
Tentative Schedule
6/3 introduction

13/3 javascript

20/3 Haskel

27/3 No class

3/4 Operational Semantics

17/4 Denotational Semantics

24/4 Axiomatic Semantics

2/5 Exception and continuation

8/5, 15/5, 22/5 Type Systems

29/5, 5/6, 12/6 Concurrency

19/6 Domain Specific Languages

22/6 Summary class

Operational Semantics

Mooly Sagiv

Semantics with Applications

Chapter 2

H. Nielson and F. Nielson
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

The Formal Semantics of Programming Languages

An Introduction

Glynn Winskel

2

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html

Syntax vs. Semantics

 The pattern of formation

of sentences or phrases in

a language

 Examples

– Regular expressions

– Context free grammars

 The study or science of

meaning in language

 Examples

– Interpreter

– Compiler

– Better mechanisms will be

given today

Benefits of Formal Semantics
 Programming language design

– hard- to-define= hard-to-implement=hard-to-use

 Programming language implementation

 Programming language understanding

 Program correctness

 Program equivalence

 Compiler Correctness

 Automatic generation of interpreter

 But probably not

– Automatic compiler generation

Alternative Formal Semantics

 Operational Semantics

– The meaning of the program is described

“operationally”

– Natural Large Step Operational Semantics

– Structural Small Step Operational Semantics

 Denotational Semantics

– The meaning of the program is an input/output relation

– Mathematically challenging but complicated

 Axiomatic Semantics

– The meaning of the program are observed properties

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3]

[x3, z, y]

[x3, z1, y]

[x3, z1, y3]

[x3, z1, y3]

[x3, z3, y3]

[x3, z3, y2]

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3, z3, y2]

[x3, z6, y2]

[x3, z6, y1]

[x3, z3, y2]

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3, z6, y1]

[x3, z6, y1]

[x3, z6, y0]

[x3, z6, y1]

int fact(int x) {

 int z, y;

 z = 1;

 y= x

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z

}

[x3, z6, y0]

[x3, z6, y0]

int fact(int x) {

 int z, y;

 z = 1;

 y= x;

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return 6

}

[x3, z6, y0]

[x3, z6, y0]

f=x. if x = 0 then 1 else x * f(x -1)

Denotational Semantics
int fact(int x) {

 int z, y;

 z = 1;

 y= x ;

 while (y>0) {

 z = z * y ;

 y = y – 1;

 }

return z;

}

{x=n}

 int fact(int x) { int z, y;

 z = 1;

{x=n z=1}

 y= x

{x=n z=1 y=n}

 while

 {x=n y 0 z=n! / y!}

 (y>0) {

 {x=n y >0 z=n! / y!}

 z = z * y ;

 {x=n y>0 z=n!/(y-1)!}

 y = y – 1;

 {x=n y 0 z=n!/y!}

 } return z} {x=n z=n!}

Axiomatic Semantics

Operational Semantics

Natural Large Step Semantics

14

Operational Semantics of

Arithmetic Expressions

Aexp | number

 | Axp PLUS Aexp

 | Aexp MINUS Aexp

 | Aexp MUL Aexp

 | UMINUS Aexp

A: Aexp Z

An = val(n)

Ae1 PLUS e2 =A e1 + Ae2

Ae1 MINUS e2 = Ae1 - Ae2

Ae1 MUL e2 = Ae1 * Ae2

AUMINUS e = Ae

Handling Variables

Aexp | number

 | variable

 | Aexp PLUS Aexp

 | Aexp MINUS Aexp

 | Aexp MUL Aexp

 | UMINUS Exp

Need the notions of states

States State = Var Z

Lookup in a state s: s x

Update of a state s: s [x 5]

