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Syntax vs. Semantics 

 The pattern of formation 

of sentences or phrases in 

a language 

 Examples 

– Regular expressions 

– Context free grammars 

 The study or science of 

meaning in language 

 Examples 

– Interpreter 

– Compiler 

– Better  mechanisms will  be 

given today 



Benefits of Formal Semantics 
 Programming language design 

– hard- to-define= hard-to-implement=hard-to-use 

 Programming language implementation 

 Programming language understanding 

 Program correctness 

 Program equivalence 

 Compiler Correctness 

 Automatic generation of interpreter 

 But probably not 

– Automatic compiler generation   



Alternative Formal Semantics 

 Operational Semantics 

– The meaning of the program is described 

“operationally” 

– Natural Large Step Operational Semantics 

– Structural Small Step Operational Semantics  

 Denotational Semantics 

– The meaning of the program is an input/output relation 

– Mathematically challenging but complicated 

 Axiomatic Semantics 

– The meaning of the program are observed properties 



int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return z  

} 
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int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 
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} 

[x3, z6, y0]  

[x3, z6, y0] 

 



int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x; 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return 6  

} 

[x3, z6, y0]  

[x3, z6, y0] 

 



f=x. if x = 0 then 1 else x * f(x -1) 

Denotational Semantics 
int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x ; 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return z;  

} 



{x=n} 

  int fact(int x) {  int z, y; 

  z = 1; 

{x=n  z=1} 

  y= x 

{x=n  z=1  y=n} 

   while 

     {x=n   y 0  z=n! / y!} 

  (y>0)  { 

         {x=n  y >0   z=n! / y!} 

          z = z * y ; 

        {x=n  y>0   z=n!/(y-1)!} 

          y = y – 1; 

        {x=n  y 0   z=n!/y!} 

     } return z} {x=n  z=n!} 

Axiomatic Semantics 
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Operational Semantics of 

Arithmetic Expressions 

Aexp  | number  

            | Axp PLUS Aexp 

            | Aexp MINUS Aexp 

            | Aexp MUL Aexp 

            | UMINUS Aexp          

A: Aexp Z 

An = val(n) 

Ae1 PLUS e2 =A e1 + Ae2  

Ae1 MINUS e2 = Ae1 - Ae2  

Ae1 MUL e2 = Ae1 * Ae2  

AUMINUS e = Ae  



Handling Variables 

Aexp  | number  

             | variable 

             | Aexp PLUS Aexp 

             | Aexp MINUS Aexp 

             | Aexp MUL Aexp 

             | UMINUS Exp          

Need the notions of states 

States State = Var  Z 

Lookup in a state s: s x 

Update of a state s: s  [ x  5] 

 



Example State Manipulations 

 [x1, y7, z16] y = 

 [x1, y7, z16] t = 

 [x1, y7, z16][x5] = 

 [x1, y7, z16][x5] x = 

 [x1, y7, z16][x5] y = 



Semantics of arithmetic expressions 

 Assume that arithmetic expressions are side-effect free 

 A Aexp  : State  Z 

 Defined by induction on the syntax tree 

– A n  s = n 

– A x  s = s x 

– A e1 PLUS e2   s = A e1  s  + A  e2   s 

– A e1 MUL e2   s = A e1  s  * A  e2   s  

– A UMINUS e    s = -A  e  s  

 Compositional 

 Properties can be proved by structural induction 



Semantics of Boolean expressions 

 Assume that Boolean expressions are side-effect free 

 T={ff, tt} 

 B Bexp  : State  T 

 Defined by induction on the syntax tree 
– B true  s = tt 

– B false  s = ff 

 

– B e1 = e2   s =  

 

 

 

– B e1  e2   s = 

 

 

 

 

 

– B e1 e2   s =  

tt if A  e1  s = Ae2 s 

ff  if A  e1  s  Ae2 s  
 

tt if B  e1  s = tt and Be2=tt 

ff  if B  e1  s=ff or  Be2 s=ff  
 



The While Programming Language 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S 

 Use parenthesizes for precedence 

 Informal Semantics 

– skip behaves like no-operation 

– Import meaning of arithmetic and Boolean operations 



Example While Program 

y := 1; 

while (x=1) do ( 

 y := y * x; 

 x := x - 1 

) 



