Typed Lambda Calculus

Chapter 9 Benjamin Pierce Types and Programming Languages

Call-by-value Operational Semantics

t ::=	terms		
x	variable	v ::=	values
λ x. t	abstraction	λ x. t	abstraction values
tt	application		

$$(\lambda x. t_{12}) v_2 \rightarrow [x \mapsto v_2] t_{12}$$
 (E-AppAbs)

$$\frac{t_1 \rightarrow t'_1}{t_1 t_2 \rightarrow t'_1 t_2}$$

$$\frac{t_2 \rightarrow t'_2}{v_1 t_2 \rightarrow v_1 t'_2}$$
(E-APPL2)

Consistency of Function Application

- Prevent runtime errors during evaluation
- Reject inconsistent terms
- What does 'x x' mean?
- Cannot be always enforced
 - if <tricky computation> then true else ($\lambda x. x$)

A Naïve Attempt

- Add function type \rightarrow
- Type rule $\lambda x. t :\rightarrow$ $-\lambda x. x :\rightarrow$
 - If true then ($\lambda x. x$) else ($\lambda x. \lambda y y$) :>
- Too Coarse

Simple Types

T ::=typesBooltype of Booleans $T \rightarrow T$ type of functions

 $T_1 \rightarrow T_2 \rightarrow T_3 = T_1 \rightarrow (T_2 \rightarrow T_3)$

Explicit vs. Implicit Types

- How to define the type of λ abstractions?
 - Explicit: defined by the programmer

t ::=	Type λ terms	
X	variable	
λ x: T. t	abstraction	
tt	application	

- Implicit: Inferred by analyzing the body
- The type checking problem: Determine if typed term is well typed
- The type inference problem: Determine if there exists a type for (an untyped) term which makes it well typed

Simple Typed Lambda Calculus

t ::=	terms	
X	variable	
λ x: T. t	abstraction	
tt	application	

T::=	types
$T \rightarrow T$	types of functions

Typing Function Declarations

$$\frac{\mathbf{x}: \mathbf{T}_1 \vdash \mathbf{t}_2: \mathbf{T}_2}{\vdash (\lambda \mathbf{x}: \mathbf{T}_1. \mathbf{t}_2): \mathbf{T}_1 \rightarrow \mathbf{T}_2}$$
(T-ABS)

A typing context Γ maps free variables into types

$$\frac{\Gamma, \mathbf{x} : \mathsf{T}_1 \vdash \mathsf{t}_2 : \mathsf{T}_2}{\Gamma \vdash (\lambda \mathbf{x} : \mathsf{T}_1 \cdot \mathsf{t}_2) : \mathsf{T}_1 \to \mathsf{T}_2} \quad (\mathsf{T}\text{-}\mathsf{ABS})$$

Typing Free Variables

 $\mathsf{x}:\mathsf{T}\in\Gamma$

 $\Gamma \vdash x : T$ (T-VAR)

Typing Function Applications

 $\Gamma \vdash \mathbf{t}_1 : \mathbf{T}_{11} \rightarrow \mathbf{T}_{12} \quad \Gamma \vdash \mathbf{t}_2 : \mathbf{T}_{11}$

(T-APP)

 $\Gamma \vdash \mathsf{t}_1 \ \mathsf{t}_2 : \mathsf{T}_{12}$

Typing Conditionals

$$\begin{array}{c} \Gamma \vdash t_1 : \text{Bool} \quad \Gamma \vdash t_2 : \mathsf{T} \quad \Gamma \vdash t_3 : \mathsf{T} \\ \hline & (\mathsf{T}\text{-}\mathsf{IF}) \end{array}$$

$$\Gamma \vdash \text{ if } t_1 \text{ then } t_2 \text{ else } t_3 : \mathsf{T}$$

If true then (λx : Bool. x) else (λy : Bool. not y)

SOS for Simple Typed Lambda Calculus

t ::=	terms	$t_1 \rightarrow t_2$	
X	variable	$t_1 \rightarrow t'_1$	
λ x: T. t	abstraction	$\frac{t_1 + t_1}{t_1 + t_2}$	— (E-APP1)
tt	application		
v::=	values	$t_2 \rightarrow t'_2$	— (E-APP2)
λ x: T. t	abstraction values	$v_1 t_2 \rightarrow v_1 t'_2$	
	(λ x: Τ ₁₁ . t ₁₂)	$v_2 \rightarrow [x \mapsto v_2] t_{12}$ (E-APPABS)	
T::=	types		
$T \rightarrow T$	types of functions		

Type Rules

t ::=	terms	$\Gamma \vdash t: T$
x λ x: T. t	variable abstraction	$\begin{array}{c} x:T\in\Gamma\\ \hline \Gamma\vdashx:T \end{array} (T\text{-}VAR) \end{array}$
		$\frac{\Gamma, \mathbf{x}: \mathbf{T}_1 \vdash \mathbf{t}_2: \mathbf{T}_2}{\Gamma \vdash \lambda \mathbf{x}: \mathbf{T}_1. \mathbf{t}_2: \mathbf{T}_1 \rightarrow \mathbf{T}_2} $ (T-ABS)
$T::= T \rightarrow T$	types types of functi	ions $ \begin{array}{c} \Gamma \vdash t_1 : T_{11} \rightarrow T_1 \underline{\Gamma} \vdash t_2 : T_{11} \\ \hline \Gamma \vdash t_1 t_2 : T_{12} \end{array} (T-APP) \end{array} $

