
Advanced Topics in Programming Languages Spring Semester, 2012

Lecture 1: March 9, 2012
Lecturer: Mooly Sagiv Scribe: Ghila Castelnuovo and Omer Tripp

1.1 Course Themes

This course is concerned with the basic concepts that appear in modern programming lan-
guages. It aims to develop tools for understanding

1. the design choices governing a programming language;

2. how programming languages compare and relate to each other at the conceptual level
(and not at the syntactic level); and

3. how ideas and concepts in programming languages have evolved historically.

A primary goal of this course is to prepare students for research in programming languages.
The concepts and materials presented throughout the semester should allow students to
read and understand theoretical papers published in leading conferences in this area, such
as POPL and ICFP.

1.1.1 Language Goals and Tradeoffs

An important theme is the tradeoff the programming language embodies between expres-
siveness and efficiency : There are many situations where it is convenient to assign the
programming language the responsibility for doing something automatically, but this often
comes at a cost. For example, the Lisp run-time system, as well as the Java virtual machine,
use garbage collection to detect and reclaim memory locations that are no longer in use. This
facilitates writing programs, and makes programming less prone to errors. In some cases,
however, automatic garbage collection may result in slowdown and/or lack of predictability
in program execution, which is problematic for real-time programming.

Interestingly, most of the programming languages that are considered successful and
popular were originally developed for a specific purpose. A notable example is the C pro-
gramming language, which was designed and implemented from 1969 to 1973 by Dennis
Ritchie in Bell Laboratories as part of the Unix operating system. Significant changes in C
occurred from 1977 to 1979. These changes were motivated by the push to achieve portability
of the Unix system.

2 Advanced Topics in Programming Languages c©Tel Aviv Univ.

The important connection between C and the Unix operating system is a key reason for
the success of C: First, when programs are written to run under Unix, all of the basic system
calls are immediately available in C. It is therefore easier to write many Unix applications
in C than in other programming languages. Another related reason for the popularity of C
is that it has a distinctive memory model that is close to the underlying hardware.

Another example is JavaScript, which was originally developed by Brendan Eich of
Netscape under the name Mocha, later renamed to LiveScript, and finally to JavaScript
(solely for commercial purposes, to ride on the popularity of Java). JavaScript has become
one of the most popular programming languages on the web. Initially, however, many profes-
sional programmers denigrated this language because its target audience was web authors.
The advent of AJAX returned JavaScript to the spotlight and brought more professional
programming attention. The result was a proliferation of comprehensive frameworks and
libraries, improved JavaScript programming practices, and increased usage of JavaScript
outside of web browsers, as evidenced by the proliferation of server-side JavaScript plat-
forms.

In general, the success of a programming language is influenced by various factors, in-
cluding:

Motivating Application The language is designed so that programs belonging in a specific
application domain can (mostly) be written more easily (as exemplified above).

Execution Model The language design is specific about how all basic operations are done.
For example, Fortran prescribes a flat register machine with no stacks and no recur-
sion. A systematic, predictable machine model enables developing robust and efficient
compilers and run-time environments for the language, and these are critical for its
success.

Tooling Diagnostic tools, testing infrastructure and other libraries that facilitate writing
and maintaining code in the programming language—thereby making the programmer
more productive—are key to the success of the language.

1.1.2 Adoption of Futuristic Ideas

There are a number of examples of how “futuristic” concepts, originally conceived to solve
specific problems, influenced the design of programming languages (typically much faster
than their doubters expected). Recursion is one such example. In the mid-1970s, all “serious”
programmers used Fortran, which (as mentioned above) did not allow recursion. Recursion
was generally regarded as too inefficient to be of practical value for “real programming”.
Today, however, there is wide consensus on the utility of recursion in production code.