Example State Manipulations

 [x1, y7, z16] y =

 [x1, y7, z16] t =

 [x1, y7, z16][x5] =

 [x1, y7, z16][x5] x =

 [x1, y7, z16][x5] y =

Semantics of arithmetic expressions

 Assume that arithmetic expressions are side-effect free

 A Aexp : State Z

 Defined by induction on the syntax tree

– A n s = n

– A x s = s x

– A e1 PLUS e2 s = A e1 s + A e2 s

– A e1 MUL e2 s = A e1 s * A e2 s

– A UMINUS e s = -A e s

 Compositional

 Properties can be proved by structural induction

Semantics of Boolean expressions

 Assume that Boolean expressions are side-effect free

 T={ff, tt}

 B Bexp : State T

 Defined by induction on the syntax tree
– B true s = tt

– B false s = ff

– B e1 = e2 s =

– B e1 e2 s =

– B e1 e2 s =

tt if A e1 s = Ae2 s

ff if A e1 s Ae2 s

tt if B e1 s = tt and Be2=tt

ff if B e1 s=ff or Be2 s=ff

The While Programming Language

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S

 Use parenthesizes for precedence

 Informal Semantics

– skip behaves like no-operation

– Import meaning of arithmetic and Boolean operations

Example While Program

y := 1;

while (x=1) do (

 y := y * x;

 x := x - 1

)

General Notations

 Syntactic categories

– Var the set of program variables

– Aexp the set of arithmetic expressions

– Bexp the set of Boolean expressions

– Stm set of program statements

 Semantic categories

– Natural values N={0, 1, 2, …}

– Truth values T={ff, tt}

– States State = Var N

– Lookup in a state s: s x

– Update of a state s: s [x 5]

Natural Operational Semantics

 Describe the “overall” effect of program

constructs

 Ignores non terminating computations

Natural Semantics
 Notations

– <S, s> - the program statement S is executed on input state s

– s representing a terminal (final) state

 For every statement S, write meaning rules

<S, i> o

“If the statement S is executed on an input state i, it

terminates and yields an output state o”

 The meaning of a program P on an input state s is the set

of outputs states o such that <P, i> o

 The meaning of compound statements is defined using the

meaning immediate constituent statements

 Inductive definitions

 Notice that means large-step here in contrast to the first

lecture where means small-step

Natural Semantics for While
[assns] <x := a, s> s[x Aas]

[skipns] <skip, s> s

 [compns] <S1 , s> s’, <S2, s’> s’’

 <S1; S2, s> s’’

[iftt
ns] <S1 , s> s’

 <if b then S1 else S2, s> s’

 if Bbs=tt

[ifff
ns] <S2 , s> s’

 <if b then S1 else S2, s> s’

 if Bbs=ff

axioms

rules

Natural Semantics for While

(More rules)

[whilett
ns] <S , s> s’, <while b do S, s’> s’’

 <while b do S, s> s’’

 if Bbs=tt

[whileff
ns]

 <while b do S, s> s

 if Bbs=ff

A Derivation Tree

 A “proof” that <S, s> s’

 The root of tree is <S, s> s’

 Leaves are instances of axioms

 Internal nodes rules

– Immediate children match rule premises

 Simple Example

<skip; x := x +1, s0> s0[x 1]>

compns

< x := x +1, s0> s0[x 1]>

 assns

<skip, s0> s0

 skipns

An Example Derivation Tree

<(x :=x+1; y :=x+1) ; z := y), s0> s0[x 1][y 2][z 2]

<x :=x+1; y :=x+1, s0> s0[x 1][y 2] <z :=y,s0[x 1][y 2]>s0[x1][y2][z 2]

<x :=x+1; s0> s0[x 1] <y :=x+1, s0[x 1]> s0[x 1][y 2]

compns

compns

assns assns

Top Down Evaluation of Derivation Trees

 Given a program S and an input state s

 Find an output state s’ such that

 <S, s> s’

 Start with the root and repeatedly apply rules until

the axioms are reached

 Inspect different alternatives in order

 In While s’ and the derivation tree is unique

Example of Top Down Tree Construction

 Input state s such that s x = 2

 Factorial program

<y := 1; while (x=1) do (y := y * x; x := x - 1), s> >

assns assns

<y :=1, s>

<W, > >

compns

<(y := y * x ; x := x -1, s[y1]> >

<W, >

 >

whilett
ns

whileff
ns

<y := y * x ; s[y1]> > <x := x - 1 , > >

compns

assns

s[y 1]

s[y 1]

s[y 2][x1] s[y 2]

s[y 2][x1

s[y 2][x1]

s[y 2][x1

s[y 2][x1]

s[y 2]

s[y 2][x1]

