Tentative Schedule

$6 / 3$	introduction
$13 / 3$	javascript
$20 / 3$	Haskel
$27 / 3$	No class
$3 / 4$	Operational Semantics
$17 / 4$	Denotational Semantics
$24 / 4$	Axiomatic Semantics
$2 / 5$	Exception and continuation
$8 / 5,15 / 5,22 / 5$	Type Systems
$29 / 5,5 / 6,12 / 6$	Concurrency
$19 / 6$	Domain Specific Languages
$22 / 6$	Summary class

Operational Semantics

Mooly Sagiv
 Semantics with Applications

 Chapter 2

 Chapter 2}
H. Nielson and F. Nielson
http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html

The Formal Semantics of Programming Languages
An Introduction
Glynn Winskel

Syntax vs. Semantics

- The pattern of formation of sentences or phrases in a language
- Examples
- Regular expressions
- Context free grammars
- The study or science of meaning in language
- Examples
- Interpreter
- Compiler
- Better mechanisms will be given today

Benefits of Formal Semantics

- Programming language design
- hard- to-define= hard-to-implement=hard-to-use
- Programming language implementation
- Programming language understanding
- Program correctness
- Program equivalence
- Compiler Correctness
- Automatic generation of interpreter
- But probably not
- Automatic compiler generation

Alternative Formal Semantics

- Operational Semantics
- The meaning of the program is described "operationally"
- Natural Large Step Operational Semantics
- Structural Small Step Operational Semantics
- Denotational Semantics
- The meaning of the program is an input/output relation
- Mathematically challenging but complicated
- Axiomatic Semantics
- The meaning of the program are observed properties

$$
\begin{aligned}
& {[\mathrm{x} \mapsto 3] } \\
\operatorname{int} \operatorname{fact}(\operatorname{int} \mathrm{x})\{ & {[\mathrm{x} \mapsto 3, \mathrm{z} \mapsto \perp, \mathrm{y} \mapsto \perp] }
\end{aligned}
$$ int z, y;

$\mathrm{z}=1$; $[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 1, \mathrm{y} \longmapsto \perp]$
$\mathrm{y}=\mathrm{x}$ $[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 1, \mathrm{y} \longmapsto 3]$
while ($\mathrm{y}>0$) \quad \{
$[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 1, \mathrm{y} \longmapsto 3]$

$$
\mathrm{z}=\mathrm{z} * \overline{\mathrm{y} ;}[\mathrm{x} \mapsto 3, \mathrm{z} \longmapsto 3, \mathrm{y} \longmapsto 3]
$$

$$
\mathrm{y}=\mathrm{y}-1
$$

\}

$$
[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 3, \mathrm{y} \longmapsto 2]
$$

return z
int fact(int $x)\{$
int z, y;
$\mathrm{z}=1 ;$
$\mathrm{y}=\mathrm{x}$
$[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 3, \mathrm{y} \longmapsto 2]$
while $(\bar{y}>0) \quad$ \{ $[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 3, \mathrm{y} \longmapsto 2]$

$$
\mathrm{z}=\mathrm{z} * \frac{\mathrm{y} ;}{1}[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 6, \mathrm{y} \longmapsto 2]
$$

$$
y=y-1
$$

\}

$$
[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 6, \mathrm{y} \longmapsto 1]
$$

return z
\}
int fact(int $x)\{$
int z, y;
$\mathrm{z}=1 ;$
$\mathrm{y}=\mathrm{x}$
$[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 6, \mathrm{y} \longmapsto 1]$
while $(\overline{\mathrm{y}}>0) \quad\{\quad[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 6, \mathrm{y} \longmapsto 1]$

$$
\mathrm{z}=\mathrm{z} * \widetilde{\mathrm{y} ;}[\mathrm{x} \mapsto 3, \mathrm{z} \mapsto 6, \mathrm{y} \longmapsto 1]
$$

$$
y=y-1
$$

\}

$$
[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 6, \mathrm{y} \longmapsto 0]
$$

return z
\}
int fact(int $x)\{$
int z, y;
$\mathrm{z}=1 ;$
$\mathrm{y}=\mathrm{x}$
$[\mathrm{x} \mapsto 3, \mathrm{z} \mapsto 6, \mathrm{y} \mapsto 0]$
while $(\overline{\mathrm{y}}>0) \quad$ \{

$$
\begin{aligned}
& \mathrm{z}=\mathrm{z} * \mathrm{y} \\
& \mathrm{y}=\mathrm{y}-1
\end{aligned}
$$

