
Advanced Topics in Programming Languages Spring Semester, 2012

Lecture 8: May 1, 2012
Lecturer: Mooly Sagiv Scribe: Dvir Netanely and Guy Rozendorn

8.1 Fundamentals

Programming involves a wide range of computational constructs, such as data structures,
functions, objects, communication channels, and threads of control.

Because programming languages are designed to help programmers organize computa-
tional constructs and use them correctly, many programming languages organize data and
computations into collections called types.

A type system, specified for each programming language, controls the ways typed pro-
grams may behave, and makes behavior outside these rules illegal.

There are three main uses of types in programming languages.

8.1.1 Abstraction

Types allow programmers to think about programs at a higher level than the bit or byte, not
bothering with low-level implementation. For example, programmers can think of a string
as a collection of character values instead of as a mere array of bytes.

8.1.2 Documentation

Types can serve as a form of documentation, since they can illustrate the intent of the
programmer. For instance, timestamps may be represented as integers, but if a programmer
declares a function as returning a timestamp type rather than merely an integer type, this
documents part of the meaning of the function.

8.1.3 Optimization

Types can be used to provide information to the compiler about data manipulated by the
program. For example, if a type requires that a value must align in memory at a multiple
of four bytes, the compiler may be able to use more efficient machine instructions.



2 Advanced Topics in Programming Languages c©Tel Aviv Univ.

8.1.4 Safety

Use of types may allow a compiler to detect meaningless or probably invalid code. For
example, we can identify an expression: 4 / ”Hi” as invalid, because the rules of arithmetic
do not specify how to divide an integer by a string.

The following table characterizes the type safety of some common programming lan-
guages. We will discuss each form of type error listed in the table in turn.

Safety Example languages Explanation

Not safe C;C++ Type casts; pointer arithmetic
Almost safe Pascal Explicit deallocation; dangling pointers
Safe ML; Haskell; Java Complete type checking

Table 8.1: Type safety of some common programming languages

Type Casts. Type casts allow a value of one type to be used as another type. For example,
In C, an integer can be cast to a function, allowing a jump to a location that does not contain
the correct form of instructions to be a C function.

Pointer Arithmetic. The expression *(p+i) has type A if p is defined to have type A*.
Because the value stored in location p+i might have any type, an assignment like x = *(p+i)
may store a value of one type into a variable of another type and therefore may cause a type
error.

Explicit Deallocation and Dangling Pointers. In Pascal, C, and some other languages,
the location reached through a pointer may be deallocated (freed) by the programmer. This
creates a dangling pointer, a pointer that points to a location that is not allocated to the
program. If p is a pointer to an integer, for example, then after we deallocate the memory
referenced by p, the program can allocate new memory to store another type of value. This
new memory may be reachable through the old pointer p, as the storage allocation algorithm
may reuse space that has been freed. The old pointer p allows us to treat the new memory
as an integer value, as p still has type int. This violates type safety.



What is a type 3

8.2 What is a type

A program typically associates each value with one particular type. Other entities, such
as objects, modules, communication channels, dependencies, or even types themselves, can
become associated with a type.

Some implementations might make the following identifications:

• class; a type of an object
• data type; a type of a value
• kind; a type of a type

8.2.1 Primitive data types

A primitive data type is either of the following:

• a basic type is a data type provided a basic building block. Most languages allow
composite types to be recursively constructed starting from basic types.

• a built-in type is a data type for which the programming language provides built-in
support.

In most programming languages, all basic data types are built-in.
Classic basic primitive types may include:

• Character (character, char);
• Integer (integer, int, short, long, byte) with a variety of precisions;
• Floating-point number (float, double, real, double precision);
• Boolean, logical values true and false.
• Reference (also called a pointer or handle), a small value referring to another object’s

address in memory, possibly a much larger one.

