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Syntax vs. Semantics

¢ The pattern of formation ¢ The study or science of

of sentences or phrases in meaning in language
a language & Examples
¢ Examples — Interpreter
— Regular expressions — Compiler
— Context free grammars — Better mechanisms will be

given today



Benefits of Formal Semantics

¢ Programming language design

® 6 o

4

— hard- to-define= hard-to-implement=hard-to-use
Programming language implementation
Programming language understanding
Program correctness

Program equivalence

¢ Compiler Correctness
¢ Automatic generation of interpreter
¢ But probably not

— Automatic compiler generation



Alternative Formal Semantics

¢ Operational Semantics

— The meaning of the program is described
“operationally”

— Natural Large Step Operational Semantics
— Structural Small Step Operational Semantics
¢ Denotational Semantics
— The meaning of the program is an input/output relation
— Mathematically challenging but complicated
¢ Axiomatic Semantics
— The meaning of the program are observed properties
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///////////////}@%&thbyhﬂi
Int fact(int x) {
Intz,y,
[X—3, z—1, y—1]

7 = u
y=x  —[x=>3,2—1,y—3]

while (y>0) { [XI—>3 71 y'—>3]
 / y y

Z=727%V;
[X—3, 2—3, y—3]
y=y-1,
} T [x—3, 23, y7?]
return z

¥



Int fact(int x) {
Intz,y,
Z=1;

y= X :X|—>3, 72—3, yl—>2

while (y>0) { 'X—3. 73 y'—>2
/// i y y 1

Z=727%V;
[X—3, 2—6, y—2]
y=y-1,
} T [x—3, 256, 1]

return z

¥




Int fact(int x) {
Intz,y,
Z=1;

y= X :X|—>3, 72—0, yl—>1

while (y>0) { 'X—3. 76 yl—>1
/// i y y 1

Z=727%V;
[X—3, z—06, y—1]
y=y-1,
} T [x—3, 256, 0]

return z

¥




Int fact(int x) {

Intz,y,
z=1;
V= X [X—3, z—6, y—0]
while (y>0) {
Z=727%V;
y=y-1,
¥
return z [X—3, z—6, y—0]

¥



Int fact(int x) {

Intz,y,
z=1;
Y= X; [X|_)3, Z|_)6, y|_>0]
while (y>0) {
Z=727%V;
y=y-1,
¥
return 6 [X—3, z—6, y—0]

¥



Denotational Semantics

int fact(int x) {
Intz,y,
z=1,
y=X; f=Ax. if x =0 then 1 else x * f(x -1)
while (y>0) {
Z=7%Y,;
y=y-1
}

return z;

}



{x=n}
int fact(intx) { intz,y:  AXIomatic Semantics
z=1;
{x=n A z=1}
y= X
{x=n A z=1 A y=n}
while
{x=n Ay>0Az=n!/y!}
(y>0) {
{Xx=nAy>0A z=n!/y!}
Z2=2%Y;
{x=n Ay>0 A z=n!/(y-1)'}
y=y-1
{x=n Ay >0 A z=nl/y'}

} return z} {x=n A z=n!}



Operational Semantics

Natural Large Step Semantics

14



Operational Semantics of
Arithmetic Expressions

Aexp =2 | number

AXp PLUS Aexp
Aexp MINUS Aexp
Aexp MUL Aexp
UMINUS Aexp

All]: Aexp— Z

A[n] = val(n)
[e; PLUS &,] =A [[e,]] + Alle,]
[e; MINUS e, ]| = Alle,] - Alle,]
[e; MUL e, ] = Alle, ] * Alle, ]
[UMINUS e] = Ale]

> > > >




Handling Variables

Aexp =2 | number

variable

Aexp PLUS Aexp
Aexp MINUS Aexp
Aexp MUL Aexp
UMINUS Exp

#Need the notions of states

¢ States State = Var > Z
¢Lookup in a state s: s X

¢ Update of astate s: s [ X~ 5]
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Example State Manipulations

X—1, y—7,72—16]y =
X—1, y—7,2—16]t=
X—1, y—7, 2—16][X—5
X—1, y—7, 2—16][X—5]
X—1, y—7, 2—16][X—5

< X
[



Semantics of arithmetic expressions

¢ Assume that arithmetic expressions are side-effect free
¢ A Aexp | : State > Z
¢ Defined by induction on the syntax tree
— A[n]s=n
— Al x]s=sx
— Al e, PLUSe, [s=Ale;]s +Afe, ]s
— Ale,MULe, [s=Afe; ]s *Afe, ]s
— AJUMINUSe Js=-Afe]s
¢ Compositional
¢ Properties can be proved by structural induction




