
Typed Lambda Calculus

Chapter 9

Benjamin Pierce

Types and Programming Languages

v ::= values

 x. t abstraction values

Call-by-value Operational Semantics

(x. t12) v2 [x v2] t12 (E-AppAbs)

t ::= terms

 x variable

 x. t abstraction

 t t application

t1 t’1

 t1 t2 t’1 t2

(E-APPL1)

t2 t’2

 v1 t2 v1 t’2

(E-APPL2)

Consistency of Function Application

• Prevent runtime errors during evaluation

• Reject inconsistent terms

• What does ‘x x’ mean?

• Cannot be always enforced

– if <tricky computation> then true else (x. x)

A Naïve Attempt

• Add function type

• Type rule x. t :

– x. x :

– If true then (x. x) else (x. y y) :

• Too Coarse

Simple Types

T ::= types
 Bool type of Booleans
 T T type of functions

T1 T2 T3 = T1 (T2 T3)

Explicit vs. Implicit Types

• How to define the type of abstractions?

– Explicit: defined by the programmer

– Implicit: Inferred by analyzing the body

• The type checking problem: Determine if typed term is well
typed

• The type inference problem: Determine if there exists a type
for (an untyped) term which makes it well typed

t ::= Type terms

 x variable

 x: T. t abstraction

 t t application

Simple Typed Lambda Calculus

t ::= terms

 x variable

 x: T. t abstraction

 t t application

T::= types

 T T types of functions

x : T1 t2 : T2

 (x : T1. t2): T1 T2

Typing Function Declarations

A typing context maps free variables into types

(T-ABS)

, x : T1 t2 : T2

 (x : T1 . t2): T1 T2

(T-ABS)

Typing Free Variables

x : T

 x : T

(T-VAR)

Typing Function Applications

 t1 : T11 T12 t2 : T11

 t1 t2 : T12

(T-APP)

Typing Conditionals

 t1 : Bool t2 : T t3 : T

 if t1 then t2 else t3 : T
(T-IF)

If true then (x: Bool. x) else (y: Bool. not y)

t1 t2 t’1 t2

SOS for Simple Typed Lambda Calculus

t ::= terms

 x variable

 x: T. t abstraction

 t t application

v::= values

 x: T. t abstraction values

T::= types

 T T types of functions

t1 t2

t1 t’1
(E-APP1)

t2 t’2

v1 t2 v1 t’2

(E-APP2)

(x: T11. t12) v2 [x v2] t12 (E-APPABS)

t ::= terms

 x variable

 x: T. t abstraction

T::= types

 T T types of functions

::= context

 empty context

 , x : T term variable binding

 t : T

x : T

 x : T
(T-VAR)

, x : T1 t2 : T2

 x : T1. t2 : T1 T2

(T-ABS)

 t1 : T11 T12

 t1 t2 : T12

(T-APP)
 t2 : T11

Type Rules

t ::= terms

 x variable

 x: T. t abstraction

 t t application

 true constant true

 false constant false

 if t then t else t conditional

T::= types

 Bool Boolean type

 T T types of functions

::= context

 empty context

 , x : T term variable binding

 t : T

x : T

 x : T
(T-VAR)

, x : T1 t2 : T2

 x : T1. t2 : T2 : T1 T2

(T-ABS)

 t1 : T11 T12

 t1 t2 : T12

(T-APP)
 t2 : T11

 true : Bool (T-TRUE)

 false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T

 if t1 then t2 else t3 : T
(T-IF)

Examples

•)x:Bool. x) true

• if true then)x:Bool. x) else) x:Bool. x)

• if true then)x:Bool. x) else) x:Bool.
y:Bool. x)

The Typing Relation

• Formally the typing relation is the smallest
ternary relation on contexts, terms and types

– in terms of inclusion

• A term t is typable in a given context (well
typed) if there exists some type T such that
t : T

• Interesting on closed terms (empty contexts)

Inversion of the typing relation

• x : R x: R

• x : T1. t2 : R R = T1 R2 for some R2 with
t2 : R2

• t1 t2 : R there exists T11 such that
 t1 : T11 R and t2 : T11

• true : R R = Bool

• false : R R = Bool
• if t1 then t2 else t3 : R t1: Bool,
 t2 : R, t3: R

Uniqueness of Types

• Each term t has at most one type in any given
context

– If t is typable then
• its type is unique

• There is a unique type derivation tree for t

Type Safety

• Well typed programs cannot go wrong

• If t is well typed then either t is a value or
there exists an evaluation step t t’
[Progress]