A similar example of a futuristic idea is object-oriented programming, which in the 1980s
many people considered too inefficient and clumsy for real programming. This changed in

Course Themes 3

the 1990s, as object-oriented programming became more widely accepted and used.
Yet another example is higher-order functions. Introduced in Lisp in the 1960s, they have

existed for decades in functional languages, but gained wide attention only in recent years.
One reason for this is the rising interest in parallel programming for multi-core architectures
(e.g., Google’s MapReduce technology) and lock-free synchronization techniques. Pizza and
Scala are two (relatively) recent extensions of the Java language (Scala succeeding Pizza and
being heavily influenced by it) where higher-order functions are supported (using lightweight
syntax). Below is an example in Scala syntax, where function apply takes another function
f and a value v and applies f to v:

def apply(f: Int => String, v: Int) = f(v)

A related example is garbage collection [3, 7], which was invented by John McCarthy
around 1959 to solve problems in Lisp. For years, garbage collection was considered infeasible
for imperative programming languages. The growing interest in object orientation, where
a key principle is the encapsulation of abstractions into objects that communicate through
clearly defined interfaces, changed this: Programmer-controlled storage management inhibits
the modularity prescribed by object orientation. For this reason, most modern object-
oriented languages, such as Smalltalk, Eiffel, Java, C# and Dylan, are supported by garbage
collection. Today, even languages used in part for systems programming, such as Modula-3
and Oberon, provide garbage collection for these sound but pragmatic reasons. Garbage-
collecting libraries are even available for such uncooperative languages as C and C++.

1.1.3 New Trends in Programming Languages

The landscape of programming languages is quite dynamic. In recent years, there are new
trends in several frontiers:

Commercial Type-safe languages, such as Java and C#, are gaining increasing momentum.
One indication of this is a recent study of the popularity of programming languages
based on data from Powell’s Books [1], according to which three of the four highest-
ranking languages are Java, Visual Basic and C#.

Interestingly, there is also evidence for the increasing popularity of languages for web
programming, and in particular scripting languages such as PHP and JavaScript. The
same study found, based on Craigslist, that three of the five languages appearing most
frequently in job listings are PHP, JavaScript and SQL.

Teaching In university courses, Java took the place of C as the introductory language for
students. This is because Java does not require the developer to manage the data
representation in the memory and thus it is an easier language to learn and also due
to the fact that Java has available free and friendly development environments (most
notably, Eclipse)

4 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Research In the research frontier, there have been several recent advances:

• Modularity New module features have been standardized recently. Most impor-
tantly, templates and STL (in C++) and generics (in Java, Scala and C#) improve
the ability to write library code that is both (a) general and (b) amenable to spe-
cialization and (c) verifiable and (d) efficient. This is an improvement compared
to standard OOP, since template-/generics-based code enables more optimiza-
tions, and restricts the behaviour of the library such that correctness of the client
can be proved more easily.

Despite the similar goals of generics and templates, there are several notable
differences [4]. C++ templates use a compile-time model. When a template
is used in a C++ program, the effect is as if a sophisticated macro processor
had been used, and—after compilation—objects of a class with a different type
parameter are different types at runtime. Generics, on the other hand, are not
just a feature of the compiler, but also a feature of the runtime. A generic type,
such as List<T>, maintains its specialized type after it has been compiled. In this
way, the abstraction on the different type parameters is not lost after compilation.

Another example of module features is Scala traits, which are similar to interfaces
in Java, but permit the definition of default implementations for some methods.

• Program Analysis Nowadays there is more extensive use of automated tools
for error detection. Some of these algorithms are integrated into the development
environment (IDE) and/or into the build process.

• Isolation and Security Interest in language-based security is fast increasing.
This is largely because of the security needs of web and mobile programming.

• Web 2.0 Recent advances in web technology—most notably, Web 2.0—favor
shifting responsibility to the client side of web applications.

