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v ::=                     values 

    x. t                 abstraction values 

Call-by-value Operational Semantics 

( x. t12) v2  [x v2] t12  (E-AppAbs) 

t ::=                           terms 

     x                          variable 

      x. t                   abstraction 

     t t                         application 

t1  t’1 

    t1  t2    t’1 t2   

(E-APPL1) 

t2  t’2 

    v1  t2    v1 t’2   

(E-APPL2) 



Consistency of Function Application 

• Prevent runtime errors during evaluation 

• Reject inconsistent terms 

• What does ‘x x’ mean? 

• Cannot be always enforced 

– if <tricky computation> then true else (x. x) 



A Naïve Attempt 

• Add  function type  

• Type rule x. t : 

– x. x : 

– If true then (x. x) else (x. y y) : 

• Too Coarse 

 

 

 



Simple Types 

T ::=  types 
 Bool type of Booleans 
 T  T type of functions 

T1  T2  T3 = T1 ( T2  T3)  



Explicit vs. Implicit Types 

• How to define the type of  abstractions? 

– Explicit: defined by the programmer 

 

 

 

 

– Implicit: Inferred by analyzing the body 

• The type checking problem: Determine if typed term is well 
typed 

• The type inference problem: Determine if there exists a type 
for (an untyped) term which makes it well typed 

t ::=                                  Type  terms 

     x                                  variable 

      x: T. t                     abstraction 

     t t                                application 



Simple Typed Lambda Calculus 

t ::=                                  terms 

     x                                  variable 

      x: T. t                     abstraction 

     t t                                application 

T::=                                  types 

     T  T                       types of functions 



x : T1  t2 : T2 

 (x : T1. t2 ): T1  T2 

Typing Function Declarations 

A typing context   maps free variables into types 

(T-ABS) 

, x : T1  t2 : T2 

 ( x : T1 . t2 ): T1  T2 

(T-ABS) 



Typing Free Variables 

x : T   

  x : T 

(T-VAR) 



Typing Function Applications 

  t1 : T11 T12        t2 : T11 

 t1  t2 : T12 

(T-APP) 



Typing Conditionals 

 t1 : Bool   t2 : T    t3 : T 

  if t1 then t2 else t3 : T 
(T-IF) 

If true then (x: Bool. x) else (y: Bool. not y)  



t1  t2 t’1  t2 

SOS for Simple Typed Lambda Calculus 

t ::=                                  terms 

     x                                  variable 

      x: T. t                     abstraction 

     t t                                application 

v::=                     values 

     x: T. t          abstraction values 

T::=                                  types 

     T  T                       types of functions 

t1  t2 

t1  t’1 
(E-APP1) 

t2  t’2 

v1  t2 v1  t’2 

(E-APP2) 

( x: T11. t12) v2  [x v2] t12  (E-APPABS) 



t ::=                                  terms 

     x                                  variable 

      x: T. t                     abstraction 

      

T::=                                  types 

    T  T                       types of functions 

::=                        context 

                         empty context 

          , x : T        term variable binding 

 t : T 

x : T  

 x : T 
(T-VAR) 

, x : T1  t2 : T2  

 x : T1. t2 : T1  T2 

(T-ABS) 

  t1 : T11 T12  

 t1 t2 : T12 

(T-APP) 
  t2 : T11   

Type Rules 



t ::=                                  terms 

     x                                  variable 

      x: T. t                     abstraction 

     t t                               application 

     true                            constant true 

     false                           constant false 

      if t then t else t           conditional 

T::=                                  types 

      Bool                          Boolean type 

     T  T                       types of functions 

::=                        context 

                         empty context 

          , x : T        term variable binding 

 t : T 

x : T  

 x : T 
(T-VAR) 

, x : T1  t2 : T2  

 x : T1. t2 : T2 : T1  T2 

(T-ABS) 

  t1 : T11 T12  

 t1 t2 : T12 

(T-APP) 
  t2 : T11   

  true : Bool (T-TRUE) 

  false : Bool (T-FALSE) 

t1 : Bool t2 : T t3 : T 

 if t1 then t2 else t3 : T 
(T-IF) 



Examples 

• )x:Bool. x ) true 

• if true then )x:Bool. x) else   ) x:Bool. x)  

• if true then )x:Bool. x) else   ) x:Bool. 
y:Bool. x) 



The Typing Relation 

• Formally the typing relation is the smallest 
ternary relation on contexts, terms and types  

– in terms of inclusion 

• A term t is typable in a given context  (well 
typed) if there exists some type T such that 
t : T 

• Interesting on closed terms (empty contexts) 



Inversion of the typing relation 

•   x : R  x: R  

•   x : T1. t2 : R  R = T1  R2 for some R2 with  
t2 : R2 

•    t1 t2 : R  there exists T11 such that  
 t1 : T11  R  and  t2 : T11 

•   true : R  R = Bool 

•   false : R  R = Bool 
•    if t1 then t2 else t3 : R    t1: Bool,  
  t2 : R,   t3: R 