8.2.2 Composite data type

A composite data type is any data type which can be constructed in a program using its
programming language’s primitive data types and other composite types. The act of con-
structing a composite type is known as composition. Several examples of composite data
types:

• list
• structures



4 Advanced Topics in Programming Languages c©Tel Aviv Univ.

8.3 Type errors

A type error is erroneous or undesirable program behaviour caused by a discrepancy between
differing data types. For example, if an integer value is used as a function, this is a type
error. A common type error is to apply an operation to an operand of the wrong type. For
example, it is a type error to use integer addition to add a string to an integer. Dividing an
Integer by zero is a runtime error, not a type error.

8.4 Type checking

The process of verifying and enforcing the constraints of types (a.ka. type checking) may
occur either atcompile-time (a static check) or run-time (a dynamic check), and it is used to
prevent some or all type errors.

8.4.1 Static typing

A programming language is said to use static typing when type checking is performed during
compile-time as opposed to run-time, and the developr is warned about the error before the
program is given to other users or shipped as a product.

More specifically, most checkers are both sound and conservative. A type checker is sound
if no programs with errors are considered correct. A type checker is conservative if some
programs without errors are still considered to have errors.

Static type checkers evaluate only the type information that can be determined at compile
time, but are able to verify that the checked conditions hold for all possible executions of
the program, which eliminates the need to repeat type checks every time the program is
executed.

Program execution may also be made more efficient (e.g. faster or taking reduced mem-
ory) by omitting runtime type checks and enabling other optimizations. Because they eval-
uate type information during compilation and therefore lack type information that is only
available at run-time, static type checkers are conservative. They will reject some programs
that may be well-behaved at run-time, but that cannot be statically determined to be well-
typed.

For example, even if an expression <complex test> always evaluates to true at run-time,
a program containing the code:

Example 1

if <complex test> then 42 else <type error>



Type checking 5

will be rejected as ill-typed, because a static analysis cannot determine that the else branch
won’t be taken. Static typing helps by providing strong guarantees of a particular subset of
commonly-made errors never occurring.

8.4.2 Dynaming typing

In programming languages with run-time type checking, the compiler generates code so that,
when an operation is performed, the code checks to make sure that the operands have the
correct type. For example, the Lisp language operation car returns the first element of a
cons cell. Because it is a type error to apply car to something that is not a cons cell, Lisp
programs are implemented so that, before (car x) is evaluated, a check is made to make sure
that x is a cons cell. An advantage of run-time type checking is that it catches type errors.

Development in dynamically typed languages is often supported by programming prac-
tices such as unit testing. In practice, the testing done to ensure correct program operation
can detect a much wider range of errors than static type-checking, but full test coverage over
all possible executions of a program (including timing, user inputs, etc.), if even possible,
would be extremely costly and impractical.

8.4.3 Combinations of dynamic and static typing

The presence of static typing in a programming language does not necessarily imply the
absence of all dynamic typing mechanisms. For example, Java supports downcasting and
other type operations that depend on run-time type checks, a form of dynamic typing.

More generally, most programming languages include mechanisms for dispatching over
different ’kinds’ of data, such as disjoint unions, polymorphic objects, and variant types:
Even when not interacting with type annotations or type checking, such mechanisms are
materially similar to dynamic typing implementations.

Certain languages, for example Cython (C extensions for Python), are dynamically typed
by default, but allow this behaviour to be overridden through the use of explicit type hints
that result in static typing. One reason to use such hints would be to achieve the performance
benefits of static typing in performance-sensitive parts of code.

8.4.4 Strongly-typed languages and Weakly-typed languages

A type system is said to feature strong typing when it specifies one or more restrictions
on how operations involving values of different data types can be intermixed. A computer
language that implements strong typing will prevent the successful execution of an operation
on arguments that have the wrong type.

Weak typing means that a language implicitly converts (or casts) types when used. Con-
sider the following example:



6 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Example 2

var x := 5; // (1) (x is an integer)

var y := "37"; // (2) (y is a string)

x + y; // (3) (?)

In a weakly typed language, the result of this operation depends on language-specific rules.
Visual Basic would convert the string ”37” into the number 37, perform addition, and pro-
duce the number 42. JavaScript would convert the number 5 to the string ”5,” perform
string concatenation, and produce the string ”537.” In JavaScript, the conversion to string
is applied regardless of the order of the operands (for example, y + x would be ”375”) while
in AppleScript, the left-most operand determines the type of the result, so that x + y is the
number 42 but y + x is the string ”375”.