General Notations 

 Syntactic categories 

– Var the set of program variables 

– Aexp the set of arithmetic expressions 

– Bexp the set of Boolean expressions 

– Stm set of program statements 

 Semantic categories 

– Natural values N={0, 1, 2, …} 

– Truth values  T={ff, tt} 

– States State = Var  N 

– Lookup in a state s: s x 

– Update of a state s: s  [ x  5] 



Natural Operational Semantics 

 Describe the “overall” effect of program 

constructs 

 Ignores non terminating computations 



Natural Semantics 
 Notations 

– <S, s> - the program statement S is executed on  input state s 

– s representing a terminal (final) state 

 For every statement S, write meaning rules 

<S, i>  o 

“If the statement S is executed on an input state i, it 

terminates and yields an output state o” 

 The meaning of a program P on an input state s is the set 

of outputs states o such that <P, i>  o 

 The meaning of compound statements is defined using the 

meaning immediate constituent statements 

 Inductive definitions 

 Notice that  means large-step here in contrast to the first 

lecture where  means small-step  



Natural Semantics for While 
[assns] <x := a, s>  s[x Aas] 

[skipns] <skip, s>  s 

 [compns] <S1 , s>  s’, <S2, s’>  s’’ 

                  <S1; S2, s>  s’’  

 

 

[iftt
ns] <S1 , s>  s’ 

          <if b then S1 else S2, s>  s’  

 

 if Bbs=tt 

[ifff
ns] <S2 , s>  s’ 

          <if b then S1 else S2, s>  s’  

 

 if Bbs=ff 

axioms 

rules 



Natural Semantics for While 

(More rules) 

[whilett
ns] <S , s>  s’, <while b do S, s’>  s’’ 

                 <while b do S, s>  s’’  

 

 if Bbs=tt 

[whileff
ns]  

                 <while b do S, s>  s 

 

 if Bbs=ff 



A Derivation Tree 

 A “proof” that <S, s> s’ 

 The root of tree is <S, s> s’ 

 Leaves are instances of axioms 

 Internal nodes rules  

– Immediate children match rule premises 

 Simple Example 

 
<skip; x := x +1, s0> s0[x 1]> 

 
  
compns 

< x := x +1, s0> s0[x 1]> 

 assns 

<skip, s0> s0  

 skipns 



An Example Derivation Tree 

<(x :=x+1; y :=x+1) ;  z := y), s0> s0[x 1][y 2][z 2] 

 

 
<x :=x+1; y :=x+1, s0> s0[x 1][y 2] <z :=y,s0[x 1][y 2]>s0[x1][y2][z 2] 

<x :=x+1; s0> s0[x 1] <y :=x+1, s0[x 1]> s0[x 1][y 2] 

compns 

compns 

assns assns 



Top Down Evaluation of Derivation Trees 

 Given a program S and an input state s 

 Find an output state s’ such that 

 <S, s> s’ 

 Start with the root and repeatedly apply rules until 

the axioms are reached 

 Inspect different alternatives in order 

 In While s’ and the derivation tree is unique 



Example of Top Down Tree Construction 

 Input state s such that s x   = 2 

 Factorial program 

<y := 1; while (x=1) do (y := y * x; x := x - 1), s>                                        > 

assns assns 

<y :=1, s>  

<W,               >                                 > 

compns 

<(y := y * x ; x := x  -1, s[y1]>                         >  

<W,                       >             

                             > 

whilett
ns 

whileff
ns 

<y := y * x ; s[y1]>              >  <x := x  - 1 ,            >                         >  

compns 

assns 

s[y  1] 

s[y  1] 

s[y 2][x1] s[y 2] 

s[y 2][x1 

s[y 2][x1] 

s[y 2][x1 

s[y 2][x1] 

s[y 2] 

s[y 2][x1] 



Semantic Equivalence 

 S1 and S2 are semantically equivalent if 

 for all s and s’ 

<S1, s>  s’ if and only if <S2, s>  s’  

 Simple example 

“while b do S” 

is semantically equivalent to: 

“if b then (S ; while b do S) else skip” 



Deterministic Semantics for While  

(Theorem 2.9, page 39) 