1.2 Type Systems

Programming languages are designed to help programmers organize computational con-
structs and use them correctly. For this reason, many programming languages organize
data and computations into collections called “types”. In general, a type is a collection of
computational entities that share some common property. Examples include the type int

of integers and the type int → int of functions from integers to integers. More interesting
examples are the Pascal subrange type [0..100] of integers in the range 1−−100 and the int

channel type in concurrent ML denoting communication channels carrying integer values.

Pierce provides the following definition for a type system ([8], p.1):

Type Systems 5

A type system is a tractable syntactic method for proving the absence of certain
program behaviours by classifying phrases according to the kinds of values they
compute.

This form of verification is crucial, as the following example demonstrates: On Tuesday,
June 4, 1996, four European Space Agency spacecraft were launched on the maiden flight
of the Ariane 5 rocket. The launch ended in failure due to an error in the software design
caused by inadequate protection from integer overflow. This resulted in the rocket veering
off its flight path 37 seconds after launch, beginning to disintegrate under high aerodynamic
forces, and finally self-destructing by its automated flight termination system. The failure
has become known as one of the most infamous software bugs in history, the result being a
loss of more than 370 million dollars.

The Ariane 5 software reused the specifications from the Ariane 4, but the Ariane 5’s
flight path was considerably different and beyond the range for which the reused computer
program had been designed. Because of the different flight path, a data conversion from
a 64-bit floating point to 16-bit signed integer value caused a hardware exception (more
specifically, an arithmetic overflow, as the floating point number had a value too large to be
represented by a 16-bit signed integer). Efficiency considerations had led to the disabling
of the software handler (in Ada code) for this error trap, although other conversions of
comparable variables in the code remained protected. This caused a cascade of problems,
culminating in destruction of the entire flight.

The source code in Ada that caused the overflow is the following line, where the conversion
from 64 bits to 16 bits unsigned is not protected:

P M DERIVE(T ALG.E BH) :=

UC 16S EN 16NS (TDB.T ENTIER 16S ((1.0/C M LSB BH) * G M INFO DERIVE(T ALG.E BH)));

A tighter type system, where implicit conversions of this kind are prohibited, would have
prevented this terrible accident from occurring.

1.2.1 Main Uses of Types

There are several important uses for type systems:

Error Detection The most obvious benefit of static type checking is that it enables early
detection of errors. In practice, static typechecking exposes a surprisingly broad range
of errors. The strength of this effect depends on the expressiveness of the type system,
as well as on the programming task in question: Programs manipulating a variety of
data structures (e.g., a compiler) offer more purchase for the typechecker than programs
involving just a few simple types (e.g., scientific applications, though even here refined
type systems support dimension analysis).

6 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Abstraction Type systems further enforce disciplined programming. In particular, for
large-scale software composition, type systems form the backbone of the module lan-
guage used to package and tie together the components of large systems. Types show
up in the interfaces of modules. Indeed, an interface can be viewed as “the type of a
module”. Structuring large systems in terms of modules with clear interfaces leads to
a more abstract style of design.

Documentation Types are useful when reading programs. The type declarations in proce-
dure headers and module interfaces constitute a form of documentation giving useful
hints about behavior. Importantly, unlike descriptions embedded in comments, this
form of documentation cannot become outdated.

Maintenance For certain kinds of programs, a typechecker can be of great value as a
maintenance tool. For example, a programmer who wishes to change the definition
of a complex data structure need not search by hand to find all places within a large
program where code involving this structure should be modified. Once the definition
of the datatype changes, the developer can simply run the compiler and examine the
locations where typechecking has failed.

A more advanced way of utilizing the type system is by building specialized pro-
ductivity tools on top of it. An example of this is the Jungloid [6] tool, which an-
swers queries such as “What code takes an IEditorPart as input and returns an
IDocumentationProvider object that represents the data contained in the editor?”
(formally phrased as (IEditorPart; IDocumentationProvider)). The solution is a
“path” connecting between the types in the query where path edges are due to field
accesses, method invocations (both static and instance methods), conversions, etc.