\}
return $\mathrm{z} \longrightarrow[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 6, \mathrm{y} \longmapsto 0]$
\}
int fact(int $x)\{$
int z, y;
$\mathrm{z}=1 ;$
$\mathrm{y}=\mathrm{x}$;
$[\mathrm{x} \mapsto 3, \mathrm{z} \mapsto 6, \mathrm{y} \mapsto 0]$
while $(\overline{\mathrm{y}}>0) \quad\{$

$$
\begin{aligned}
& \mathrm{z}=\mathrm{z} * \mathrm{y} \\
& \mathrm{y}=\mathrm{y}-1
\end{aligned}
$$

\}
return $6 \longrightarrow[\mathrm{x} \longmapsto 3, \mathrm{z} \longmapsto 6, \mathrm{y} \longmapsto 0]$
\}

Denotational Semantics

int fact(int $x)\{$
int z, y;
$\mathrm{z}=1 ;$
$\mathrm{y}=\mathrm{x}$;
$f=\lambda x$. if $x=0$ then 1 else $x * f(x-1)$
while ($\mathrm{y}>0$) $\quad\{$

$$
\begin{aligned}
& \mathrm{z}=\mathrm{z} * \mathrm{y} \\
& \mathrm{y}=\mathrm{y}-1
\end{aligned}
$$

\}
return z;
\}
$\{x=n\}$
int fact(int $x)\{$ int z, y;

Axiomatic Semantics

$\mathrm{z}=1$;
$\{\mathrm{x}=\mathrm{n} \wedge \mathrm{z}=1\}$
$y=x$
$\{\mathrm{x}=\mathrm{n} \wedge \mathrm{z}=1 \wedge \mathrm{y}=\mathrm{n}\}$
while

$$
\begin{aligned}
& \begin{array}{c}
\{\mathrm{x}=\mathrm{n} \wedge \mathrm{y} \geq 0 \wedge \mathrm{z}=\mathrm{n}!/ \mathrm{y}!\} \\
(\mathrm{y}>0)
\end{array} \\
& \qquad \begin{array}{l}
\{\mathrm{x}=\mathrm{n} \wedge \mathrm{y}>0 \wedge \mathrm{z}=\mathrm{n}!/ \mathrm{y}!\} \\
\mathrm{z}=\mathrm{z} * \mathrm{y}
\end{array} \\
& \{\mathrm{x}=\mathrm{n} \wedge \mathrm{y}>0 \wedge \mathrm{z}=\mathrm{n}!/(\mathrm{y}-1)!\} \\
& \mathrm{y}=\mathrm{y}-1 ; \\
& \{\mathrm{x}=\mathrm{n} \wedge \mathrm{y} \geq 0 \wedge \mathrm{z}=\mathrm{n}!/ \mathrm{y}!\} \\
& \} \text { return } \mathrm{z}\}\{\mathrm{x}=\mathrm{n} \wedge \mathrm{z}=\mathrm{n}!\}
\end{aligned}
$$

Operational Semantics

Natural Large Step Semantics

Operational Semantics of
 Arithmetic Expressions

Aexp \rightarrow | number
|Axp PLUS Aexp
| Aexp MINUS Aexp
$A \llbracket \rrbracket: ~ A \exp \rightarrow Z$
| Aexp MUL Aexp
| UMINUS Aexp

$$
\mathrm{A} \llbracket \mathrm{n} \rrbracket=\operatorname{val}(\mathrm{n})
$$

$\mathrm{A} \llbracket \mathrm{e}_{1}$ PLUS $\mathrm{e}_{2} \rrbracket=\mathrm{A} \llbracket \mathrm{e}_{1} \rrbracket+\mathrm{A} \llbracket \mathrm{e}_{2} \rrbracket$
$A \llbracket e_{1} \operatorname{MINUS} e_{2} \rrbracket=A \llbracket e_{1} \rrbracket-A \llbracket e_{2} \rrbracket$
$\mathrm{A} \llbracket \mathrm{e}_{1} \mathrm{MUL} \mathrm{e}_{2} \rrbracket=\mathrm{A} \llbracket \mathrm{e}_{1} \rrbracket * \mathrm{~A} \llbracket \mathrm{e}_{2} \rrbracket$
$\mathrm{A} \llbracket \mathrm{UMINUS} \mathrm{e} \rrbracket=\mathrm{A} \llbracket \mathrm{e} \rrbracket$

Handling Variables

Aexp $\rightarrow \mid$ number
| variable
| Aexp PLUS Aexp
| Aexp MINUS Aexp
| Aexp MUL Aexp
| UMINUS Exp
\bullet Need the notions of states

- States State $=$ Var \rightarrow Z

Lookup in a state s: s x
\bullet Update of a state s: s [x $\rightarrow 5$]