Weakly typed programming languages are those that support either implicit type con-
version (nearly all languages support at least one implicit type conversion), ad-hoc poly-
morphism (also known as overloading) or both. These less restrictive usage rules can give
the impression that strict adherence to typing rules is less important than in strongly typed
languages and hence that the type system is ”weaker”.

8.4.5 Static and dynamic type checking in practice

The choice between static and dynamic typing requires trade-offs:
Static typing can find type errors reliably at compile time. This should increase the

reliability of the delivered program.
Static typing usually results in compiled code that executes more quickly. When the

compiler knows the exact data types that are in use, it can produce optimized machine code.
Further, compilers for statically typed languages can find assembler shortcuts more easily.

By contrast, dynamic typing may allow compilers to run more quickly and allow inter-
preters to dynamically load new code, since changes to source code in dynamically typed
languages may result in less checking to perform and less code to revisit. This may reduce
the edit-compile-test-debug cycle.

Dynamic typing allows constructs that some static type checking would reject as illegal.
For example, eval functions, which execute arbitrary data as code, become possible. An eval
function is possible with static typing, but requires advanced uses of algebraic data types.
Furthermore, dynamic typing better accommodates transitional code and prototyping, such
as allowing a placeholder data structure (mock object) to be transparently used in place of
a full-fledged data structure (usually for the purposes of experimentation and testing).

Dynamic typing typically makes metaprogramming more effective and easier to use. For
example, C++ templates are typically more cumbersome to write than the equivalent Ruby
or Python code. More advanced run-time constructs such as metaclasses and introspection
are often more difficult to use in statically typed languages. In some languages, such features



Explicit type declaration and inference 7

may also be used e.g. to generate new types and behaviors on the fly, based on run-time
data. Such advanced constructs are often provided by dynamic programming languages;
many of these are dynamically typed, although dynamic typing need not be related to
dynamic programming languages.

8.5 Explicit type declaration and inference

Statically typed languages (such as C and Java) require that programmers declare the types
they intend a method or function to use. This can serve as additional documentation for the
program, which the compiler will not permit the programmer to ignore or permit to drift
out of synchronization. However, a language can be statically typed without requiring type
declarations (examples include Haskell, Scala): the compiler draws conclusions about the
types of variables based on how programmers use those variables. Explicit type declaration
is not a necessary requirement for static typing in all languages.

For example, given a function f(x, y) that adds x and y together, the compiler can infer
that x and y must be numbers since addition is only defined for numbers. Therefore, any
call to f elsewhere in the program that specifies a non-numeric type (such as a string or list)
as an argument would signal an error.

Numerical and string constants and expressions in code can and often do imply type in
a particular context. For example, an expression 3.14 might imply a type of floating-point,
while [1, 2, 3] might imply a list of integers typically an array.

8.6 Summary of popular languages

C
static; explicit; not safe

Java
static; explicit; safe

Haskell
static; implicit; safe

Python
dynamic; implicit; safe

JavaScript
dynamic; implicit; not safe



8 Advanced Topics in Programming Languages c©Tel Aviv Univ.

8.7 Type Inference

Type inference refers to the process of determining the type of expressions based on known
types of some symbols that appear in them. Using a type inference algorithm, the compiler
is often able to infer the type of a variable or the type signature of a function without explicit
type annotations having been given by the programmer.

Whereas in type-checking, the type of the identifiers in known and the algorithm only
needs to verify that it is being used according to type constraints, type-inference algorithms
need to learn the types of expressions using logical inference from the way they are used.

8.7.1 Simple Type-Inference Examples

In order to illustrate the basic idea of type-inference we shall use a special simplified version
of the Haskell programming language, named µHaskell. In µHaskell, all constants, built-in
operators, and other functions have a single predefined type which makes it easier to deduce
the type of an expression based on its usage in the program. A type in µHaskel is defined to
be either a single type identifier (”constant” type), a type parameter (type ”variable”), or a
function type mapping one type to one other type. Multiple-parameter functions are dealt
with by currying, that is, X -¿ Y -¿ Z.