Language Safety Informally, “safe” languages are languages that make it impossible for
the developer to shoot herself in the foot while programming. A safe language protects
its own abstractions. That is, the language ensures the integrity of abstractions it
provides of machine services, as well as of higher-order abstractions introduced by
the programmer based on the definitional facilities of the language. For example, a
language may provide arrays—with access and update operations—as an abstraction of
the underlying memory. A programmer using the language then expects than an array
can be changed only by using the update operation, and not, for example, by writing
past the end of some other data structure. Similarly, it should hold that lexically
scoped variables can only be accessed from within their scope. In a safe language, such
abstractions can be used abstractly, i.e., without keeping in mind all sorts of low-level
details such as the layout of data structures in memory.

Note that language safety is not the same as static type safety: It can be achieved via
static typechecking, but also by run-time checks that trap nonsensical operations and

Type Systems 7

raise an exception. For example, Scheme is a safe language, though it has no static
type system. The idea behind dynamic typing is to associate types with values but
not variables. Thus, a variable can refer to a value of any type, but safety can still be
enforced at run-time.

Here are some examples of statically versus dynamically checked languages:

Statically Checked Dynamically Checked
ML, Haskell, Java Lisp, Scheme, Perl, Postscript

Following are some code examples demonstrating the two categories above, as well
as the case of unsafe languages (e.g., C and C++):

Category Code Consequence
Static checking (Java) String one = 1; Compile-time error
Dynamic checking (Python) >>> foo = ‘‘x’’ Run-time error

>>> foo = foo+2

Unsafe (C) printf(‘‘%s’’, 12) Undefined behavior

Static and dynamic typechecking each have their advantages and disadvantages, and
there is no clear answer which alternative is better. Static typechecking enables finding
bugs at compile time, thereby increasing the reliability of the program. Static checking
also allows the compiler to prove properties of the given program, which may enable
compile-time optimizations. Finally, typechecked code is usually amenable to more
efficient execution because there is less need for run-time checks. On the other hand,
static type systems are restrictive, and sometimes reject a correct program. It is also
more burdensome to prototype in a statically-typed language. Last, just-in-time com-
pilation favours dynamic typing, because this facilitates the compiler’s work, thereby
enabling faster compilation.

From a formal standpoint, the meaning of type safety is that if a program typechecks,
then the semantics will not get stuck when executing it. Figure 1.1 illustrates this using
three examples in Java syntax. The upper code snippet shows an “illegal” program.
The middle snippet shows a legal program that does not typecheck. In both cases,
the compiler issues the error enclosed in a yellow rectangle in Figure 1.1. Finally, the
bottom snippet shows a variant that typechecks.

The below table characterizes the type safety of several common programming lan-
guages:

8 Advanced Topics in Programming Languages c©Tel Aviv Univ.

All programs

Programs on which the semantics does not get stuck

Programs that typecheck

Integer i = 3;
Object o = i;
Integer j = o+3;

String s = "abc";
Object o = s;
Integer j = o+3;

Integer i = 3;
Integer j = i+3;

Figure 1.1: Illustration of the Formal Meaning of Type Safety (in Java)

Safety Example Languages Explanation
Not safe C and C++ Type casts, pointer arithmetic, ,

explicit deallocation, dangling pointers,
unions

Almost safe Pascal Explicit deallocation, dangling pointers,
variant records

Safe Lisp, ML, Smalltalk, Java Complete type checking

Pascal is considered “mostly safe”, because dangling pointers (where a pointer may
be deallocated by the programmer, thus pointing to a location not allocated to the
program) and variant records (a data structure used to hold a value that could take
on several different yet fixed types) are the only two violations of type safety.