Example State Manipulations

$\bullet[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 16] \mathrm{y}=$
$-[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 16] \mathrm{t}=$
$\bullet[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 16][\mathrm{x} \mapsto 5]=$
$-[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 16][\mathrm{x} \mapsto 5] \mathrm{x}=$
$\bullet[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 7, \mathrm{z} \mapsto 16][\mathrm{x} \mapsto 5] \mathrm{y}=$

Semantics of arithmetic expressions

－Assume that arithmetic expressions are side－effect free
-A －Aexp $\rrbracket:$ State \rightarrow Z

- Defined by induction on the syntax tree
$-A \llbracket n \rrbracket s=n$
$-\mathrm{A} \llbracket \mathrm{x} \rrbracket \mathrm{s}=\mathrm{sx}$
$-A \llbracket e_{1} \operatorname{PLUS} e_{2} \rrbracket s=A \llbracket e_{1} \rrbracket s+A \llbracket e_{2} \rrbracket s$
$-\mathrm{A} \llbracket \mathrm{e}_{1} \mathrm{MULe}_{2} \rrbracket \mathrm{~s}=\mathrm{A} \llbracket \mathrm{e}_{1} \rrbracket \mathrm{~s} * \mathrm{~A} \llbracket \mathrm{e}_{2} \rrbracket \mathrm{~s}$
－A【UMINUS e 】s＝－A【e】s
－Compositional
－Properties can be proved by structural induction

Semantics of Boolean expressions

－Assume that Boolean expressions are side－effect free
－ $\mathrm{T}=\{\mathrm{ff}, \mathrm{tt}\}$
－B【Bexp】：State \rightarrow T
－Defined by induction on the syntax tree
－ $\mathrm{B} \llbracket$ true $\rrbracket \mathrm{s}=\mathrm{tt}$
－ B 【false $\rrbracket \mathrm{s}=\mathrm{ff}$
$-B \llbracket e_{1}=e_{2} \rrbracket \mathrm{~s}=\left\{\begin{array}{l}\mathrm{tt} \text { if } \mathrm{A} \llbracket \mathrm{e}_{1} \rrbracket \mathrm{~s}=\mathrm{A} \llbracket \mathrm{e}_{2} \rrbracket \mathrm{~s} \\ \text { ff if } A \llbracket \mathrm{e}_{1} \rrbracket \mathrm{~s} \neq \mathrm{A} \llbracket \mathrm{e}_{2} \rrbracket \mathrm{~s}\end{array}\right.$
$-B \llbracket e_{1} \wedge e_{2} \rrbracket s=\left\{\begin{array}{l}t t \text { if } B \llbracket e_{1} \rrbracket s=t t \text { and } B \llbracket e_{2} \rrbracket=t t \\ \text { ff if } B \llbracket e_{1} \rrbracket s=f f \text { or } B \llbracket e_{2} \rrbracket s=f f\end{array}\right.$
$-\mathrm{B} \llbracket \mathrm{e}_{1} \geq \mathrm{e}_{2} \rrbracket \mathrm{~s}=$

The While Programming Language

- Abstract syntax $S::=x:=a \mid$ skip $\left|S_{1} ; S_{2}\right|$ if b then S_{1} else $S_{2} \mid$ while b do S
- Use parenthesizes for precedence
- Informal Semantics
- skip behaves like no-operation
- Import meaning of arithmetic and Boolean operations

Example While Program

$$
\begin{aligned}
& \mathrm{y}:=1 \\
& \text { while } \neg(\mathrm{x}=1) \text { do }(\\
& \qquad \mathrm{y}:=\mathrm{y} * \mathrm{x} ; \\
& \mathrm{x}
\end{aligned} \mathrm{:}=\mathrm{x}-1 .
$$

)

General Notations

- Syntactic categories
- Var the set of program variables
- Aexp the set of arithmetic expressions
- Bexp the set of Boolean expressions
- Stm set of program statements
- Semantic categories
- Natural values $\mathrm{N}=\{0,1,2, \ldots\}$
- Truth values $\mathrm{T}=\{\mathrm{ff}, \mathrm{tt}\}$
- States State $=$ Var $\rightarrow \mathrm{N}$
- Lookup in a state s: s x
- Update of a state $s: s \quad[x \mapsto 5]$

Natural Operational Semantics

- Describe the "overall" effect of program constructs
- Ignores non terminating computations

Natural Semantics

- Notations
- <S, s> - the program statement S is executed on input state s
-s representing a terminal (final) state
- For every statement S , write meaning rules
$<\mathrm{S}, i>\rightarrow o$
"If the statement S is executed on an input state i, it terminates and yields an output state o "
- The meaning of a program P on an input state s is the set of outputs states o such that $\langle\mathrm{P}, i\rangle \rightarrow o$
- The meaning of compound statements is defined using the meaning immediate constituent statements
- Inductive definitions
- Notice that \rightarrow means large-step here in contrast to the first lecture where \rightarrow means small-step