• If t is well typed and there exists an evaluation
step t t’ then t’ is also well typed
[Preservation]

Canonical Forms

• If v is a value of type Bool then v is either true
or false

• If v is a value of type T1 T2 then v= x: T1.t2

Progress Theorem

• Does not hold on terms with free variables

• For every closed well typed term t, either t is a
value or there exists t’ such that t t’

Preservation Theorem

• If t : T and is a permutation of then
 t : T [Permutation]

• If t : T and x dom() then ,t t : T with
a proof of the same depth [Weakening]

• If , x: S t : T and s: S
then [x s] t : T
[Preservation of types under substitution]

• t : T and t t’ then t’ : T

The Curry-Howard Correspondence

• Constructive proofs
• The proof of a proposition P consists of a

concrete evidence for P
• The proof of P Q can be viewed as a

mechanical procedure for proving Q using the
proof of P

• The proof of P Q consists of a proof of P and a
proof of Q

• An analogy between function introduction and
function application(elimination)

The Curry-Howard Correspondence
Logic Programming Languages

propositions types

proposition P Q type P Q

proposition P Q type P Q

proof of proposition P term t of type P

proposition P is provable Type P is inhabited

t1 t2 t’1 t2

SOS for Simple Typed Lambda Calculus

t ::= terms

 x variable

 x: T. t abstraction

 t t application

v::= values

 x: T. t abstraction values

T::= types

 T T types of functions

t1 t2

t1 t’1
(E-APP1)

t2 t’2

v1 t2 v1 t’2

(E-APP2)

(x: T11. t12) v2 [x v2] t12 (E-APPABS)

Erasure and Typability

• Types are used for preventing errors and generating
more efficient code

• Types are not used at runtime

• If t t’ under typed evaluation relation,
then erase(t) erase(t’)

• A term t in the untyped lamba calculus is typable if
there exists a typed term t’ such that erase(t’) = t

erase(x) = x
erase(x: T1. t2) = x.erase(t2)
erase(t1 t2) = erase(t1) erase(t2)

Different Ways for formulating semantics

• Curry-style

– Define a semantics of untyped terms

– Provide a type system for rejecting bad programs

• Church-style

– Define semantics only on typed terms

Simple Extensions (Chapter 11)

• Base Types
• The Unit Type
• Ascription
• Let bindings
• Pairs
• Tuples
• Records
• Sums
• Variants
• General recursion
• Lists

Unit type

t ::= …. Terms:
 unit constant unit

v ::= …. Values:
 unit constant unit

T ::= …. types:
 Unit unit type

New syntactic forms New typing rules

unit : Unit (T-Unit)

New derived forms

t1 ; t2 (x. Unit t2) t1
where x FV(t2)

t1; t2 t’1 ; t2

t1 t’1
(E-SEQ)

unit ; t2 t2 (E-SEQ)

t1 : Unit t2 : T

t1 ; t2 : T

(T-SEQ)

Two ways for language extensions

• Derived forms (syntactic sugars)

• Explicit extensions

Ascription

• Explicit types for subterms

• Documentation

• Identify type errors

• Handle type shorthand

Ascription

t ::= ….
 t as T

New syntactic forms New typing rules

t as T t’

t t’
(E-ASCRIBE1)

v as T v (E-ASCRIBE)

t : T

t as T : T

(T-ASCRIBE)

Interesting Extensions

• References (Chapter 13)
• Exceptions (Chapter 14)
• Subtyping (Chapters 15-16)

– Most general type

• Recursive Types (Chapters 20, 21)
– NatList = <Nil: Unit, cons: {Nat, NatList}>

• Polymorphism (Chapters 22-28)
– length:list int
– Append: list list

• Higher-order systems (Chapters 29-32)

Imperative Programs

• Linear types

• Points-to analysis

• Typed assembly language

Summary

• Constructive rules for preventing runtime
errors in a Turing complete programming
language

• Efficient type checking

– Code is described in Chapter 10

• Unique types

• Type safety

• But limits programming