Example 3

f1 x = x + 2

f1 :: Int -> Int

In this example, the type of the function f1 is inferred to be Int->Int from the fact the 2
is Int and the + operator is of type Int->Int.

Example 4

f2 (g,h) = g(h(0))

f2 :: (a -> b, Int -> a) -> b

In this example, we infer that h is a function of type Int->a (a is a type variable denoting
unknown type). We further infer that a is the argument type of function g, which returns a
second unknown type denoted as b. Therefore h is marked as type Int->a and g is marked
as type a->b. The return type of function f2 is equal to the return type of function g and
there for it is b.



Type Inference 9

8.7.2 The Hindley-Milner Type-inference algorithm

The type-inference algorithm described below was invented by Robin-Milner for the ML
programming language and was later implemented similarly in several other programming
languages. Similar ideas were independently developed by Curry and Hindley in connec-
tion with the study of lambda calculus, and so the algorithm is currently known as the
HindleyMilner algorithm for type inference.

The algorithm computes a constraint set based on how each value is used in the given
expression and builds a parse tree that represents all sub-expressions and their constraints.
It then uses a technique called ”Unification” to infer the most general type for the given
expression parse tree.

Properties of the Hindley-Milner algorithm

• Completeness - It finds a solution if one exists; otherwise, it correctly reports that no
solution is possible.

• Fast - can compute a type almost in linear time with respect to the size of the source,
making it practically usable to type large programs

• It can deduce the most general type of a given source without the need of any type
annotations or other hints from the programmer.

Algorithm steps

1. Build a parse tree starting with the given expression and including all its sub expres-
sions.

2. Assign a type to the expression and each sub-expression.

• For any compound expression or variable, use a type variable.

• For known operations or constants, such as + or 3, use the type that is known
for this symbol.

3. Generate a set of constraints on types, using the parse tree of the expression. These
constraints reflect the fact that if a function is applied to an argument, for example,
then the type of the argument must equal the type of the domain of the function.

4. Use the ”Unification” technique to solve the constraints.



10 Advanced Topics in Programming Languages c©Tel Aviv Univ.

More about the Unification method

Unification is an algorithmic process by which one attempts to solve a system of equations
based on a series of term-substitutions. In each step, the goal of unification is to find a
substitution which demonstrates that two seemingly different terms are in fact identical.

Given two input terms s and t, unification is the process which attempts to find a substitu-
tion that structurally identifies s and t. If such a substitution exists, we call this substitution
a unifier of s and t. In theory, some pairs of input terms may have infinitely many unifiers.
However, for most applications of unification, it is sufficient to consider a most general unifier
(MGU) as all other unifiers are its instances.

As mentioned above, the Hindley-Milner is using Unification in its last step to infer the
most general type for the examined expression. After defining a set of constraints on types
and type-variables representing the type usage in the program, the algorithm executes a
series of constraint pair unifications until reaching a solution for the constraint set.

8.7.3 Execution examples for the Hindley-Milner algorithm

Example 5 We start by running the algorithm on example 3 above:

f1 x = x + 2

f1 :: Int -> Int

Building the parse tree. In this step we build the parse tree:

• Start with a root named ”Fun” to indicate this is a parse tree of a function declaration.
• Add the actual function name and the function arguments as root children (in this

case ”add” and ”x”)
• Add a third root child as the parse-tree of the function body
• Nodes labeled ”@” denote function application where the left child is applied to the

right child
• The operator ’+’ is treated as a curried function (such as (+) x 2 in Haskell)
• Constants such as operators and numbers get their own nodes
• Variables also get their own nodes, and we link them back to their binding occurrence

using a dashed line.



Type Inference 11

Figure 8.1: Parse tree for add function

Assigning a type variable to the expression and each sub-expression. In this step
we redraw the graph, adding a type variable next to each node (named t_0, t_1, ...).
Nodes holding the same argument will be assigned with the same type-variable (see t_1 in
figure 2 below).