Semantic Equivalence

 S1 and S2 are semantically equivalent if

 for all s and s’

<S1, s> s’ if and only if <S2, s> s’

 Simple example

“while b do S”

is semantically equivalent to:

“if b then (S ; while b do S) else skip”

Deterministic Semantics for While

(Theorem 2.9, page 39)

 If <S, s> s1 and <S, s> s2 then s1=s2

 The proof uses induction on the shape of

derivation trees

– Prove that the property holds for all simple derivation

trees by showing it holds for axioms

– Prove that the property holds for all composite trees:

» For each rule assume that the property holds for its premises

(induction hypothesis) and prove it holds for the conclusion of

the rule

The Semantic Function Sns

 The meaning of a statement S is defined as a

partial function from State to State

 Sns: Stm (State State)

 Sns Ss = s’ if <S, s> s’ and otherwise

 Sns Ss is undefined

 Examples

– Sns skips =s

– Sns x :=1s = s [x 1]

– Sns while true do skips = undefined

Structural Operational Semantics
 Emphasizes the individual steps

 For every statement S, write meaning rules <S, i>

“If the first step of executing the statement S on an input

state i leads to ”

 Two possibilities for

– = <S’, s’> The execution of S is not completed, S’ is

the remaining computation which need to be performed

on s’

– = o The execution of S has terminated with a final

state o

– is a stuck configuration when there are no transitions

 The meaning of a program P on an input state s is the set

of final states that can be executed in arbitrary finite steps

 means small step as in the first lecture

Structural Semantics for While
[asssos] <x := a, s> s[x Aas]

[skipsos] <skip, s> s

 [comp1
sos] <S1 , s> <S’1, s’>

 <S1; S2, s> < S’1; S2, s’>

axioms

rules

[comp2
sos] <S1 , s> s’

 <S1; S2, s> < S2, s’>

Structural Semantics for While

if construct

[iftt
sos] <if b then S1 else S2, s> <S1, s>

if Bbs=tt

[ifff
os] <if b then S1 else S2, s> <S2, s>

if Bbs=ff

Structural Semantics for While

while construct

[whilesos] <while b do S, s>

 <if b then (S; while b do S) else skip, s>

Derivation Sequences
 A finite derivation sequence starting at <S, s>

0, 1, 2 …, k such that

– 0=<S, s>

– i i+1

– k is either stuck configuration or a final state

 An infinite derivation sequence starting at <S, s>

0, 1, 2 … such that

– 0=<S, s>

– i i+1

 0
i i in i steps

 0
* i in finite number of steps

 For each step there is a derivation tree

Example

 Let s0 such that

s0 x = 5

and

s0 y = 7

 S = (z:=x; x := y); y := z

Factorial Program
 Input state s such that s x = 3

 y := 1; while (x=1) do (y := y * x; x := x - 1)
<y :=1 ; W, s>

 <W, s[y 1]>

 <if (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 1]>

 < ((y := y * x ; x := x – 1); W), s[y 1]>

 <(x := x – 1 ; W), s[y 3]>

 < W , s[y 3][x 2]>

 <if (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 3][x 2]>

 < ((y := y * x ; x := x – 1); W), s[y 3] [x 2] >

 <(x := x – 1 ; W) , s[y 6] [x 2] >

 < W, s[y 6][x 1]>

 <if (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 6][x 1]>

 <skip, s[y 6][x 1]> s[y 6][x 1]

Program Termination

 Given a statement S and input s

– S terminates on s if there exists a finite derivation

sequence starting at <S, s>

– S terminates successfully on s if there exists a finite

derivation sequence starting at <S, s> leading to a final

state

– S loops on s if there exists an infinite derivation

sequence starting at <S, s>

Properties of the Semantics
 S1 and S2 are semantically equivalent if:

– for all s and which is either final or stuck

<S1, s> * if and only if <S2, s> *

– there is an infinite derivation sequence starting at

<S1, s> if and only if there is an infinite derivation

sequence starting at <S2, s>

 Deterministic

– If <S, s> * s1 and <S, s> * s2 then s1=s2

 The execution of S1; S2 on an input can be split

into two parts:

– execute S1 on s yielding a state s’

