
Tentative Schedule
6/3 introduction

13/3 javascript

20/3 Haskel

27/3 No class

3/4 Operational Semantics

17/4 Denotational Semantics

24/4 Axiomatic Semantics

2/5 Exception and continuation

8/5, 15/5, 22/5 Type Systems

29/5, 5/6, 12/6 Concurrency

19/6 Domain Specific Languages

22/6 Summary class

Operational Semantics

Mooly Sagiv

Semantics with Applications

Chapter 2

H. Nielson and F. Nielson
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

The Formal Semantics of Programming Languages

An Introduction

Glynn Winskel

2

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

Syntax vs. Semantics

 The pattern of formation

of sentences or phrases in

a language

 Examples

– Regular expressions

– Context free grammars

 The study or science of

meaning in language

 Examples

– Interpreter

– Compiler

– Better mechanisms will be

given today

Benefits of Formal Semantics
 Programming language design

– hard- to-define= hard-to-implement=hard-to-use

 Programming language implementation

 Programming language understanding

 Program correctness

 Program equivalence

 Compiler Correctness

 Automatic generation of interpreter

 But probably not

– Automatic compiler generation

Alternative Formal Semantics

 Operational Semantics

– The meaning of the program is described

“operationally”

– Natural Large Step Operational Semantics

– Structural Small Step Operational Semantics

 Denotational Semantics

– The meaning of the program is an input/output relation

– Mathematically challenging but complicated

 Axiomatic Semantics

– The meaning of the program are observed properties

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3]

[x3, z, y]

[x3, z1, y]

[x3, z1, y3]

[x3, z1, y3]

[x3, z3, y3]

[x3, z3, y2]

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3, z3, y2]

[x3, z6, y2]

[x3, z6, y1]

[x3, z3, y2]

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3, z6, y1]

[x3, z6, y1]

[x3, z6, y0]

[x3, z6, y1]

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3, z6, y0]

[x3, z6, y0]

int fact(int x) {

 int z, y;

 z = 1;

 y= x;

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return 6

}

[x3, z6, y0]

[x3, z6, y0]

f=x. if x = 0 then 1 else x * f(x -1)

Denotational Semantics
int fact(int x) {

 int z, y;

 z = 1;

 y= x ;

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z;

}

{x=n}

 int fact(int x) { int z, y;

 z = 1;

{x=n  z=1}

 y= x

{x=n  z=1  y=n}

 while

 {x=n  y 0  z=n! / y!}

 (y>0) {

 {x=n  y >0  z=n! / y!}

 z = z * y ;

 {x=n  y>0  z=n!/(y-1)!}

 y = y – 1;

 {x=n  y 0  z=n!/y!}

 } return z} {x=n  z=n!}

Axiomatic Semantics

Operational Semantics

Natural Large Step Semantics

14

Operational Semantics of

Arithmetic Expressions

Aexp  | number

 | Axp PLUS Aexp

 | Aexp MINUS Aexp

 | Aexp MUL Aexp

 | UMINUS Aexp

A: Aexp Z

An = val(n)

Ae1 PLUS e2 =A e1 + Ae2

Ae1 MINUS e2 = Ae1 - Ae2

Ae1 MUL e2 = Ae1 * Ae2

AUMINUS e = Ae

Handling Variables

Aexp  | number

 | variable

 | Aexp PLUS Aexp

 | Aexp MINUS Aexp

 | Aexp MUL Aexp

 | UMINUS Exp

Need the notions of states

States State = Var  Z

Lookup in a state s: s x

Update of a state s: s [x  5]

