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Syntax vs. Semantics 

 The pattern of formation 

of sentences or phrases in 

a language 

 Examples 

– Regular expressions 

– Context free grammars 

 The study or science of 

meaning in language 

 Examples 

– Interpreter 

– Compiler 

– Better  mechanisms will  be 

given today 



Benefits of Formal Semantics 
 Programming language design 

– hard- to-define= hard-to-implement=hard-to-use 

 Programming language implementation 

 Programming language understanding 

 Program correctness 

 Program equivalence 

 Compiler Correctness 

 Automatic generation of interpreter 

 But probably not 

– Automatic compiler generation   



Alternative Formal Semantics 

 Operational Semantics 

– The meaning of the program is described 

“operationally” 

– Natural Large Step Operational Semantics 

– Structural Small Step Operational Semantics  

 Denotational Semantics 

– The meaning of the program is an input/output relation 

– Mathematically challenging but complicated 

 Axiomatic Semantics 

– The meaning of the program are observed properties 



int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return z  

} 

[x3] 
 

[x3, z, y] 
 

[x3, z1, y]  

[x3, z1, y3] 
 

[x3, z1, y3] 

 

[x3, z3, y3] 

 

[x3, z3, y2]  



int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return z  

} 

[x3, z3, y2]  

[x3, z6, y2] 

 

[x3, z6, y1]  

[x3, z3, y2] 

 



int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return z  

} 

[x3, z6, y1]  

[x3, z6, y1] 

 

[x3, z6, y0]  

[x3, z6, y1] 

 



int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return z  

} 

[x3, z6, y0]  

[x3, z6, y0] 

 



int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x; 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return 6  

} 

[x3, z6, y0]  

[x3, z6, y0] 

 



f=x. if x = 0 then 1 else x * f(x -1) 

Denotational Semantics 
int fact(int x) { 

  int z, y; 

  z = 1; 

  y= x ; 

   while (y>0)   { 

          z = z * y ; 

          y = y – 1; 

    } 

return z;  

} 



{x=n} 

  int fact(int x) {  int z, y; 

  z = 1; 

{x=n  z=1} 

  y= x 

{x=n  z=1  y=n} 

   while 

     {x=n   y 0  z=n! / y!} 

  (y>0)  { 

         {x=n  y >0   z=n! / y!} 

          z = z * y ; 

        {x=n  y>0   z=n!/(y-1)!} 

          y = y – 1; 

        {x=n  y 0   z=n!/y!} 

     } return z} {x=n  z=n!} 

Axiomatic Semantics 



Operational Semantics 

Natural Large Step Semantics 
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Operational Semantics of 

Arithmetic Expressions 

Aexp  | number  

            | Axp PLUS Aexp 

            | Aexp MINUS Aexp 

            | Aexp MUL Aexp 

            | UMINUS Aexp          

A: Aexp Z 

An = val(n) 

Ae1 PLUS e2 =A e1 + Ae2  

Ae1 MINUS e2 = Ae1 - Ae2  

Ae1 MUL e2 = Ae1 * Ae2  

AUMINUS e = Ae  



Handling Variables 

Aexp  | number  

             | variable 

             | Aexp PLUS Aexp 

             | Aexp MINUS Aexp 

             | Aexp MUL Aexp 

             | UMINUS Exp          

Need the notions of states 

States State = Var  Z 

Lookup in a state s: s x 

Update of a state s: s  [ x  5] 

 



Example State Manipulations 

 [x1, y7, z16] y = 

 [x1, y7, z16] t = 

 [x1, y7, z16][x5] = 

 [x1, y7, z16][x5] x = 

 [x1, y7, z16][x5] y = 



Semantics of arithmetic expressions 

 Assume that arithmetic expressions are side-effect free 

 A Aexp  : State  Z 

 Defined by induction on the syntax tree 

– A n  s = n 

– A x  s = s x 

– A e1 PLUS e2   s = A e1  s  + A  e2   s 

– A e1 MUL e2   s = A e1  s  * A  e2   s  

– A UMINUS e    s = -A  e  s  

 Compositional 

 Properties can be proved by structural induction 



Semantics of Boolean expressions 

 Assume that Boolean expressions are side-effect free 

 T={ff, tt} 

 B Bexp  : State  T 

 Defined by induction on the syntax tree 
– B true  s = tt 

– B false  s = ff 

 

– B e1 = e2   s =  

 

 

 

– B e1  e2   s = 

 

 

 

 

 