Uniqueness of Types 

• Each term t has at most one type in any given 
context 

– If t is typable then  
• its type is unique 

• There is a unique type derivation tree for t 



Type Safety 

• Well typed programs cannot go wrong 

• If t is well typed then either t is a value or 
there exists an evaluation step t  t’ 
[Progress] 

• If t is well typed and there exists an evaluation 
step t  t’  then t’ is also well typed 
[Preservation] 



Canonical Forms 

• If v is a value of type Bool then v is either true 
or false 

• If v is a value of type T1  T2 then v= x: T1.t2 

 



Progress Theorem 

• Does not hold on terms with free variables 

• For every closed well typed term t, either t is a 
value or there exists t’ such that t  t’ 



Preservation Theorem 

• If  t : T and  is a permutation of  then  
 t : T [Permutation] 

• If   t : T and x dom() then ,t  t : T with 
a proof of the same depth [Weakening] 

• If , x: S  t : T and  s: S   
then   [x  s] t : T  
[Preservation of types under substitution] 

•   t : T and t  t’ then   t’ : T  

 



The Curry-Howard Correspondence 

• Constructive proofs 
• The proof of a proposition P consists of a 

concrete evidence for P 
• The proof of P  Q can be viewed as a 

mechanical procedure for proving Q using the 
proof of P 

• The proof of P  Q consists of a proof of P and a 
proof of Q 

• An analogy between function introduction and 
function application(elimination) 



The Curry-Howard Correspondence 
Logic Programming Languages 

propositions types 

proposition P Q type P  Q 

proposition P Q type P  Q 

proof of proposition P term t of type P 

proposition P is provable Type P is inhabited 



t1  t2 t’1  t2 

SOS for Simple Typed Lambda Calculus 

t ::=                                  terms 

     x                                  variable 

      x: T. t                     abstraction 

     t t                                application 

v::=                     values 

     x: T. t          abstraction values 

T::=                                  types 

     T  T                       types of functions 

t1  t2 

t1  t’1 
(E-APP1) 

t2  t’2 

v1  t2 v1  t’2 

(E-APP2) 

( x: T11. t12) v2  [x v2] t12  (E-APPABS) 



Erasure and Typability 

• Types are used for preventing errors and generating 
more efficient code 

• Types are not used at runtime 

 

 

 

• If t  t’ under typed evaluation relation,  
then erase(t)  erase(t’) 

• A term t in the untyped lamba calculus is typable if 
there exists a typed term t’ such that erase(t’) = t  

 

erase(x) = x 
erase(x: T1. t2) = x.erase(t2) 
erase(t1 t2) = erase(t1) erase(t2) 



Different Ways for formulating semantics 

• Curry-style 

– Define a semantics of untyped terms 

– Provide a type system for rejecting bad programs 

• Church-style 

– Define semantics only on typed terms 



Simple Extensions (Chapter 11) 

• Base Types 
• The Unit Type 
• Ascription 
• Let bindings 
• Pairs 
• Tuples 
• Records 
• Sums 
• Variants 
• General recursion 
• Lists 

 



Unit type 

t ::= ….  Terms: 
   unit  constant unit 

v ::= ….  Values: 
   unit  constant unit 

T ::= ….  types: 
   Unit  unit type 

New syntactic forms New typing rules 

unit : Unit  (T-Unit) 

New derived forms 

t1 ; t2  (x. Unit t2) t1  
where x FV(t2) 

t1;  t2 t’1 ;  t2 

t1  t’1 
(E-SEQ) 

unit ; t2  t2 (E-SEQ) 

t1 : Unit    t2 : T   

t1 ; t2 : T   

(T-SEQ) 



Two ways for language extensions 

• Derived forms (syntactic sugars) 

• Explicit extensions 



Ascription 

• Explicit types for subterms 

• Documentation 

• Identify type errors 

• Handle type shorthand 



Ascription 

t ::= ….   
   t as T   

New syntactic forms New typing rules 

t as T t’ 

t  t’ 
(E-ASCRIBE1) 

v as T  v (E-ASCRIBE) 

t : T   

t as T : T   

(T-ASCRIBE) 



Interesting Extensions 

• References (Chapter 13) 
• Exceptions (Chapter 14) 
• Subtyping (Chapters 15-16) 

– Most general type 

• Recursive Types (Chapters 20, 21) 
– NatList = <Nil: Unit, cons: {Nat, NatList}> 

• Polymorphism (Chapters 22-28) 
–  length:list   int 
– Append: list     list  

• Higher-order systems (Chapters 29-32) 



Imperative Programs 

• Linear types 

• Points-to analysis 

• Typed assembly language 



Summary 

• Constructive rules for preventing runtime 
errors in a Turing complete programming 
language 

• Efficient type checking  

– Code is described in Chapter 10 

• Unique types 

• Type safety 

• But limits programming 

 