C is considered “unsafe”: It inherited the safety violations of Pascal, but added more
of its own, such as pointer arithmetic, type casts and unions instead of variant records.
Unions in C are less safe than variant records in that a variant record is tagged by
a “tagfield ”, which explicitly indicates the type of the value currently stored in the
record. This enables, to some extent, compile-time checking that the record is manip-
ulated correctly. C does not support the “tagfield” construct, and thus the compiler
cannot apply any type checking to code using unions. An example of a type-safety
violation in C unions is the following code:

Type Systems 9

int main(void) {
union {
int i;

double d;

} z;

z.d = 42.7;

printf(‘‘%d\n’’, z.i); /* Oops */

return 0;

}

Optimization Type information in programs can be used for many kinds of optimizations.
One example is finding components of C structs. (The component-finding problem also
arises in object-oriented languages.) A struct consists of a set of entries of different
types. Upon encountering an expression s.e where a entry e of struct instance s is
accessed, the compiler must generate machine code that, given the location of s in
memory, finds the location of field e. If the compiler can compute the type of the
struct at compile time, then the type information can be used to generate efficient
code.

Another example is boxing in languages supporting polymorphism. For a polymor-
phic function to work properly, all its inputs must fit a common format; for this,
boxing—i.e., heap allocating and handling through a pointer—is sometimes necessary.
However, this extra work can be quite expensive from a performance standpoint. One
way of addressing this problem, which relies on type information, is monomorphiza-
tion: duplication of polymorphic functions once for each instantiation type to obtain
a monomorphic version of the function. This solution increases code size, though
experimental evidence suggests that this increase is tolerable [5].

1.2.2 Untyped Arithmetic Expressions

To explore the concepts of type systems and type inference to a reasonable depth, we use a
“toy” language of numbers and booleans, which contains just a handful of syntactic forms:
the boolean constants true and false, conditional expressions, the numeric constant 0,
the arithmetic operators succ and pred (successor and predecessor, respectively), and a
testing iszero operation that returns true iff applied to 0. These forms are expressed in
the grammar listed in Figure 1.2.

A program in this language is simply a term built from the forms given by the of Fig-
ure 1.2. Here are some examples of programs, along with the result of evaluating them:

• if false then 0 else succ 0;

10 Advanced Topics in Programming Languages c©Tel Aviv Univ.

t ::=
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Figure 1.2: Grammar of the Language of Arithmetic Expressions

⇒ succ 0

• iszero (pred (succ 0));

⇒ true

• if (iszero (pred (pred (pred (pred 0))))) then succ 0 else pred 0;

⇒ succ 0

• succ (if iszero (pred 0) then succ 0 else succ (succ 0));

⇒ succ 0

• iszero (if iszero (succ 0) then succ 0 else pred 0)

⇒ true

• if (pred 0) then succ 0 else succ (succ 0)

⇒ ⊥

• succ (if (iszero (pred 0)) then iszero (succ 0) else false)

⇒ ⊥

• succ (if (iszero (pred 0)) then iszero (0) else succ 0)

⇒ ⊥

1.2.3 Structural Operational Semantics

Intuitively, programs such as

succ true

or

Type Systems 11

if 0 then 0 else 0

are “illegal” in that they have type errors. To capture this more formally, and more generally,
assign “meaning” to programs in our language, we make use of the Structural Operational
Semantics (SOS) [2]. SOS provides a framework for giving an operational semantics to
programming languages. A distinguishing feature of SOS is that it emphasizes the individual
steps comprising the computation, which is useful in capturing the behavior of programs with
pointers and/or multithreading.

In the labelled transition system generated by SOS, transition γ
s→ γ′ is interpreted as

saying that the first step of executing statement s in state γ yields state γ′. If the result for
configuration 〈γ, s〉 is not available, then this configuration is considered stuck.

SOS enables inductive proofs of program properties: The evaluation relation (→) is
defined inductively by providing the ground axioms, as well as the inference rules. The
meaning of a program is then a set of derivation trees. Note that this already suffices to
synthesize an actual interpreter, though an interpreter built in this manner would probably
suffer from poor performance.