– B e1 e2   s =  

tt if A  e1  s = Ae2 s 

ff  if A  e1  s  Ae2 s  
 

tt if B  e1  s = tt and Be2=tt 

ff  if B  e1  s=ff or  Be2 s=ff  
 



The While Programming Language 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S 

 Use parenthesizes for precedence 

 Informal Semantics 

– skip behaves like no-operation 

– Import meaning of arithmetic and Boolean operations 



Example While Program 

y := 1; 

while (x=1) do ( 

 y := y * x; 

 x := x - 1 

) 



General Notations 

 Syntactic categories 

– Var the set of program variables 

– Aexp the set of arithmetic expressions 

– Bexp the set of Boolean expressions 

– Stm set of program statements 

 Semantic categories 

– Natural values N={0, 1, 2, …} 

– Truth values  T={ff, tt} 

– States State = Var  N 

– Lookup in a state s: s x 

– Update of a state s: s  [ x  5] 



Natural Operational Semantics 

 Describe the “overall” effect of program 

constructs 

 Ignores non terminating computations 



Natural Semantics 
 Notations 

– <S, s> - the program statement S is executed on  input state s 

– s representing a terminal (final) state 

 For every statement S, write meaning rules 

<S, i>  o 

“If the statement S is executed on an input state i, it 

terminates and yields an output state o” 

 The meaning of a program P on an input state s is the set 

of outputs states o such that <P, i>  o 

 The meaning of compound statements is defined using the 

meaning immediate constituent statements 

 Inductive definitions 

 Notice that  means large-step here in contrast to the first 

lecture where  means small-step  



Natural Semantics for While 
[assns] <x := a, s>  s[x Aas] 

[skipns] <skip, s>  s 

 [compns] <S1 , s>  s’, <S2, s’>  s’’ 

                  <S1; S2, s>  s’’  

 

 

[iftt
ns] <S1 , s>  s’ 

          <if b then S1 else S2, s>  s’  

 

 if Bbs=tt 

[ifff
ns] <S2 , s>  s’ 

          <if b then S1 else S2, s>  s’  

 

 if Bbs=ff 

axioms 

rules 



Natural Semantics for While 

(More rules) 

[whilett
ns] <S , s>  s’, <while b do S, s’>  s’’ 

                 <while b do S, s>  s’’  

 

 if Bbs=tt 

[whileff
ns]  

                 <while b do S, s>  s 

 

 if Bbs=ff 



A Derivation Tree 

 A “proof” that <S, s> s’ 

 The root of tree is <S, s> s’ 

 Leaves are instances of axioms 

 Internal nodes rules  

– Immediate children match rule premises 

 Simple Example 

 
<skip; x := x +1, s0> s0[x 1]> 

 
  
compns 

< x := x +1, s0> s0[x 1]> 

 assns 

<skip, s0> s0  

 skipns 



An Example Derivation Tree 

<(x :=x+1; y :=x+1) ;  z := y), s0> s0[x 1][y 2][z 2] 

 

 
<x :=x+1; y :=x+1, s0> s0[x 1][y 2] <z :=y,s0[x 1][y 2]>s0[x1][y2][z 2] 

<x :=x+1; s0> s0[x 1] <y :=x+1, s0[x 1]> s0[x 1][y 2] 

compns 

compns 

assns assns 



Top Down Evaluation of Derivation Trees 

 Given a program S and an input state s 

 Find an output state s’ such that 

 <S, s> s’ 

 Start with the root and repeatedly apply rules until 

the axioms are reached 

 Inspect different alternatives in order 

 In While s’ and the derivation tree is unique 



Example of Top Down Tree Construction 

 Input state s such that s x   = 2 

 Factorial program 

<y := 1; while (x=1) do (y := y * x; x := x - 1), s>                                        > 

assns assns 

<y :=1, s>  

<W,               >                                 > 

compns 

<(y := y * x ; x := x  -1, s[y1]>                         >  

<W,                       >             

                             > 

whilett
ns 

whileff
ns 

<y := y * x ; s[y1]>              >  <x := x  - 1 ,            >                         >  

compns 

assns 

s[y  1] 

s[y  1] 

s[y 2][x1] s[y 2] 

s[y 2][x1 

s[y 2][x1] 

s[y 2][x1 

s[y 2][x1] 

s[y 2] 

s[y 2][x1] 



Semantic Equivalence 

 S1 and S2 are semantically equivalent if 

 for all s and s’ 

<S1, s>  s’ if and only if <S2, s>  s’  

 Simple example 

“while b do S” 

is semantically equivalent to: 

“if b then (S ; while b do S) else skip” 