  If <S, s>  s1 and <S, s>  s2 then s1=s2 

 The proof uses induction on the shape of 

derivation trees 

– Prove that the property holds for all simple derivation 

trees by showing it holds for axioms 

– Prove that the property holds for all composite trees:  

» For each rule assume that the property holds for its premises 

(induction hypothesis) and prove it holds for the conclusion of 

the rule 



The Semantic Function Sns 

 The meaning of a statement S is defined as a 

partial function from State to State 

 Sns: Stm  (State  State) 

 Sns Ss =  s’ if <S, s> s’ and otherwise 

 Sns Ss  is undefined 

 Examples 

– Sns skips =s 

– Sns x :=1s = s [x 1] 

– Sns while true do skips = undefined 

 



Structural Operational Semantics 
 Emphasizes the individual steps 

 For every statement S, write meaning rules <S, i>   

“If the first step of executing the statement S on  an input 

state i leads to ” 

 Two possibilities for  

–  = <S’, s’> The execution of S is not completed, S’ is 

the remaining computation which need to be performed 

on s’  

–  = o The execution of S has terminated with a final 

state o  

–  is a stuck configuration when there are no transitions 

 The meaning of a program P on an input state s is the set 

of final states that can be executed in arbitrary finite steps 

  means small step as  in the first lecture 

 



Structural Semantics for While 
[asssos] <x := a, s>  s[x Aas] 

[skipsos] <skip, s>  s 

 [comp1
sos] <S1 , s>  <S’1, s’> 

                  <S1; S2, s>   < S’1; S2, s’>  

 

 

axioms 

rules 

[comp2
sos] <S1 , s> s’ 

                  <S1; S2, s>   < S2, s’>  

 

 



Structural Semantics for While 

if construct 

[iftt
sos]  <if b then S1 else S2, s> <S1, s>  

 

if Bbs=tt 

[ifff
os]  <if b then S1 else S2, s> <S2, s>  

 

if Bbs=ff 



Structural Semantics for While 

while construct 

[whilesos]  <while b do S, s>  

                 <if b then (S; while b do S) else skip, s>                    

 



Derivation Sequences  
 A finite derivation sequence  starting at <S, s> 

0, 1, 2 …, k  such that 

– 0=<S, s>  

– i  i+1 

– k is either stuck configuration or a final state 

 An infinite derivation sequence  starting at <S, s> 

0, 1, 2 …  such that 

– 0=<S, s>  

– i  i+1 

 0 
i i  in i steps 

 0 
* i  in finite number of steps 

 For each step there is a derivation tree 



Example 

 Let s0 such that  

s0 x = 5  

and  

s0 y = 7 

 S = (z:=x; x := y);  y := z 



Factorial Program 
 Input  state s such that s x   = 3 

 y := 1; while (x=1) do (y := y * x; x := x - 1) 
<y :=1 ; W, s> 

 <W, s[y 1]> 

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 1]> 

 < ((y := y * x ; x := x – 1); W), s[y 1]> 

 <(x := x – 1 ; W), s[y  3]> 

 < W , s[y  3][x  2]> 

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 3][x  2]> 

 < ((y := y * x ; x := x – 1); W), s[y 3] [x  2] > 

 <(x := x – 1 ; W) , s[y  6] [x  2] > 

 < W, s[y  6][x  1]> 

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 6][x  1]> 

 <skip, s[y 6][x  1]>  s[y 6][x  1]  

 

 



Program Termination 

 Given a statement S and input s 

– S terminates on s if there exists a finite derivation 

sequence starting at <S, s> 

– S terminates successfully on s if there exists a finite 

derivation sequence starting at <S, s> leading to a final 

state 

– S loops on s if there exists an infinite derivation 

sequence starting at <S, s> 



Properties of the Semantics 
 S1 and S2 are semantically equivalent if: 

–  for all s and  which is either final or stuck 

<S1, s> *  if and only if <S2, s> *   

– there is an infinite derivation sequence starting at  

<S1, s> if and only if there is an infinite derivation 

sequence starting at <S2, s>  

 Deterministic 

– If <S, s> * s1 and <S, s> * s2 then s1=s2 

 The execution of S1; S2  on an input can be split 

into two parts: 

– execute S1 on s yielding a state s’ 