Natural Semantics for While

$$
\left[\mathrm{ass}_{\mathrm{ns}}\right]<\mathrm{x}:=\mathrm{a}, \mathrm{~s}>\rightarrow \mathrm{s}[\mathrm{x} \mapsto \mathbf{A} \llbracket \mathrm{a} \rrbracket \mathrm{~s}]
$$

axioms
$\left[\right.$ skip $\left._{\text {ns }}\right]<$ skip, s$\rangle \rightarrow \mathrm{s}$

$$
\left[\mathrm{comp}_{\mathrm{ns}}\right]\left\langle\mathrm{S}_{1}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s}^{\prime},\left\langle\mathrm{S}_{2}, \mathrm{~s}^{\prime}\right\rangle \rightarrow \mathrm{s}^{\prime \prime}
$$

rules

$$
\begin{aligned}
& \left\langle\mathrm{S}_{1} ; \mathrm{S}_{2}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s} \text { " } \\
& \left.\left[\mathrm{if}^{\mathrm{tt}}{ }_{\mathrm{ns}}\right]<\mathrm{S}_{1}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s} \text { ' } \\
& <\text { if } \mathrm{b} \text { then } \mathrm{S}_{1} \text { else } \mathrm{S}_{2}, \mathrm{~s}>\rightarrow \mathrm{s} \text { ' } \\
& \text { if } \mathbf{B} \llbracket \mathrm{b} \rrbracket \mathrm{~s}=\mathrm{tt} \\
& \left.\left[\text { if }^{\mathrm{ff}}{ }_{\mathrm{ns}}\right]<\mathrm{S}_{2}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s} \text {, } \\
& <i f b \text { then } S_{1} \text { else } S_{2}, s>\rightarrow \mathrm{s} \text {, } \\
& \text { if } \mathbf{B} \llbracket \mathrm{b} \rrbracket \mathrm{~s}=\mathrm{ff}
\end{aligned}
$$

Natural Semantics for While (More rules)

[while ${ }_{\text {ff }}$]
\langle while b do $\mathrm{S}, \mathrm{s}>\rightarrow \mathrm{s}$
if $\mathbf{B} \llbracket b \rrbracket \mathrm{~s}=\mathrm{ff}$
$\left[\right.$ while ${ }^{\mathrm{tt}}{ }_{\mathrm{ns}}$] $\left\langle\mathrm{S}, \mathrm{s}>\rightarrow \mathrm{s}^{\prime},<\right.$ while b do $\mathrm{S}, \mathrm{s}^{\prime}>\rightarrow \mathrm{s}$ " if $\mathbf{B} \llbracket \mathrm{b} \rrbracket \mathrm{s}=\mathrm{tt}$

A Derivation Tree

- A "proof" that $<\mathrm{S}, \mathrm{s}>\rightarrow \mathrm{s}$ '
- The root of tree is $\langle S, s\rangle \rightarrow s$ '
- Leaves are instances of axioms
- Internal nodes rules
- Immediate children match rule premises
- Simple Example
skip $_{\text {ns }}$

aSSns

An Example Derivation Tree

$<(\mathrm{x}:=\mathrm{x}+1 ; \mathrm{y}:=\mathrm{x}+1) ; \mathrm{z}:=\mathrm{y}), \mathrm{s} 0>\rightarrow \mathrm{s} 0[\mathrm{x} \mapsto 1][\mathrm{y} \mapsto 2][\mathrm{z} \mapsto 2]$
comp $_{\text {ns }}$

$\langle x:=x+1 ; y:=x+1, s 0>\rightarrow s 0[x \mapsto 1][y \mapsto 2]$	$<z:=y, s 0[x \mapsto 1][y \mapsto 2]>\rightarrow s 0[x \mapsto 1][y \mapsto 2][z \mapsto 2]$

eompns
$<\mathrm{x}:=\mathrm{x}+1 ; \mathrm{s} 0>\rightarrow \mathrm{s} 0[\mathrm{x} \mapsto 1]$

$$
\langle\mathrm{y}:=\mathrm{x}+1, \mathrm{~s} 0[\mathrm{x} \mapsto 1]>\rightarrow \mathrm{s} 0[\mathrm{x} \mapsto 1][\mathrm{y} \mapsto 2]
$$

aSSns
aSSns

Top Down Evaluation of Derivation Trees

- Given a program S and an input state s
- Find an output state s' such that $<S, s>\rightarrow$ s'
- Start with the root and repeatedly apply rules until the axioms are reached
- Inspect different alternatives in order
- In While s' and the derivation tree is unique