Deterministic Semantics for While  

(Theorem 2.9, page 39) 

  If <S, s>  s1 and <S, s>  s2 then s1=s2 

 The proof uses induction on the shape of 

derivation trees 

– Prove that the property holds for all simple derivation 

trees by showing it holds for axioms 

– Prove that the property holds for all composite trees:  

» For each rule assume that the property holds for its premises 

(induction hypothesis) and prove it holds for the conclusion of 

the rule 



The Semantic Function Sns 

 The meaning of a statement S is defined as a 

partial function from State to State 

 Sns: Stm  (State  State) 

 Sns Ss =  s’ if <S, s> s’ and otherwise 

 Sns Ss  is undefined 

 Examples 

– Sns skips =s 

– Sns x :=1s = s [x 1] 

– Sns while true do skips = undefined 

 



Structural Operational Semantics 
 Emphasizes the individual steps 

 For every statement S, write meaning rules <S, i>   

“If the first step of executing the statement S on  an input 

state i leads to ” 

 Two possibilities for  

–  = <S’, s’> The execution of S is not completed, S’ is 

the remaining computation which need to be performed 

on s’  

–  = o The execution of S has terminated with a final 

state o  

–  is a stuck configuration when there are no transitions 

 The meaning of a program P on an input state s is the set 

of final states that can be executed in arbitrary finite steps 

  means small step as  in the first lecture 

 



Structural Semantics for While 
[asssos] <x := a, s>  s[x Aas] 

[skipsos] <skip, s>  s 

 [comp1
sos] <S1 , s>  <S’1, s’> 

                  <S1; S2, s>   < S’1; S2, s’>  

 

 

axioms 

rules 

[comp2
sos] <S1 , s> s’ 

                  <S1; S2, s>   < S2, s’>  

 

 



Structural Semantics for While 

if construct 

[iftt
sos]  <if b then S1 else S2, s> <S1, s>  

 

if Bbs=tt 

[ifff
os]  <if b then S1 else S2, s> <S2, s>  

 

if Bbs=ff 



Structural Semantics for While 

while construct 

[whilesos]  <while b do S, s>  

                 <if b then (S; while b do S) else skip, s>                    

 



Derivation Sequences  
 A finite derivation sequence  starting at <S, s> 

0, 1, 2 …, k  such that 

– 0=<S, s>  

– i  i+1 

– k is either stuck configuration or a final state 

 An infinite derivation sequence  starting at <S, s> 

0, 1, 2 …  such that 

– 0=<S, s>  

– i  i+1 

 0 
i i  in i steps 

 0 
* i  in finite number of steps 

 For each step there is a derivation tree 



Example 

 Let s0 such that  

s0 x = 5  

and  

s0 y = 7 

 S = (z:=x; x := y);  y := z 



Factorial Program 
 Input  state s such that s x   = 3 

 y := 1; while (x=1) do (y := y * x; x := x - 1) 
<y :=1 ; W, s> 

 <W, s[y 1]> 

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 1]> 

 < ((y := y * x ; x := x – 1); W), s[y 1]> 

 <(x := x – 1 ; W), s[y  3]> 

 < W , s[y  3][x  2]> 

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 3][x  2]> 

 < ((y := y * x ; x := x – 1); W), s[y 3] [x  2] > 

 <(x := x – 1 ; W) , s[y  6] [x  2] > 

 < W, s[y  6][x  1]> 

 <if   (x =1) then skip else ((y := y * x ; x := x – 1); W), s[y 6][x  1]> 

 <skip, s[y 6][x  1]>  s[y 6][x  1]  

 

 



Program Termination 

 Given a statement S and input s 

– S terminates on s if there exists a finite derivation 

sequence starting at <S, s> 

– S terminates successfully on s if there exists a finite 

derivation sequence starting at <S, s> leading to a final 

state 

– S loops on s if there exists an infinite derivation 

sequence starting at <S, s> 



Properties of the Semantics 
 S1 and S2 are semantically equivalent if: 

–  for all s and  which is either final or stuck 

<S1, s> *  if and only if <S2, s> *   

– there is an infinite derivation sequence starting at  

<S1, s> if and only if there is an infinite derivation 

sequence starting at <S2, s>  

 Deterministic 

– If <S, s> * s1 and <S, s> * s2 then s1=s2 

 The execution of S1; S2  on an input can be split 

into two parts: 

– execute S1 on s yielding a state s’ 

– execute S2 on s’  



Sequential Composition 
  If <S1; S2, s>  k s’’ then there exists a state s’ 

and numbers k1 and k2  such that 

– <S1, s>  k1 s’ 

