t.

The following immediate lemmas are used to prove the preservation theorem:

Lemma 4.6 (Permutation).
If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T . Moreover, the latter derivation has the same depth
as the former.

Lemma 4.7 (Weakening).
If Γ ` t : T and x 6∈ dom(Γ), then Γ, x : S ` t : T . Moreover, the latter derivation has the same depth as the
former.

10



These lemmas are used to prove an important property of the type system: a typable term remains
typable when its variables are substituted with terms of appropriate types.

Lemma 4.8 (Preservation of types under substitution).
If Γ, x : S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T .

Proof. By induction on the depth of a derivation of the statement Γ, x : S ` t : T (using the depth of
derivation, enables us to use the previous lemmas).
The only non-trivial case is the case in which t is an abstraction. In this case, we can assume:
t = λy : T2.t1
T = T2 → T1
Γ, x : S, y : T2 ` t1 : T1
By convention we may assume that x 6= y and y 6∈ FV (s). Using permutation on the given subderivation,
we obtain Γ, y : T2, x : S ` t1 : T1. Using weakening on the other given derivation (Γ ` s : S), we
obtain Γ, y : T2 ` s : S. Now, by the induction hypothesis, Γ, y : T2 ` [x 7→ s]t1 : T1. By T-Abs,
Γ ` λy : T2.[x 7→ s]t1 : T2 → T1. this is precisely the needed result, since, by the definition of substitution,
[x 7→ s]t = λy : T2.[x 7→ s]t1.

Using the substitution lemma, we can prove the preservation theorem.

Theorem 4.9 (Preservation).
If Γ ` t : T and t→ t′, then Γ ` t′ : T .

Proof. By induction on a derivation of Γ ` t : T . The only non-trivial case is the case in which t is an
application of abstraction — this case is implied from the previous lemma.

Note that this theorem enables us to verify that all terms (that can be evaluated from t) have the same
type as t. So, if the type of t is one of the designated (legal) types, then the type of the resulting value is
one of the designated (legal) types.

Note also that, we only need a strong version of this theorem, since we only interested in evaluating
closed terms.

5 Curry-Style vs. Church-Style

We have seen two different styles in which the semantics of the simply typed lambda-calculus can be for-
mulated: as an evaluation relation defined directly on the syntax of the simply typed calculus, or as a
compilation to an untyped calculus plus an evaluation relation on untyped terms. An important common-
ality of the two styles is that, in both, it makes sense to talk about the behavior of a term t, whether or not
t is actually typable. This form of language definition is often called Curry-style. We first define the terms,
then define a semantics showing how they behave, then give a type system that rejects some terms whose
behaviors we do not like. Semantics is prior to typing.

A rather different way of organizing a language definition is to define terms, then identify the typable
terms, then give semantics just to these. In these so-called Church-style systems, typing is prior to
semantics: we only define the semantics of typable terms.

6 Extensions

The typed lambda calculus has several possible extensions. In class, we have mentioned the following
extensions: Base Types, The Unit Type, Ascription, Let bindings, Pairs, Tuples, Records, Sums, Variants,
General recursion, and Lists. The first three are described in this section.

11



Base Types Programming languages provide variety of base types — we saw typed lambda calculus
with a type for booleans (Bool). Other types (like integers) can be added in the same way the Bool

type has been added . For example, we can add a type for integers by using the following type grammar:
T ::= T → T | Bool| Int.

The Unit Type The Unit is a type with a single possible value — if t : Unit then the value of t is the
constant unit (written with a small u). This type is similar the void type in languages like C and Java.
Its main application is for terms with side effects (e.g., assignments) for which we do not care about their
return value.

It is often useful to evaluate two expressions in sequence without using the first expression’s result —
this is represented by the notation t1; t2.

There are actually two different ways to formalize sequencing. One is to follow the same pattern we have
used for other syntactic forms: add t1; t2 as a new alternative in the syntax of terms, and then add two
evaluation rules

t1 → t′1
t1; t2 → t′1; t2

(E-Seq)

unit; t2 → t2 (E-SeqNext)

and a typing rule

Γ ` t1 : Unit Γ ` t2 : T2
Γ ` t1; t2 : T2

(T-Seq)

capturing the intended behavior of ;.
An alternative way of formalizing sequencing is simply to regard t1; t2 as an abbreviation for the term

(λx : Unit.t2)t1, where the variable x is different from all the free variables of t2. The later approach is called
”derived form” or ”syntactic sugar”. In a sense, such approach is better becuase it does require changing
the type system.

Ascription Another extension enables to explicitly ascribe a particular type to a given term. We write
t as T to ascribe type T to the term t, and the type system verifies that T is the type of t. The evaluation
of t as T is not affected from the ascription (i.e., ”as T” is ignored).

Ascription is used for documentation and to introduce abbreviations for long or complex type expressions.
For example, the declaration

UU = Unit→ Unit;

makes UU an abbreviation for Unit→ Unit in what follows. For example, the following term

(λf : UU.f unit)(λx : Unit.x);

is equivalant (from the point of view of the type system ) to the term

(λf : Unit→ Unit.f unit)(λx : Unit.x);

Ascription can be added by adding the syntactic form tasT , and the new evaluation rules:

v1 as T → v1 (E-Ascribe)

t1 → t′1
t1 as T → t′1 as T

(E-Ascribe1)

and the new typing rule:

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

12