Example of Top Down Tree Construction

- Input state s such that $\mathrm{s} \mathrm{x}=2$
- Factorial program

Semantic Equivalence

$-S_{1}$ and S_{2} are semantically equivalent if for all s and s '
$\left\langle S_{1}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s}^{\prime}$ if and only if $\left\langle\mathrm{S}_{2}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s}$ '

- Simple example
"while b do S"
is semantically equivalent to:
"if b then (S ; while b do S) else skip"

Deterministic Semantics for While (Theorem 2.9, page 39)

- If $\langle\mathrm{S}, \mathrm{s}\rangle \rightarrow \mathrm{s}_{1}$ and $\langle\mathrm{S}, \mathrm{s}\rangle \rightarrow \mathrm{s}_{2}$ then $\mathrm{s}_{1}=\mathrm{s}_{2}$
- The proof uses induction on the shape of derivation trees
- Prove that the property holds for all simple derivation trees by showing it holds for axioms
- Prove that the property holds for all composite trees:
» For each rule assume that the property holds for its premises (induction hypothesis) and prove it holds for the conclusion of the rule

The Semantic Function $S_{n s}$

－The meaning of a statement S is defined as a partial function from State to State
$\rightarrow \mathrm{S}_{\mathrm{ns}}: \mathbf{S t m} \rightarrow$（State \hookrightarrow State）
$\rightarrow S_{n s} \llbracket S \rrbracket s=s^{\prime}$ if $<S, s>\rightarrow s^{\prime}$ and otherwise $\mathrm{S}_{\mathrm{ns}} \llbracket \mathrm{S} \rrbracket \mathrm{s}$ is undefined
－Examples
$-\mathrm{S}_{\mathrm{ns}}$ 【skip】s $=\mathrm{s}$
$-\mathrm{S}_{\mathrm{ns}} \llbracket \mathrm{x}:=1 \rrbracket \mathrm{~s}=\mathrm{s}[\mathrm{x} \mapsto 1]$
$-S_{\mathrm{ns}}$ 【while true do skip】s＝undefined

Structural Operational Semantics

- Emphasizes the individual steps
- For every statement S , write meaning rules $\langle\mathrm{S}, i\rangle \Rightarrow \gamma$ "If the first step of executing the statement S on an input state i leads to γ "
- Two possibilities for γ
$-\gamma=\left\langle S^{\prime}, s^{\prime}\right\rangle$ The execution of S is not completed, S^{\prime} is the remaining computation which need to be performed on s'
$-\gamma=o$ The execution of S has terminated with a final state o
- γ is a stuck configuration when there are no transitions
- The meaning of a program P on an input state s is the set of final states that can be executed in arbitrary finite steps
$\Rightarrow \Rightarrow$ means small step as \rightarrow in the first lecture

Structural Semantics for While

$$
\left[\mathrm{ass}_{\mathrm{sos}}\right]\langle\mathrm{x}:=\mathrm{a}, \mathrm{~s}\rangle \Rightarrow \mathrm{s}[\mathrm{x} \mapsto \mathbf{A} \llbracket \mathrm{a} \rrbracket \mathrm{~s}]
$$

axioms $\quad\left[\right.$ skip $\left._{\text {sos }}\right]<$ skip, $\mathrm{s}>\Rightarrow \mathrm{s}$

$$
\left[\mathrm{comp}_{\text {sos }}^{1}\right]\left\langle\mathrm{S}_{1}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{1}^{\prime}, \mathrm{s}^{\prime}\right\rangle
$$

rules

$$
\left\langle\mathrm{S}_{1} ; \mathrm{S}_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{1} ; \mathrm{S}_{2}, \mathrm{~s}^{\prime}\right\rangle
$$

$\left[\mathrm{comp}^{2}{ }_{\text {sos }}\left\langle\left\langle\mathrm{S}_{1}, \mathrm{~s}\right\rangle \Rightarrow \mathrm{s}\right.\right.$,

$$
\left\langle\mathrm{S}_{1} ; \mathrm{S}_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{2}, \mathrm{~s}^{\prime}\right\rangle
$$

Structural Semantics for While if construct

$\left[\right.$ if $\left.{ }_{\text {sos }}{ }^{\text {s }}\right]<$ if b then S_{1} else $\left.\mathrm{S}_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{1}, \mathrm{~s}\right\rangle \quad$ if $\mathbf{B} \llbracket \mathrm{b} \rrbracket \mathrm{s}=\mathrm{tt}$
[iff ${ }_{\text {os }}$] <if b then S_{1} else $\mathrm{S}_{2}, \mathrm{~s}>\Rightarrow\left\langle\mathrm{S}_{2}, \mathrm{~s}>\quad\right.$ if $\left.\mathbf{B} \llbracket \mathrm{b}\right] \mathrm{s}=\mathrm{ff}$