Semantics of Boolean expressions

¢ Assume that Boolean expressions are side-effect free
¢ T={ff tt}
¢ B[Bexp]:State > T

¢ Defined by induction on the syntax tree
— B[ true [ s=tt
— B[ false | s =ff

 Ble e, 5= ttifAfle; |s=Afe,]s
ff ifAe Js=Ale,]s

ttif B[ e, ] s=ttand B[e,]=tt

—~ Ble;re, Js= { _
ff if B[ e, ] s=ff or Be,] s=ff

— Blle;>e, [s=



The While Programming Language

¢ Abstract syntax
S:=x =al|skip|S;;S,|iIfbthen S;else S, |
while b do S

¢ Use parenthesizes for precedence

¢ Informal Semantics
— skip behaves like no-operation
— Import meaning of arithmetic and Boolean operations



Example While Program

y =1,
while —(x=1) do (
Yy =y *X;

X:=X-1



General Notations

¢ Syntactic categories
— Var the set of program variables
— Aexp the set of arithmetic expressions
— Bexp the set of Boolean expressions
— Stm set of program statements

¢ Semantic categories
— Natural values N={0, 1, 2, ...}
— Truth values T={ff, tt}
— States State = Var - N
— Lookup in a state s: s X
— Update of astate s: s [ X — 5]



Natural Operational Semantics

¢ Describe the “overall” effect of program
constructs

¢ Ignores non terminating computations



Natural Semantics

¢ Notations
— <S§, s> - the program statement S is executed on input state s
— srepresenting a terminal (final) state
¢ For every statement S, write meaning rules
<S,I>—>0
“If the statement S 1s executed on an input state I, It
terminates and yields an output state 0 ”

¢ The meaning of a program P on an input state s Is the set
of outputs states o such that <P, 1> —> 0

¢ The meaning of compound statements is defined using the
meaning immediate constituent statements

¢ Inductive definitions

¢ Notice that — means large-step here in contrast to the first
lecture where — means small-step



Natural Semantics for While

ass, ] <X = a, s> — s[x »A[a]s]

axioms skip, ] <skip, s> — s

comp,] <S;,8>—>5s’,<S,,8>—>5s”

rules <S,;S,, 5> —>s”
[Ift ]<S,,s>—>5 |
<if bthen S,else S,, s> —> s’ if BJbJs=tt
[iff ]<S,,s>—> ¢ _
if B[b[s=ff

<if bthen S;else S,, s> —> s’



Natural Semantics for While
(More rules)

[whilef ] |
<whilebdo S, 5> > S if B[[b]s=ff

[whilet, ] <S, s> —s’, <whilebdo S, s> —>s"
Whilebdo S, 5> — s7 if B[b]s=tt




A Derivation Tree

¢ A “proof” that <S, s> —s’
¢ The root of tree Is <S5, s> —¢’
¢ Leaves are Instances of axioms

¢ Internal nodes rules
— Immediate children match rule premises

¢ Simple Example

<sKip; X := X +1, 55> >S,[X »1]>

<skip, s;> —S,

SKipns

COMPnrs

<X:=X+1, 55> >Sy[x »1]>

dSSns



An Example Derivation Tree

<(X:=x+1;y:=x+1); z:=vy), s0> —>s0[x ~»1][y »2][z »2]

COMPns
‘ <X :=X+1;y :=x+1, s0> —>s0[x ~1][y ~2] <z :=y,s0[x ~»1][y »2]>—>s0[x~1][y~2][z ~2]
_eomps ——
<X :=x+1; s0> —>s0[x ~1] <y :=x+1, sO[x »1]> —>s0[x ~1][y ~2]

dSSns dSSns



Top Down Evaluation of Derivation Trees

¢ Glven a program S and an input state s

¢ Find an output state s’ such that
<§, $> 5%’

¢ Start with the root and repeatedly apply rules until
the axioms are reached

¢ Inspect different alternatives in order

¢ In While s’ and the derivation tree 1s unique



Example of Top Down Tree Construction

¢ Input state s such thats x =2
¢ Factorial program

<y:=1;while s(x=1)do (y:=y*x;x:=x-1),s> > s[y~2][x~1] >

M=
/60 <W, sfy = 1]> - sly~2][x»1 >

<y:=1,s> > S[y > 1] whilett

dSSns <W, s[y »2][x~1]> —

<(y:=y*x;x:=Xx -1, s[y~»1]> — s[y »2][x~1] > s[y »2][x~»1 >

C(ﬁpﬁr\ whi |eﬁns

<y =y *x;s[y=1]> = s[y »2P <x:=X -1,5[y~2]> - s[y~2][x~1] >

dSSns dSSns



Semantic Equivalence

¢ S, and S, are semantically equivalent if
for all s and s’
<§;,$> —> s’ ifand only 1f <S,, s> —> §’