Generating a set of constraints. In this step we use the parse tree of the expression to
define relations between the type variables. The constraint generated at each node depends
upon the node type. For constant expressions, we assign the type variable with the known
type for the constant.

• For the constant 2, we thus add the constraint t_3 = Int.
• For the operator + which is known to be of type Int -> (Int -> Int) we add the

constraint t_2 = Int -> (Int -> Int).

Variable do not supply information about the way they are used and so no constraints are
added for variable nodes.



12 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Figure 8.2: Parse tree labeled with type variables

For function application nodes (@ nodes), If expression f is applied to expression a, then
f must have a function type. In addition, the type of a must be the type of the domain of
this function, and the type of f a must be the type of the result of the function. In symbols,
if the type of f is t_f, the type of a is t_a, and the type of f a is t_r, then we must have
t_f = t_a -> t_r.

• For the sub-expression @ (+) 2 we add the constraint t_2 = t_3 -> t_4.
• For the sub-expression @ (@ (+) 2) x we add the constraint t_4 = t_1 -> t_6.
• For the root node, which is the function definition node, the constraint is a type from

the type of the argument to the type of the body.
• For the sub-expression add x = @ (@ (+) 2) xwe add the constraint t_0 = t_1 -> t_6.



Type Inference 13

Figure 8.3: Parse tree labeled with type variables

Solving the generated constraints set using unification. The previous steps of the
type inference algorithm have generated the following constraints set, written on the various
nodes of the parse tree:

1) t_0 = t_1 -> t_6

2) t_4 = t_1 -> t_6

3) t_2 = t_3 -> t_4

4) t_2 = Int -> (Int -> Int)

5) t_3 = Int

We now wish to find an assignment of actual types to type-variables in a way that will satisfy
all above constraints. If such an assignment exists, we can say that the expression is well
typed and that the type inference algorithm will end successfully.
To this end we will use ’Unification’ which is a standard algorithm for solving systems of
equations by a series of substitutions.
Here’s how the unification algorithm will process our constraints set:
From Equations (3) and (4) above we get:

t_3 -> t_4 = Int -> (Int -> Int)

This implies the following:



14 Advanced Topics in Programming Languages c©Tel Aviv Univ.

6) t_3 = Int

7) t_4 = Int -> Int

From Equations (2) and (7) we get:

t_1 -> t_6 = Int -> Int

This implies:

8) t_1 = Int

9) t_6 = Int

Using all of the above conclusions, we get the following assignment of types to type-variables:

t_0 = Int -> Int

t_1 = Int

t_2 = Int -> Int -> Int

t_3 = Int

t_4 = Int -> Int

t_6 = Int

Since all constraints have been satisfied, we say that the given expression is well typed. The
inferred type of the ’add’ function equals to the value of type-variable t_0 which is Int->Int.

Example 6

A Polymorphic Function Definifition. The type inference algorithm described above
also supports polymorphic functions that are functions involving type-variables as arguments.
In this example we will review the algorithm’s execution on the ’apply’ function which is
defined as follows:

apply (f, x) = f x

apply :: (t ->t1, t) -> t1

Building the parse tree. We start by building the parse tree for the ’apply’ function
similarly to the previous example. In this example, we introduce a new type of node which
is the ’Pair’ node - representing the argument pair given to the function. As can be seen in
figure 4 below, the root node indicates that this is a function parse tree. The root’s children
are the actual function name, a pair node representing the function’s arguments and a third
child of type ’application’ which holds the parse tree of the function body. Nodes representing
the same type variables are connected using a dashed line to ensure that they are assigned
a single type variable in the next step.



Type Inference 15

Figure 8.4: Parse tree for apply function

Assigning a type variable to the expression and each sub-expression. We now
assign a type-variable to each node of the parse tree starting with the ’apply’ node which
is assigned with t_0, going through the tree leafs assigned with t_1 and t_2 traversing up
till reaching the tree root. Note again that we will assign a single type-variable to nodes
connected with a dashed line (nodes holding x and f will be assigned with type-variables t_1
and t_2 respectively).