– <S2, s’>  k2 s’’ 

– and  k = k1  + k2 

 The proof uses induction on the length of 

derivation sequences 

– Prove that the property holds for all derivation 

sequences of length 0 

– Prove that the property holds for all other derivation 

sequences:  

» Show that the property holds for sequences of length k+1 

using the fact it holds on all sequences of length k (induction 

hypothesis) 



The Semantic Function Ssos 

 The meaning of a statement S is defined as a 

partial function from State to State 

 Ssos: Stm  (State  State) 

 SsosSs =  s’ if <S, s> *s’ and otherwise 

 Ssos Ss  is undefined 

 



An Equivalence Result 

 For every statement S of the While language 

– SnatS = SsosS 



Extensions to While 

 Abort statement (like C exit w/o return value) 

 Non-determinism 

 Parallelism 

 Local Variables 

 Procedures 

– Static Scope 

– Dynamic scope 



The While Programming Language 

with Abort 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S| abort 

 Abort terminates the execution 

 No new rules are needed  in natural and structural 

operational semantics 

 Statements 

– if x = 0 then abort else y := y / x 

– skip 

– abort 

– while true do skip  



Conclusion 

 The natural semantics cannot distinguish between 

looping and abnormal termination (unless the 

states are modified)  

 In the structural operational semantics looping is 

reflected by infinite derivations and abnormal 

termination is reflected by stuck configuration 



The While Programming Language 

with Non-Determinism 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S| S1 or S2  

 Either S1 or S2 is executed 

 Example 

– x := 1 or (x :=2 ; x := x+2) 

 



[or1
ns] <S1 , s>  s’ 

                  <S1 or S2, s>  s’ 

 

 

The While Programming 

Language with Non-Determinism 

Natural Semantics 

[or2
ns] <S2 , s>  s’ 

                  <S1 or S2, s>  s’ 

 

 



The While Programming 

Language with Non-Determinism 

Structural Semantics 



The While Programming 

Language with Non-Determinism 

Examples 

  x := 1 or (x :=2 ; x := x+2) 

 (while true do skip) or (x :=2 ; x := x+2) 



Conclusion 

 In the natural semantics non-determinism will 

suppress looping if possible (mnemonic)  

 In the structural operational semantics non-

determinism does suppress not termination 

configuration 



The While Programming Language 

with Parallel Constructs 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S| S1 par S2  

 All the interleaving of S1 or S2 are executed 

 Example 

– x := 1 par (x :=2 ; x := x+2) 

 



The While Programming Language 

with Parallel Constructs 

Structural Semantics 

[par1
sos] <S1 , s>  <S’1, s’> 

                  <S1 par S2, s>   < S’1par S2, s’>  

 

 

[par2
sos] <S1 , s>  s’ 

               <S1 par S2, s>   < S2, s’>  

 

 

[par3
sos] <S2 , s>  <S’2, s’> 

                  <S1 par S2, s>   < S1par S’2, s’>  

 

 

[par4
sos] <S2 , s>  s’ 

               <S1 par S2, s>   < S1, s’>  

 

 



The While Programming Language 

with Parallel Constructs 

Natural Semantics 



Conclusion 

 In the natural semantics immediate constituent is 

an atomic entity so we cannot express interleaving 

of computations  

 In the structural operational semantics we 

concentrate on small steps so interleaving of 

computations can be easily expressed 



The While Programming Language 

with local variables and procedures 

 Abstract syntax 

S::= x  := a | skip | S1 ; S2 | if b then S1 else S2 | 

        while b do S|  

        begin Dv Dp S end | call p 

Dv ::= var x := a ; Dv |  

Dp ::= proc p is S ; Dp |  

 

 



Conclusions Local Variables 

 The natural semantics can “remember” local states 

 Need to introduce stack or heap into state of the 

structural semantics 



Summary 

 Operational Semantics is useful for: 

– Language Designers 

– Compiler/Interpreter Writer 

– Programmers 

 Natural operational semantics is a useful 

abstraction 

– Can handle many PL features 

– No stack/ program counter 

– Simple 

– “Mostly” compositional 

 Other abstractions exist 

 



Further Reading 

 Ankur Taly: Operational Semantics for JavaScript 

 Pietro Cenciarelli?, Alexander Knapp, Bernhard 

Reus, and Martin Wirsing: An Event-Based 

Structural Operational Semantics of Multi-

threaded Java 

Alan Jeffrey and Julian Rathke:Java Jr.: Fully 

abstract trace semantics for a core Java language 