Structural Semantics for While while construct

[while ${ }_{\text {sos }}$] <while b do $\mathrm{S}, \mathrm{s}>\Rightarrow$
<if b then (S ; while b do S) else skip, $\mathrm{s}>$

Derivation Sequences

- A finite derivation sequence starting at $\langle\mathrm{S}, \mathrm{s}\rangle$ $\gamma_{0}, \gamma_{1}, \gamma_{2} \ldots, \gamma_{\mathrm{k}}$ such that
$-\gamma_{0}=\langle S, s>$
$-\gamma_{i} \Rightarrow \gamma_{i+1}$
- γ_{k} is either stuck configuration or a final state
- An infinite derivation sequence starting at $\langle\mathrm{S}$, $\mathrm{s}>$
$\gamma_{0}, \gamma_{1}, \gamma_{2} \ldots$ such that
$-\gamma_{0}=\langle S, s>$
$-\gamma_{\mathrm{i}} \Rightarrow \gamma_{\mathrm{i}+1}$
$-\gamma_{0} \Rightarrow{ }^{\mathrm{i}} \gamma_{\mathrm{i}}$ in i steps
$-\gamma_{0} \Rightarrow^{*} \gamma_{\mathrm{i}}$ in finite number of steps
- For each step there is a derivation tree

Example

- Let s_{0} such that
$\mathrm{s}_{0} \mathrm{x}=5$
and
$\mathrm{s}_{0} \mathrm{y}=7$
- $\mathrm{S}=(\mathrm{z}:=\mathrm{x} ; \mathrm{x}:=\mathrm{y}) ; \mathrm{y}:=\mathrm{z}$

Factorial Program

- Input state s such that $\mathrm{s} \mathrm{x}=3$
$\mathrm{y}:=1 ;$ while $\neg(\mathrm{x}=1)$ do $(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$
<y :=1; W, s>
$\Rightarrow\langle\mathrm{W}, \mathrm{s}[\mathrm{y} \mapsto 1]\rangle$
$\Rightarrow\langle$ if $\neg \neg(\mathrm{x}=1)$ then skip else ($(\mathrm{y}:=\mathrm{y}$ * $\mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$; W), s[y $\mapsto 1]\rangle$
$\Rightarrow\langle((y:=y * x ; x:=x-1) ; W), s[y \rightarrow 1]\rangle$
$\Rightarrow\langle(\mathrm{x}:=\mathrm{x}-1 ; \mathrm{W}), \mathrm{s}[\mathrm{y} \mapsto 3 \mathrm{j}\rangle$
$\Rightarrow\langle\mathrm{W}, \mathrm{s}[\mathrm{y} \mapsto 3][\mathrm{x} \mapsto 2]\rangle$
$\Rightarrow\langle$ if $\neg \neg(\mathrm{x}=1)$ then skip else $((\mathrm{y}:=\mathrm{y}$ * $\mathrm{x} ; \mathrm{x}:=\mathrm{x}-1)$; W), s[y $\mapsto 3][\mathrm{x} \mapsto 2]>$
$\Rightarrow\langle(\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1) ; \mathrm{W}), \mathrm{s}[\mathrm{y} \mapsto 3][\mathrm{x} \mapsto 2]\rangle$
$\Rightarrow\langle(x:=x-1 ; W), s[y \mapsto 6][x \mapsto 2]\rangle$
$\Rightarrow\langle\mathrm{W}, \mathrm{s}[\mathrm{y} \mapsto 6][\mathrm{x} \mapsto 1]\rangle$
\Rightarrow <if $\neg \neg(\mathrm{x}=1)$ then skip else $(\mathrm{y}:=\mathrm{y}$ * x ; $\mathrm{x}:=\mathrm{x}-1)$; W), s[y $\mapsto 6][\mathrm{x} \mapsto 1]>$
\Rightarrow <skip, s[y $\mapsto 6][\mathrm{x} \mapsto 1]>\Rightarrow \mathrm{s}[\mathrm{y} \mapsto 6][\mathrm{x} \mapsto 1]$

Program Termination

- Given a statement S and input s
- S terminates on s if there exists a finite derivation sequence starting at $\langle\mathrm{S}$, s>
- S terminates successfully on s if there exists a finite derivation sequence starting at $\langle\mathrm{S}, \mathrm{s}\rangle$ leading to a final state
- S loops on s if there exists an infinite derivation sequence starting at $\langle\mathrm{S}, \mathrm{s}\rangle$

Properties of the Semantics

$-S_{1}$ and S_{2} are semantically equivalent if:

- for all s and γ which is either final or stuck $\left\langle S_{1}, \mathrm{~s}\right\rangle \Rightarrow^{*} \gamma$ if and only if $\left\langle\mathrm{S}_{2}, \mathrm{~s}\right\rangle \Rightarrow^{*} \gamma$
- there is an infinite derivation sequence starting at $\left\langle\mathrm{S}_{1}, \mathrm{~s}>\right.$ if and only if there is an infinite derivation sequence starting at $\left\langle\mathrm{S}_{2}\right.$, s$\rangle$
- Deterministic
- If $\langle\mathrm{S}, \mathrm{s}\rangle \Rightarrow^{*} \mathrm{~s}_{1}$ and $\langle\mathrm{S}, \mathrm{s}\rangle \Rightarrow{ }^{*} \mathrm{~s}_{2}$ then $\mathrm{s}_{1}=\mathrm{s}_{2}$
- The execution of $S_{1} ; S_{2}$ on an input can be split into two parts:
- execute S_{1} on s yielding a state s^{\prime}
- execute S_{2} on s^{\prime}

Sequential Composition

- If $\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow{ }^{\mathrm{k}} \mathrm{s}^{\prime \prime}$, then there exists a state s ' and numbers k_{1} and k_{2} such that
$-\left\langle\mathrm{S}_{1}, \mathrm{~s}\right\rangle \Rightarrow{ }^{\mathrm{k} 1} \mathrm{~s}$,
$-\left\langle\mathrm{S}_{2}, \mathrm{~s}^{\prime}\right\rangle \Rightarrow^{\mathrm{k} 2} \mathrm{~s}{ }^{\prime}$
- and $\mathrm{k}=\mathrm{k}_{1}+\mathrm{k}_{2}$
- The proof uses induction on the length of derivation sequences
- Prove that the property holds for all derivation sequences of length 0
- Prove that the property holds for all other derivation sequences:
» Show that the property holds for sequences of length $\mathrm{k}+1$ using the fact it holds on all sequences of length k (induction hypothesis)

The Semantic Function $S_{\text {sos }}$

- The meaning of a statement S is defined as a partial function from State to State
$-\mathrm{S}_{\text {sos }}: \mathbf{S t m} \rightarrow$ (State \hookrightarrow State)
$-S_{\text {sos }} \llbracket S \rrbracket \mathrm{~s}=\mathrm{s}^{\prime}$ if $<\mathrm{S}, \mathrm{s}>\Rightarrow{ }^{*} \mathrm{~s}^{\prime}$ and otherwise $\mathrm{S}_{\mathrm{sos}} \llbracket \mathrm{S} \rrbracket \mathrm{s}$ is undefined

An Equivalence Result

- For every statement S of the While language
$-\mathrm{S}_{\text {nat }} \llbracket \mathrm{S} \rrbracket=\mathrm{S}_{\text {sos }} \llbracket \mathrm{S} \rrbracket$

Extensions to While

- Abort statement (like C exit w/o return value)
- Non-determinism
- Parallelism
- Local Variables
- Procedures
- Static Scope
- Dynamic scope

The While Programming Language with Abort

- Abstract syntax

$$
\begin{aligned}
S::= & x:=a \mid \text { skip }\left|S_{1} ; S_{2}\right| \text { if } b \text { then } S_{1} \text { else } S_{2} \mid \\
& \text { while } b \text { do } S \mid \text { abort }
\end{aligned}
$$

- Abort terminates the execution
- No new rules are needed in natural and structural operational semantics
- Statements
- if $x=0$ then abort else $y:=y / x$
- skip
- abort
- while true do skip

Conclusion

- The natural semantics cannot distinguish between looping and abnormal termination (unless the states are modified)
- In the structural operational semantics looping is reflected by infinite derivations and abnormal termination is reflected by stuck configuration

The While Programming Language with Non-Determinism

- Abstract syntax

$$
\begin{aligned}
S::= & x:=a|\operatorname{skip}| S_{1} ; S_{2} \mid \text { if } b \text { then } S_{1} \text { else } S_{2} \mid \\
& \text { while } b \text { do } S \mid S_{1} \text { or } S_{2}
\end{aligned}
$$

- Either S_{1} or S_{2} is executed
- Example

$$
-\mathrm{x}:=1 \text { or }(\mathrm{x}:=2 ; \mathrm{x}:=\mathrm{x}+2)
$$

The While Programming

Language with Non-Determinism Natural Semantics

$$
\begin{aligned}
& {\left[\mathrm{or}_{\mathrm{ns}}^{1}\right] \frac{\left\langle\mathrm{S}_{1}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s}}{\left\langle\mathrm{~S}_{1} \text { or } \mathrm{S}_{2}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s}^{\prime}}} \\
& {\left[\mathrm{or}_{\mathrm{ns}}^{2}\right] \frac{\left\langle\mathrm{S}_{2}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s}}{\left\langle\mathrm{~S}_{1} \text { or } \mathrm{S}_{2}, \mathrm{~s}\right\rangle \rightarrow \mathrm{s}^{\prime}}}
\end{aligned}
$$