– execute S2 on s’

Sequential Composition
 If <S1; S2, s> k s’’ then there exists a state s’

and numbers k1 and k2 such that

– <S1, s> k1 s’

– <S2, s’> k2 s’’

– and k = k1 + k2

 The proof uses induction on the length of

derivation sequences

– Prove that the property holds for all derivation

sequences of length 0

– Prove that the property holds for all other derivation

sequences:

» Show that the property holds for sequences of length k+1

using the fact it holds on all sequences of length k (induction

hypothesis)

The Semantic Function Ssos

 The meaning of a statement S is defined as a

partial function from State to State

 Ssos: Stm (State State)

 SsosSs = s’ if <S, s> *s’ and otherwise

 Ssos Ss is undefined

An Equivalence Result

 For every statement S of the While language

– SnatS = SsosS

Extensions to While

 Abort statement (like C exit w/o return value)

 Non-determinism

 Parallelism

 Local Variables

 Procedures

– Static Scope

– Dynamic scope

The While Programming Language

with Abort

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S| abort

 Abort terminates the execution

 No new rules are needed in natural and structural

operational semantics

 Statements

– if x = 0 then abort else y := y / x

– skip

– abort

– while true do skip

Conclusion

 The natural semantics cannot distinguish between

looping and abnormal termination (unless the

states are modified)

 In the structural operational semantics looping is

reflected by infinite derivations and abnormal

termination is reflected by stuck configuration

The While Programming Language

with Non-Determinism

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S| S1 or S2

 Either S1 or S2 is executed

 Example

– x := 1 or (x :=2 ; x := x+2)

[or1
ns] <S1 , s> s’

 <S1 or S2, s> s’

The While Programming

Language with Non-Determinism

Natural Semantics

[or2
ns] <S2 , s> s’

 <S1 or S2, s> s’

The While Programming

Language with Non-Determinism

Structural Semantics

The While Programming

Language with Non-Determinism

Examples

 x := 1 or (x :=2 ; x := x+2)

 (while true do skip) or (x :=2 ; x := x+2)

Conclusion

 In the natural semantics non-determinism will

suppress looping if possible (mnemonic)

 In the structural operational semantics non-

determinism does suppress not termination

configuration

The While Programming Language

with Parallel Constructs

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S| S1 par S2

 All the interleaving of S1 or S2 are executed

 Example

– x := 1 par (x :=2 ; x := x+2)

The While Programming Language

with Parallel Constructs

Structural Semantics

[par1
sos] <S1 , s> <S’1, s’>

 <S1 par S2, s> < S’1par S2, s’>

[par2
sos] <S1 , s> s’

 <S1 par S2, s> < S2, s’>

[par3
sos] <S2 , s> <S’2, s’>

 <S1 par S2, s> < S1par S’2, s’>

[par4
sos] <S2 , s> s’

 <S1 par S2, s> < S1, s’>

The While Programming Language

with Parallel Constructs

Natural Semantics

Conclusion

 In the natural semantics immediate constituent is

an atomic entity so we cannot express interleaving

of computations

 In the structural operational semantics we

concentrate on small steps so interleaving of

computations can be easily expressed

The While Programming Language

with local variables and procedures

 Abstract syntax

S::= x := a | skip | S1 ; S2 | if b then S1 else S2 |

 while b do S|

 begin Dv Dp S end | call p

Dv ::= var x := a ; Dv |

Dp ::= proc p is S ; Dp |

Conclusions Local Variables

 The natural semantics can “remember” local states

 Need to introduce stack or heap into state of the

structural semantics

Summary

 Operational Semantics is useful for:

– Language Designers

– Compiler/Interpreter Writer

– Programmers

 Natural operational semantics is a useful

abstraction

– Can handle many PL features

– No stack/ program counter

– Simple

– “Mostly” compositional

 Other abstractions exist

Further Reading

 Ankur Taly: Operational Semantics for JavaScript

 Pietro Cenciarelli?, Alexander Knapp, Bernhard

Reus, and Martin Wirsing: An Event-Based

Structural Operational Semantics of Multi-

threaded Java

Alan Jeffrey and Julian Rathke:Java Jr.: Fully

abstract trace semantics for a core Java language