Figure 8.5: Parse tree for apply function labeled with type contraints

Generating a set of constraints. Based on the rules described in the previous exam-
ple, for the application node (’@’) we get the constraint t_1 = t_2 -> t_6, and for the



16 Advanced Topics in Programming Languages c©Tel Aviv Univ.

abstraction node (’Fun’) we get the constraint t_0 = t_3 -> t_6. As for the new ’Pair’
node, its type variable is composed of two type variables, giving in our case the constraint
t_3 = (t_1, t_2). All in all, we get the following constraint set:

1) t_1 = t_2 -> t_6

2) t_0 = t_3 -> t_6

3) t_3 = (t_1, t_2)

Solving the generated constraints set using unification. ¿From equations (2) and
(3) above we get:

4) t_0 = (t_1, t_2)-> t_6

Using equation (1) we get:

5) t_0 = (t_2 -> t_6, t_2)-> t_6

Which is the type of the function, and can also be written in the same way the compiler
wrote - (t -> t1, t) -> t1, which means that this function is polymorphic and may be
applied to many different types.

Example 7

Application of a Polymorphic Function. In this example we calculate the type of the
application of ’apply’ to the (’add’,3) argument pair, where ’add’ is the function from the
previous example, having a type of ’Int->Int’. We repeat the steps of the algorithm as
described earlier, this time using the known type of the given arguments.

Generating a set of constraints. Applying the rules we described in the previous ex-
amples, we generate the following set of constraints (where a_1, a_2 denote a ”fresh” type
variable, different from all other type variables described in the constraint set):

1) t_1 = (a_1 -> a_2, a_1) -> a_2

2) t_2 = Int -> Int

3) t_3 = Int

4) t_4 = (t_2, t_3)

5) t_1 = t_4 -> t_5



Type Inference 17

Figure 8.6: Parse tree for apply function labeled with type contraints

Figure 8.7: Parse tree for apply function labeled with type contraints



18 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Solving the generated constraints set using unification. Using the unification algo-
rithm to solve the equations set, we start with equations (1) and (5) and we get:

6) (a_1 -> a_2, a_1) -> a_2 = t_4 -> t_5

This can be separated into (corresponding parts of each expression should be equal):

7) (a_1 -> a_2, a_1) = t_4

8) a_2 = t_5

Next, from equations (4) and (7) we get:

9) a_1 -> a_2 = t_2

10) a_1 = t_3

And finally, by combining equations (2) and (9) we get:

11) a_1 = Int

12) a_2 = Int

To summarize, the following substitutions solve the equation set:

t_1 = (Int -> Int, Int) -> Int

t_2 = Int -> Int

t_3 = Int

t_4 = (Int -> Int, Int)

t_5 = Int

a_1 = Int

a_2 = Int

So a solution for the constraint set exists and thus the expression apply(add,3) has the
type Int and it is well typed.

Example 8

A Function with Multiple Clauses. The type inference algorithm can also be applied
to functions with multiple clauses such as the following ’concat’ function:

concat ([], r) = r

concat (x:xs, r) = x : concat(xs, r)

concat :: ([t], [t]) -> [t]

In this case, the function ’concat’ can be applied to any pair of lists, as long as both lists
contain the same type of list elements.

To solve the type inference problem on this function with multiple clause s we run the
algorithm for each clause separately, inferring its type:



Type Inference 19

concat :: ([t], t_1) -> t_1

concat :: ([t], t_1) -> [t]

Then, we impose the following constraint in order to satisfy the requirement that the two
clauses must have the same type:

([t], t_1) -> t_1 = ([t], t_1) -> [t]

Which implies (second part of each equation side): t_1 = [t].
And so the final type for the ’concat’ function would be: concat :: ([t], [t]) -> [t].



20 Advanced Topics in Programming Languages c©Tel Aviv Univ.

References

1. ”Type Systems, Type Inference, and Polymorphism” (Chapter 6), Concepts in Pro-
gramming Languages, John C. Mitchell, Cambridge Univ Press, 2003

2. http://en.wikipedia.org/wiki/Type_inference

3. http://en.wikipedia.org/wiki/Unification_(computer_science)

4. Unification in Prolog - http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/3_1.html