– execute S2 on s’  



Sequential Composition 
  If <S1; S2, s>  k s’’ then there exists a state s’ 

and numbers k1 and k2  such that 

– <S1, s>  k1 s’ 

– <S2, s’>  k2 s’’ 

– and  k = k1  + k2 

 The proof uses induction on the length of 

derivation sequences 

– Prove that the property holds for all derivation 

sequences of length 0 

– Prove that the property holds for all other derivation 

sequences:  

» Show that the property holds for sequences of length k+1 

using the fact it holds on all sequences of length k (induction 

hypothesis) 



The Semantic Function Ssos 

 The meaning of a statement S is defined as a 

partial function from State to State 

 Ssos: Stm  (State  State) 

 SsosSs =  s’ if <S, s> *s’ and otherwise 

 Ssos Ss  is undefined 

 



An Equivalence Result 

 For every statement S of the While language 

– SnatS = SsosS 



Extensions to While 

 Abort statement (like C exit w/o return value) 

 Non-determinism 

 Parallelism 

 Local Variables 

 Procedures 

– Static Scope 

– Dynamic scope 



The While Programming Language 

with Abort 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S| abort 

 Abort terminates the execution 

 No new rules are needed  in natural and structural 

operational semantics 

 Statements 

– if x = 0 then abort else y := y / x 

– skip 

– abort 

– while true do skip  



Conclusion 

 The natural semantics cannot distinguish between 

looping and abnormal termination (unless the 

states are modified)  

 In the structural operational semantics looping is 

reflected by infinite derivations and abnormal 

termination is reflected by stuck configuration 



The While Programming Language 

with Non-Determinism 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S| S1 or S2  

 Either S1 or S2 is executed 

 Example 

– x := 1 or (x :=2 ; x := x+2) 

 



[or1
ns] <S1 , s>  s’ 

                  <S1 or S2, s>  s’ 

 

 

The While Programming 

Language with Non-Determinism 

Natural Semantics 

[or2
ns] <S2 , s>  s’ 

                  <S1 or S2, s>  s’ 

 

 



The While Programming 

Language with Non-Determinism 

Structural Semantics 



The While Programming 

Language with Non-Determinism 

Examples 

  x := 1 or (x :=2 ; x := x+2) 

 (while true do skip) or (x :=2 ; x := x+2) 



Conclusion 

 In the natural semantics non-determinism will 

suppress looping if possible (mnemonic)  

 In the structural operational semantics non-

determinism does suppress not termination 

configuration 



The While Programming Language 

with Parallel Constructs 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S| S1 par S2  

 All the interleaving of S1 or S2 are executed 

 Example 

– x := 1 par (x :=2 ; x := x+2) 

 



The While Programming Language 

with Parallel Constructs 

Structural Semantics 

[par1
sos] <S1 , s>  <S’1, s’> 

                  <S1 par S2, s>   < S’1par S2, s’>  

 

 

[par2
sos] <S1 , s>  s’ 

               <S1 par S2, s>   < S2, s’>  

 

 

[par3
sos] <S2 , s>  <S’2, s’> 

                  <S1 par S2, s>   < S1par S’2, s’>  

 

 

[par4
sos] <S2 , s>  s’ 

               <S1 par S2, s>   < S1, s’>  

 

 



The While Programming Language 

with Parallel Constructs 

Natural Semantics 



Conclusion 

 In the natural semantics immediate constituent is 

an atomic entity so we cannot express interleaving 

of computations  

 In the structural operational semantics we 

concentrate on small steps so interleaving of 

computations can be easily expressed 



The While Programming Language 

with local variables and procedures 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S|  

        begin Dv Dp S end | call p 

Dv ::= var x := a ; Dv |  

Dp ::= proc p is S ; Dp |  

 

 



Conclusions Local Variables 

 The natural semantics can “remember” local states 

 Need to introduce stack or heap into state of the 

structural semantics 



Summary 

 Operational Semantics is useful for: 

– Language Designers 

– Compiler/Interpreter Writer 

– Programmers 

 Natural operational semantics is a useful 

abstraction 

– Can handle many PL features 

– No stack/ program counter 

– Simple 

– “Mostly” compositional 

 Other abstractions exist 
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