¢ Simple example
“while b do S”
IS semantically equivalent to:
“1f b then (S ; while b do S) else skip”



Deterministic Semantics for While
(Theorem 2.9, page 39)

¢ If<§,s>—>s,and <S, s> — s, then s,=s,

¢ The proof uses induction on the shape of
derivation trees

— Prove that the property holds for all simple derivation
trees by showing it holds for axioms

— Prove that the property holds for all composite trees:

» For each rule assume that the property holds for its premises
(induction hypothesis) and prove it holds for the conclusion of
the rule



The Semantic Function S

¢ The meaning of a statement S is defined as a
partial function from State to State

¢ S, .. Stm — (State — State)
¢ S, [S]s= s’ if <S, s> —s’ and otherwise
S, [S]s is undefined
¢ Examples
— S [skip]ls =s
— S [x:=1]ls =s [x »1]
— S, [while true do skip]ls = undefined




Structural Operational Semantics

¢ Emphasizes the individual steps

¢ For every statement S, write meaning rules <S, I> = y
“If the first step of executing the statement S on an input

state I leads to y”
¢ Two possibilities for »

— y=<8§’, s’> The execution of S 1s not completed, S’ 1s
the remaining computation which need to be performed

ons’

— y= 0 The execution of S has terminated with a final
state 0

— v is a stuck configuration when there are no transitions

¢ The meaning of a program P on an input state s Is the set
of final states that can be executed in arbitrary finite steps

¢ = means small step as = In the first lecture



Structural Semantics for While

ass,. ] <x := a, s> = s[x ~»A[a]s]

axioms  [skip,,] <skip, s> = s

‘compl ] <S;,s>= <S8, s>

rules <S,;;S,, 8> =<8°;;S,,8>

[Compzsos] <Sl , §> =8’

<S,;S,, 8> =<8S,,s>



Structural Semantics for While
If construct

[ift,] <ifbthenS,else S,, s>=<S,,s> if B[[b]s=tt

[iff ] <ifbthen S elseS,, s> =<S,,s> if B[b]s=ff



Structural Semantics for While
while construct

[while,. ] <whilebdo S, s> =
<if b then (S; while b do S) else skip, s>



Derivation Sequences

¢ A finite derivation sequence starting at <S, s>
Yor Y11 Yo ---» Yk SUcCh that
— Yo=<S, §>
—Yi="Yin
— v, Is either stuck configuration or a final state

¢ An infinite derivation sequence starting at <S, s>
Yor Y1 Yo --- such that
— Yo=<S, §>
— Vi = Vi+
® v, ="y Ini steps
® v, =" v; in finite number of steps
# For each step there is a derivation tree



Example

¢ Let s, such that
SpX =9
and
Soy =7
¢ S=(z=X;X=Y); Yi=2



Factorial Program
¢ Input state ssuchthatsx =3

y:=1,while=(Xx=1)do (y .=y *X; X :=x-1)
<y:=1;W,s>
= <W, s[y »1]>
= <if = = (X =1)then skipelse ((y :=y * x; Xx:=x—1); W), s[y »1]>
=><({(y:=y*x;x:=x-1); W), s[y »1]>
=<X:=x-1;W), sy~ 3]>
= <W,s[y~ 3][x~ 2]>
= <ifm—(X=1)thenskipelse (y:=y*x;x:=x-1); W), s[ly »3][x ~ 2]>
=><((y:=y*x;x:=x-1); W), sy »3] [x+~ 2] >
=><X:=x-1;W),s[ly~6][x+2]>
= <W, s[y~ 6][x+~ 1]>
= <if — = (X =1) then skipelse ((y :=y * X ; X :=x—1); W), s[y »6][x ~ 1]>
= <sKip, s[y »6][x » 1]> = s[y »6][x ~ 1]



Program Termination

¢ Glven a statement S and input s

— S terminates on s if there exists a finite derivation
sequence starting at <S, s>

— S terminates successfully on s if there exists a finite
derivation sequence starting at <S, s> leading to a final
state

— S loops on s if there exists an infinite derivation
sequence starting at <S, s>



Properties of the Semantics

¢ S; and S, are semantically equivalent if:

— for all s and y which is either final or stuck
<S,s>="vyifandonly if <S,, s> ="y

— there is an infinite derivation sequence starting at
<S,, s> if and only if there is an infinite derivation
seqguence starting at <S,, s>

¢ Deterministic
— If <§, s> =" s, and <S, s> =" s, then s,=s,

¢ The execution of S;; S, on an input can be split
Into two parts:
— execute S; on s yielding a state s’
— execute S, on s’