Г::=	context
Ø	empty context

 Γ , x : T term variable binding

$\Gamma \vdash t : T$

t ::=	terms	
x	variable	
λ x: Τ. t	abstraction	
tt	application	Γ
true	constant true	$\Gamma \vdash 1$
false	constant false	Γ⊢
if t then t e	lse t conditional	
T::=	types	
Bool	Boolean type	
$T \rightarrow T$	types of functions	
Γ::=	context	
Ø	empty context	
Г, х : Т	term variable binding	

 $\mathbf{x}: \mathbf{T} \in \Gamma$ (T-VAR) $\Gamma \vdash x : T$ $\frac{\Gamma, \mathbf{x} : \mathsf{T}_1 \vdash \mathsf{t}_2 : \mathsf{T}_2}{\Gamma \vdash \lambda \mathbf{x} : \mathsf{T}_1. \, \mathsf{t}_2 : \mathsf{T}_2 : \mathsf{T}_1 \to \mathsf{T}_2} \quad \text{(T-ABS)}$ $\frac{\mathbf{t}_1: \mathbf{T}_{11} \rightarrow \mathbf{T}_{12} \quad \Gamma \vdash \mathbf{t}_2: \mathbf{T}_{11}}{\vdash \mathbf{t}_1 \mathbf{t}_2: \mathbf{T}_{12}}$ (T-APP) $\Gamma \vdash \text{true} : \text{Bool} (\text{T-TRUE})$ $\Gamma \vdash \mathsf{false} : \mathsf{Bool} (\mathsf{T}\mathsf{-}\mathsf{FALSE})$ $\Gamma \vdash t_1$: Bool t_2 : T t_3 : T •(T-IF) $\Gamma \vdash \text{ if } t_1 \text{ then } t_2 \text{ else } t_3 : T$

Examples

- $(\lambda x:Bool. x)$ true
- if true then (λx :Bool. x) else (λx :Bool. x)
- if true then (λx:Bool. x) else (λx:Bool. λy:Bool. x)

The Typing Relation

- Formally the typing relation is the smallest ternary relation on contexts, terms and types

 in terms of inclusion
- A term t is typable in a given context Γ (well typed) if there exists some type T such that Γ⊢t : T
- Interesting on closed terms (empty contexts)

Inversion of the typing relation

- $\Gamma \vdash \mathbf{x} : \mathbf{R} \Longrightarrow \mathbf{x} : \mathbf{R} \in \Gamma$
- $\Gamma \vdash \lambda x : T_1$. t2 : R \Rightarrow R = T₁ \rightarrow R₂ for some R₂ with $\Gamma \vdash t_2 : R_2$
- $\Gamma \vdash t_1 t_2 : R \Rightarrow$ there exists T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$
- $\Gamma \vdash \mathsf{true} : \mathsf{R} \Longrightarrow \mathsf{R} = \mathsf{Bool}$
- $\Gamma \vdash \mathsf{false} : \mathsf{R} \Longrightarrow \mathsf{R} = \mathsf{Bool}$
- $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R \Longrightarrow \Gamma \vdash t_1 \text{: Bool,}$ $\Gamma \vdash t_2 : R, \Gamma \vdash t_3 \text{: } R$

Uniqueness of Types

- Each term t has at most one type in any given context
 - If t is typable then
 - its type is unique
 - There is a unique type derivation tree for t

Type Safety

- Well typed programs cannot go wrong
- If t is well typed then either t is a value or there exists an evaluation step t → t' [Progress]
- If t is well typed and there exists an evaluation step t → t' then t' is also well typed
 [Preservation]

Canonical Forms

- If v is a value of type Bool then v is either true or false
- If v is a value of type $T_1 \rightarrow T_2$ then v= $\lambda x: T_1.t_2$

Progress Theorem

- Does not hold on terms with free variables
- For every closed well typed term t, either t is a value or there exists t' such that t \rightarrow t'

Preservation Theorem

- If $\Gamma \vdash t : T$ and Δ is a permutation of Γ then $\Delta \vdash t : T$ [Permutation]
- If Γ⊢t: T and x ∉dom(Γ) then Γ,t⊢t: T with a proof of the same depth [Weakening]
- If Γ, x: S ⊢ t : T and Γ⊢ s: S
 then Γ ⊢ [x ↦ s] t : T
 [Preservation of types under substitution]
- $\Gamma \vdash t : T \text{ and } t \rightarrow t' \text{ then } \Gamma \vdash t' : T$

The Curry-Howard Correspondence

- Constructive proofs
- The proof of a proposition P consists of a concrete evidence for P
- The proof of P ⊃ Q can be viewed as a mechanical procedure for proving Q using the proof of P
- An analogy between function introduction and function application(elimination)