Example State Manipulations

 [x1, y7, z16] y =

 [x1, y7, z16] t =

 [x1, y7, z16][x5] =

 [x1, y7, z16][x5] x =

 [x1, y7, z16][x5] y =

Semantics of arithmetic expressions

 Assume that arithmetic expressions are side-effect free

 A Aexp  : State  Z

 Defined by induction on the syntax tree

– A n  s = n

– A x  s = s x

– A e1 PLUS e2  s = A e1  s + A  e2  s

– A e1 MUL e2  s = A e1  s * A  e2  s

– A UMINUS e  s = -A  e  s

 Compositional

 Properties can be proved by structural induction

Semantics of Boolean expressions

 Assume that Boolean expressions are side-effect free

 T={ff, tt}

 B Bexp  : State  T

 Defined by induction on the syntax tree
– B true  s = tt

– B false  s = ff

– B e1 = e2  s =

– B e1  e2  s =

– B e1 e2  s =

tt if A  e1  s = Ae2 s

ff if A  e1  s  Ae2 s

tt if B  e1  s = tt and Be2=tt

ff if B  e1  s=ff or Be2 s=ff

The While Programming Language

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S

 Use parenthesizes for precedence

 Informal Semantics

– skip behaves like no-operation

– Import meaning of arithmetic and Boolean operations

Example While Program

y := 1;

while (x=1) do (

 y := y * x;

 x := x - 1

)

General Notations

 Syntactic categories

– Var the set of program variables

– Aexp the set of arithmetic expressions

– Bexp the set of Boolean expressions

– Stm set of program statements

 Semantic categories

– Natural values N={0, 1, 2, …}

– Truth values T={ff, tt}

– States State = Var  N

– Lookup in a state s: s x

– Update of a state s: s [x  5]

Natural Operational Semantics

 Describe the “overall” effect of program

constructs

 Ignores non terminating computations

Natural Semantics
 Notations

– <S, s> - the program statement S is executed on input state s

– s representing a terminal (final) state

 For every statement S, write meaning rules

<S, i>  o

“If the statement S is executed on an input state i, it

terminates and yields an output state o”

 The meaning of a program P on an input state s is the set

of outputs states o such that <P, i>  o

 The meaning of compound statements is defined using the

meaning immediate constituent statements

 Inductive definitions

 Notice that  means large-step here in contrast to the first

lecture where  means small-step

Natural Semantics for While
[assns] <x := a, s>  s[x Aas]

[skipns] <skip, s>  s

 [compns] <S1 , s>  s’, <S2, s’>  s’’

 <S1; S2, s>  s’’

[iftt
ns] <S1 , s>  s’

 <if b then S1 else S2, s>  s’

 if Bbs=tt

[ifff
ns] <S2 , s>  s’

 <if b then S1 else S2, s>  s’

 if Bbs=ff

axioms

rules

Natural Semantics for While

(More rules)

[whilett
ns] <S , s>  s’, <while b do S, s’>  s’’

 <while b do S, s>  s’’

 if Bbs=tt

[whileff
ns]

 <while b do S, s>  s

 if Bbs=ff

A Derivation Tree

 A “proof” that <S, s> s’

 The root of tree is <S, s> s’

 Leaves are instances of axioms

 Internal nodes rules

– Immediate children match rule premises

 Simple Example

<skip; x := x +1, s0> s0[x 1]>

compns

< x := x +1, s0> s0[x 1]>

 assns

<skip, s0> s0

 skipns

An Example Derivation Tree

<(x :=x+1; y :=x+1) ; z := y), s0> s0[x 1][y 2][z 2]

<x :=x+1; y :=x+1, s0> s0[x 1][y 2] <z :=y,s0[x 1][y 2]>s0[x1][y2][z 2]

<x :=x+1; s0> s0[x 1] <y :=x+1, s0[x 1]> s0[x 1][y 2]

compns

compns

assns assns

Top Down Evaluation of Derivation Trees

 Given a program S and an input state s

 Find an output state s’ such that

 <S, s> s’

 Start with the root and repeatedly apply rules until

the axioms are reached

 Inspect different alternatives in order

 In While s’ and the derivation tree is unique

Example of Top Down Tree Construction

 Input state s such that s x = 2

 Factorial program

<y := 1; while (x=1) do (y := y * x; x := x - 1), s>  >

assns assns

<y :=1, s> 

<W, >  >

compns

<(y := y * x ; x := x -1, s[y1]>  >

<W, > 

 >

whilett
ns

whileff
ns

<y := y * x ; s[y1]>  > <x := x - 1 , >  >

compns

assns

s[y  1]

s[y  1]

s[y 2][x1] s[y 2]

s[y 2][x1

s[y 2][x1]

s[y 2][x1

s[y 2][x1]

s[y 2]

s[y 2][x1]