Sequential Composition

¢ If<S;; S,, s> =K g’ then there exists a state s’
and numbers k, and k, such that
— <§;, 5> =Ky’
— <§,, 8> =K g7
—and k=k; +k,

¢ The proof uses induction on the length of
derivation sequences

— Prove that the property holds for all derivation
sequences of length O

— Prove that the property holds for all other derivation
sequences:

» Show that the property holds for sequences of length k+1
using the fact it holds on all sequences of length k (induction
hypothesis)



The Semantic Function S

SOS

¢ The meaning of a statement S is defined as a
partial function from State to State

¢ S, .. Stm — (State — State)

¢ S [S]s= s’ if <S, s> ="s’ and otherwise
S [S]ls is undefined



An Equivalence Result

¢ For every statement S of the While language
o Snat[[s]] = Ssosl]:S]]



Extensions to While

¢ Abort statement (like C exit w/o return value)
¢ Non-determinism

¢ Parallelism

¢ Local Variables

¢ Procedures

— Static Scope
— Dynamic scope




The While Programming Language
with Abort

¢ Abstract syntax
S:=x =al|skip|S;;S,|iIfbthen S;else S, |
while b do S| abort
¢ Abort terminates the execution

¢ No new rules are needed In natural and structural
operational semantics

¢ Statements
— Ifx=0then abortelsey =y /X
— skip
— abort
— while true do skip



Conclusion

¢ The natural semantics cannot distinguish between
looping and abnormal termination (unless the
states are modified)

¢ In the structural operational semantics looping Is
reflected by Infinite derivations and abnormal
termination is reflected by stuck configuration



The While Programming Language
with Non-Determinism

¢ Abstract syntax
S:=x =al|skip|S;;S,|iIfbthen S;else S, |
while b do S| S; or S,
¢ Either S; or S, Is executed

¢ Example
—x:=1lor(x:=2;Xx:=x+2)



The While Programming
Language with Non-Determinism
Natural Semantics

[ort ] <S;,s>—>5’

<§;0rS,,s>—>5

[or? ] <S,,s> >’

<§;0rS,,s>—>+s’



The While Programming
Language with Non-Determinism
Structural Semantics



The While Programming
Language with Non-Determinism
Examples

¢ xX:=1lor(X:=2;X:=x+2)
¢ (while true do skip) or (x ;=2 ; X := X+2)



¢Int
sup

¢Int

Conclusion

ne natural semantics non-determinism will
oress looping If possible (mnemonic)

ne structural operational semantics non-

determinism does suppress not termination
configuration



The While Programming Language
with Parallel Constructs

¢ Abstract syntax
S:=x =al|skip|S;;S,|iIfbthen S;else S, |
while b do S| S; par S,
¢ All the interleaving of S, or S, are executed

¢ Example
— X:=1par (X:=2; X :=X+2)



The While Programming Language
with Parallel Constructs
Structural Semantics

[parlsos] <Sl , S = <S,1a 5°>

<S;parS,, s> = < S’par S,, s™>
[Parss] <S;, 5> =8’

<S;parS,, s> =<S,,s>
[parssos] <SZ , S = <S’2> 5°>

<S;parS,, s> = < S;par S’,, s>
[par4sos] <SZ , 8> =8

<S;parS,, s> =<5, 8>



The While Programming Language
with Parallel Constructs
Natural Semantics



Conclusion

¢ In the natural semantics Immediate constituent Is
an atomic entity so we cannot express interleaving
of computations

¢ In the structural operational semantics we
concentrate on small steps so interleaving of
computations can be easily expressed



The While Programming Language
with local variables and procedures

¢ Abstract syntax
S:=x =al|skip|S;;S,|iIfbthen S;else S, |
while b do S|
begin D, D, Send | call p
D, :=varx:=a;D,]|¢
D, :=procpisS;D,|¢



Conclusions Local VVariables

¢ The natural semantics can “remember’ local states

¢ Need to introduce stack or heap into state of the
structural semantics



Summary

¢ Operational Semantics is useful for:
— Language Designers
— Compiler/Interpreter Writer
— Programmers

¢ Natural operational semantics is a useful
abstraction
— Can handle many PL features
— No stack/ program counter
— Simple
— “Mostly” compositional

¢ Other abstractions exist



Further Reading

¢ Ankur Taly: Operational Semantics for JavaScript

¢ Pietro Cenciarelli?, Alexander Knapp, Bernhard
Reus, and Martin Wirsing: An Event-Based
Structural Operational Semantics of Multi-
threaded Java
Alan Jeffrey and Julian Rathke:Java Jr.: Fully
abstract trace semantics for a core Java language