The Curry-Howard Correspondence

Logic	Programming Languages
propositions	types
proposition $P \supset Q$	type $P \rightarrow Q$
proposition P \land Q	type $P \times Q$
proof of proposition P	term t of type P
proposition P is provable	Type P is inhabited

SOS for Simple Typed Lambda Calculus

t ::=	terms	$t_1 \rightarrow t_2$	
X	variable	$t_1 \rightarrow t'_1$	
λ x: T. t	abstraction	$\frac{t_1 + t_1}{t_1 + t_2}$	— (E-APP1)
tt	application		
v::=	values	$t_2 \rightarrow t'_2$	— (E-APP2)
λ x: T. t	abstraction values	$v_1 t_2 \rightarrow v_1 t'_2$	
	(λ x: Τ ₁₁ . t ₁₂)	$v_2 \rightarrow [x \mapsto v_2] t_{12}$ (E-APPABS)	
T::=	types		
$T \rightarrow T$	types of functions		

Erasure and Typability

- Types are used for preventing errors and generating more efficient code
- Types are not used at runtime

```
erase(x) = x
erase(\lambda x: T<sub>1</sub>. t<sub>2</sub>) = \lambda x.erase(t<sub>2</sub>)
erase(t<sub>1</sub> t<sub>2</sub>) = erase(t<sub>1</sub>) erase(t<sub>2</sub>)
```

- If t → t' under typed evaluation relation, then erase(t) → erase(t')
- A term t in the untyped lamba calculus is typable if there exists a typed term t' such that erase(t') = t

Different Ways for formulating semantics

- Curry-style
 - Define a semantics of untyped terms
 - Provide a type system for rejecting bad programs
- Church-style
 - Define semantics only on typed terms

Simple Extensions (Chapter 11)

- Base Types
- The Unit Type
- Ascription
- Let bindings
- Pairs
- Tuples
- Records
- Sums
- Variants
- General recursion
- Lists

Unit type

New syntactic forms		New typing rules	
t ::= unit	Terms: constant unit	$\Gamma \!$	(T-Unit)
		$\Gamma \vdash t_1 : Unit \Gamma \vdash t_2$	<u>: T</u> (T-SEQ)
v ::=	Values:	$\Gamma \vdash t_1$; t_2 : T	
unit	constant unit	New derived	forms
T ::= Unit	types: unit type	t_1 ; t_2 = (λx. where x ∉FV(t_2)	Unit t ₂) t ₁
		$t_1 \rightarrow t'_1$	
		$t_1; t_2 \rightarrow t'_1; t_2$	—— (E-SEQ)
		unit ; $t_2 \rightarrow t_2$	(E-SEQ)

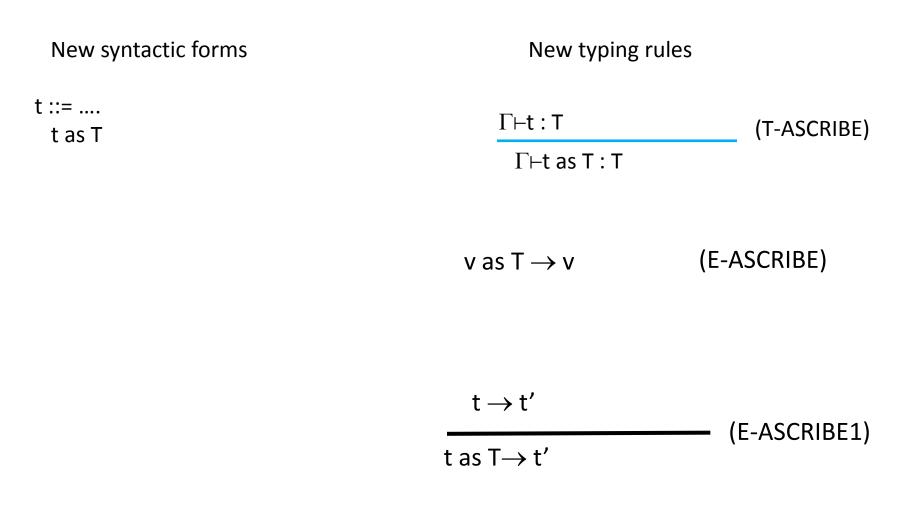
Two ways for language extensions

- Derived forms (syntactic sugars)
- Explicit extensions

Ascription

- Explicit types for subterms
- Documentation
- Identify type errors
- Handle type shorthand

Ascription



Interesting Extensions

- References (Chapter 13)
- Exceptions (Chapter 14)
- Subtyping (Chapters 15-16)
 Most general type
- Recursive Types (Chapters 20, 21)
 NatList = <Nil: Unit, cons: {Nat, NatList}>
- Polymorphism (Chapters 22-28)
 - length:list $\alpha \rightarrow int$
 - Append: list $\alpha \rightarrow \alpha \rightarrow$ list α
- Higher-order systems (Chapters 29-32)

Imperative Programs

- Linear types
- Points-to analysis
- Typed assembly language

Summary

- Constructive rules for preventing runtime errors in a Turing complete programming language
- Efficient type checking
 Code is described in Chapter 10
- Unique types
- Type safety
- But limits programming