Semantic Equivalence

 S1 and S2 are semantically equivalent if

 for all s and s’

<S1, s>  s’ if and only if <S2, s>  s’

 Simple example

“while b do S”

is semantically equivalent to:

“if b then (S ; while b do S) else skip”

Deterministic Semantics for While

(Theorem 2.9, page 39)

 If <S, s>  s1 and <S, s>  s2 then s1=s2

 The proof uses induction on the shape of

derivation trees

– Prove that the property holds for all simple derivation

trees by showing it holds for axioms

– Prove that the property holds for all composite trees:

» For each rule assume that the property holds for its premises

(induction hypothesis) and prove it holds for the conclusion of

the rule

The Semantic Function Sns

 The meaning of a statement S is defined as a

partial function from State to State

 Sns: Stm  (State  State)

 Sns Ss = s’ if <S, s> s’ and otherwise

 Sns Ss is undefined

 Examples

– Sns skips =s

– Sns x :=1s = s [x 1]

– Sns while true do skips = undefined

Structural Operational Semantics
 Emphasizes the individual steps

 For every statement S, write meaning rules <S, i>  

“If the first step of executing the statement S on an input

state i leads to ”

 Two possibilities for 

–  = <S’, s’> The execution of S is not completed, S’ is

the remaining computation which need to be performed

on s’

–  = o The execution of S has terminated with a final

state o

–  is a stuck configuration when there are no transitions

 The meaning of a program P on an input state s is the set

of final states that can be executed in arbitrary finite steps

  means small step as  in the first lecture

Structural Semantics for While
[asssos] <x := a, s>  s[x Aas]

[skipsos] <skip, s>  s

 [comp1
sos] <S1 , s>  <S’1, s’>

 <S1; S2, s>  < S’1; S2, s’>

axioms

rules

[comp2
sos] <S1 , s> s’

 <S1; S2, s>  < S2, s’>

Structural Semantics for While

if construct

[iftt
sos] <if b then S1 else S2, s> <S1, s>

if Bbs=tt

[ifff
os] <if b then S1 else S2, s> <S2, s>

if Bbs=ff

Structural Semantics for While

while construct

[whilesos] <while b do S, s> 

 <if b then (S; while b do S) else skip, s>

Derivation Sequences
 A finite derivation sequence starting at <S, s>

0, 1, 2 …, k such that

– 0=<S, s>

– i  i+1

– k is either stuck configuration or a final state

 An infinite derivation sequence starting at <S, s>

0, 1, 2 … such that

– 0=<S, s>

– i  i+1

 0 
i i in i steps

 0 
* i in finite number of steps

 For each step there is a derivation tree

Example

 Let s0 such that

s0 x = 5

and

s0 y = 7

 S = (z:=x; x := y); y := z

Factorial Program
 Input state s such that s x = 3

 y := 1; while (x=1) do (y := y * x; x := x - 1)
<y :=1 ; W, s>

 <W, s[y 1]>

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 1]>

 < ((y := y * x ; x := x – 1); W), s[y 1]>

 <(x := x – 1 ; W), s[y  3]>

 < W , s[y  3][x  2]>

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 3][x  2]>

 < ((y := y * x ; x := x – 1); W), s[y 3] [x  2] >

 <(x := x – 1 ; W) , s[y  6] [x  2] >

 < W, s[y  6][x  1]>

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 6][x  1]>

 <skip, s[y 6][x  1]>  s[y 6][x  1]

Program Termination

 Given a statement S and input s

– S terminates on s if there exists a finite derivation

sequence starting at <S, s>

– S terminates successfully on s if there exists a finite

derivation sequence starting at <S, s> leading to a final

state

– S loops on s if there exists an infinite derivation

sequence starting at <S, s>

Properties of the Semantics
 S1 and S2 are semantically equivalent if:

– for all s and  which is either final or stuck

<S1, s> *  if and only if <S2, s> * 

– there is an infinite derivation sequence starting at

<S1, s> if and only if there is an infinite derivation

sequence starting at <S2, s>

 Deterministic

– If <S, s> * s1 and <S, s> * s2 then s1=s2

 The execution of S1; S2 on an input can be split

into two parts:

– execute S1 on s yielding a state s’

– execute S2 on s’

Sequential Composition
 If <S1; S2, s> k s’’ then there exists a state s’

and numbers k1 and k2 such that

– <S1, s> k1 s’

– <S2, s’> k2 s’’

– and k = k1 + k2

 The proof uses induction on the length of

derivation sequences

– Prove that the property holds for all derivation

sequences of length 0

– Prove that the property holds for all other derivation

sequences:

» Show that the property holds for sequences of length k+1

using the fact it holds on all sequences of length k (induction

hypothesis)

The Semantic Function Ssos

 The meaning of a statement S is defined as a

partial function from State to State

 Ssos: Stm  (State  State)

 SsosSs = s’ if <S, s> *s’ and otherwise

 Ssos Ss is undefined

An Equivalence Result

 For every statement S of the While language

– SnatS = SsosS

Extensions to While

 Abort statement (like C exit w/o return value)

 Non-determinism

 Parallelism

 Local Variables

 Procedures

– Static Scope

– Dynamic scope

The While Programming Language

with Abort

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S| abort

 Abort terminates the execution

 No new rules are needed in natural and structural

operational semantics

 Statements

– if x = 0 then abort else y := y / x

– skip

– abort

– while true do skip

Conclusion

 The natural semantics cannot distinguish between

looping and abnormal termination (unless the

states are modified)

 In the structural operational semantics looping is

reflected by infinite derivations and abnormal

termination is reflected by stuck configuration

The While Programming Language

with Non-Determinism

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S| S1 or S2

 Either S1 or S2 is executed

 Example

– x := 1 or (x :=2 ; x := x+2)

[or1
ns] <S1 , s>  s’

 <S1 or S2, s>  s’

The While Programming

Language with Non-Determinism

Natural Semantics

[or2
ns] <S2 , s>  s’

 <S1 or S2, s>  s’

The While Programming

Language with Non-Determinism

Structural Semantics

The While Programming

Language with Non-Determinism

Examples

 x := 1 or (x :=2 ; x := x+2)

 (while true do skip) or (x :=2 ; x := x+2)

Conclusion

 In the natural semantics non-determinism will

suppress looping if possible (mnemonic)

 In the structural operational semantics non-

determinism does suppress not termination

configuration

The While Programming Language

with Parallel Constructs

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S| S1 par S2

 All the interleaving of S1 or S2 are executed

 Example

– x := 1 par (x :=2 ; x := x+2)

The While Programming Language

with Parallel Constructs

Structural Semantics

[par1
sos] <S1 , s>  <S’1, s’>

 <S1 par S2, s>  < S’1par S2, s’>

[par2
sos] <S1 , s>  s’

 <S1 par S2, s>  < S2, s’>

[par3
sos] <S2 , s>  <S’2, s’>

 <S1 par S2, s>  < S1par S’2, s’>

[par4
sos] <S2 , s>  s’

 <S1 par S2, s>  < S1, s’>

The While Programming Language

with Parallel Constructs

Natural Semantics

Conclusion

 In the natural semantics immediate constituent is

an atomic entity so we cannot express interleaving

of computations

 In the structural operational semantics we

concentrate on small steps so interleaving of

computations can be easily expressed

The While Programming Language

with local variables and procedures

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S|

 begin Dv Dp S end | call p

Dv ::= var x := a ; Dv | 

Dp ::= proc p is S ; Dp | 

Conclusions Local Variables

 The natural semantics can “remember” local states

 Need to introduce stack or heap into state of the

structural semantics

Summary

 Operational Semantics is useful for:

– Language Designers

– Compiler/Interpreter Writer

– Programmers

 Natural operational semantics is a useful

abstraction

– Can handle many PL features

– No stack/ program counter

– Simple

– “Mostly” compositional

 Other abstractions exist

Further Reading

 Ankur Taly: Operational Semantics for JavaScript

 Pietro Cenciarelli?, Alexander Knapp, Bernhard

Reus, and Martin Wirsing: An Event-Based

Structural Operational Semantics of Multi-

threaded Java

Alan Jeffrey and Julian Rathke:Java Jr.: Fully

abstract trace semantics for a core Java language