The While Programming

Language with Non-Determinism Structural Semantics

The While Programming

 Language with Non-Determinism
Examples

- $\mathrm{x}:=1$ or $(\mathrm{x}:=2 ; \mathrm{x}:=\mathrm{x}+2)$
- (while true do skip) or (x :=2 ; x := x+2)

Conclusion

- In the natural semantics non-determinism will suppress looping if possible (mnemonic)
- In the structural operational semantics nondeterminism does suppress not termination configuration

The While Programming Language with Parallel Constructs

- Abstract syntax $S::=x:=\mathrm{a} \mid$ skip $\left|S_{1} ; S_{2}\right|$ if b then S_{1} else $S_{2} \mid$ while b do $S \mid S_{1}$ par S_{2}
- All the interleaving of S_{1} or S_{2} are executed
- Example

$$
-\mathrm{x}:=1 \operatorname{par}(\mathrm{x}:=2 ; \mathrm{x}:=\mathrm{x}+2)
$$

The While Programming Language

 with Parallel Constructs Structural Semantics$$
\begin{aligned}
& {\left[\operatorname{par}^{1}{ }_{\text {sos }}\right]\left\langle\mathrm{S}_{1}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{1}{ }_{1}, \mathrm{~s}^{\prime}\right\rangle} \\
& \left\langle S_{1} \text { par } S_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}^{\prime}{ }_{1} \text { par } \mathrm{S}_{2}, \mathrm{~s}^{\prime}\right\rangle \\
& {\left[\mathrm{par}^{2}{ }_{\text {sos }}\right]\left\langle\mathrm{S}_{1}, \mathrm{~s}>\Rightarrow \mathrm{s}\right. \text { ' }} \\
& \left\langle\mathrm{S}_{1} \text { par } \mathrm{S}_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{2}, \mathrm{~s}^{\prime}\right\rangle \\
& {\left[\mathrm{par}^{3}{ }_{\mathrm{sos}}\right]\left\langle\mathrm{S}_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{2}, \mathrm{~s}^{\prime}\right\rangle} \\
& \left\langle S_{1} \text { par } S_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle S_{1} \operatorname{par~}^{\prime}{ }_{2}, \text { s }^{\prime}\right\rangle \\
& {\left[\mathrm{par}_{\mathrm{sos}}^{4}\right]\left\langle\mathrm{S}_{2}, \mathrm{~s}\right\rangle \Rightarrow \mathrm{s} \text {, }} \\
& \left\langle\mathrm{S}_{1} \operatorname{par} \mathrm{~S}_{2}, \mathrm{~s}\right\rangle \Rightarrow\left\langle\mathrm{S}_{1}, \mathrm{~s}^{\prime}\right\rangle
\end{aligned}
$$

The While Programming Language with Parallel Constructs

Natural Semantics

Conclusion

- In the natural semantics immediate constituent is an atomic entity so we cannot express interleaving of computations
- In the structural operational semantics we concentrate on small steps so interleaving of computations can be easily expressed

The While Programming Language with local variables and procedures

- Abstract syntax $S::=x:=a \mid$ skip $\left|S_{1} ; S_{2}\right|$ if b then S_{1} else $S_{2} \mid$ while b do S begin $D_{v} D_{p} S$ end \mid call p
$\mathrm{D}_{\mathrm{v}}::=\operatorname{var} \mathrm{x}:=\mathrm{a} ; \mathrm{D}_{\mathrm{v}} \mid \varepsilon$
$D_{p}::=\boldsymbol{p r o c} p$ is $S ; D_{p} \mid \varepsilon$

Conclusions Local Variables

- The natural semantics can "remember" local states
- Need to introduce stack or heap into state of the structural semantics

Summary

- Operational Semantics is useful for:
- Language Designers
- Compiler/Interpreter Writer
- Programmers
- Natural operational semantics is a useful abstraction
- Can handle many PL features
- No stack/ program counter
- Simple
- "Mostly" compositional
- Other abstractions exist

Further Reading

- Ankur Taly: Operational Semantics for JavaScript
- Pietro Cenciarelli?, Alexander Knapp, Bernhard Reus, and Martin Wirsing: An Event-Based Structural Operational Semantics of Multithreaded Java
Alan Jeffrey and Julian Rathke:Java Jr.: Fully abstract trace semantics for a core Java language