For our purposes, we shall use the axioms and transition rules in Figure 1.3, where the
axioms are E-IFTRUE, E-IFFALSE, E-PREDZERO, E-PREDSUCC, E-ISZEROZERO and
E-ISZERONZERO (all the one-line statements).

Our SOS has the following properties:

• Determinism If we can derive both t1 and t2 from t, then t1 and t2 are necessarily
equal. Formally, this as stated as follows:

t→ t1 ∧ t→ t2 ⇒ t1 = t2.

Proof sketch: The proof is by induction on a derivation of t→ t′. At each step of the
induction, we assume the desired result for all smaller derivations, and proceed by a
case analysis of the evaluation rule used at the root of the derivation.1 Below are some
of the cases:

– If the last rule used in derivation t→ t′ is E-IFTRUE, then t is known to have the
form if t1 then t2 else t3, where t1=true. This rules out the possibility that
the last rule in t→ t′′ is E-FALSE. Otherwise, the implication is that t1 is equal
both to true and to false at the same time. The last rule in t → t′′ cannot be
E-IF either, since the permise of this rule demands that t → t′1 for some t′1, but
true does not evaluate to anything. This implies that the last rule in the second
derivation is must be E-IFTRUE, and thus t′ = t′′.

1Notice that the induction here is not on the length of an evaluation sequence: We are looking just at a
single step of evaluation. Instead, we are performing induction on the structure of t, since the structure of
an evaluation derivation directly follows the structure of the term being reduced.

12 Advanced Topics in Programming Languages c©Tel Aviv Univ.

– Analogously, if the last rule used in the derivation of t → t′ is E-IFFALSE, then
the last rule in the derivation of t → t′′ is necessarily the same and the result is
immediate.

– ...

Note that in general, determinism is not an inherent property of the SOS. In fact, one
advantage of the SOS over more abstract semantics (such as the natural operational
semantics) is that it is well suited to express parallelism. Here is an example of a
useful pair of rules for indicating that all possible interleavings are possible during the
evaluation of two statements, which leads to nondeterminism:

t1 → t′1
(PAR1)

t1 par t2 → t′1 par t2

t2 → t′2
(PAR2)

t1 par t2 → t1 par t′2

Nondeterminism implies that the → relation is no longer functional.

• Semantic Meaning For every term t, there is some normal form t′, such that t →∗ t′,
where term u is in normal form if no evaluation rule applies to it. Further, t is in
normal form iff t is a value (i.e., either a boolean or an integer). Thus, the following
holds:

∀t ∈ Terms.ι t′ ∈ NormalForm.t→∗ t′, where Terms is the language of the
grammar in Figure 1.2, and NormalForm is the set of all terms in normal
form.

Proof sketch: The proof follows from the observation that each evaluation step reduces
the size of the term, and that size is a termination measure because the usual order on
the natural numbers is well founded.

Note that the definition of the SOS is inductive, and thus we wish to find the smallest relation
→ that satisfies the rules in Figure 1.3.

It is an interesting exercise to check which properties the evaluation relation (→) neces-
sarily satisfies. It turns out that it is not transitive, as the following example demonstrates:

• (iszero (succ (pred 0)),iszero (succ 0)) ∈→ (E-ISZERO using E-PREDZERO)

• (iszero (succ 0),false) ∈ → (E-ISZERO using E-ISZERONZERO)

Type Systems 13

• However, iszero (succ (pred 0)) 6→ false

It is also not reflexive: In fact, in all the rules appearing in Figure 1.3, the left-hand term
differs from the right-hand term. Finally, the evaluation relation is not symmetric. For
example, iszero (succ 0) → false but false 6→ iszero (succ 0).

Here are some (positive as well as negative) examples of how SOS is used to compute the
(mathematical) meaning of a program:

Claim. iszero (pred (succ 0)) →∗ true

Proof.
iszero (pred (succ 0))

⇒ (E-PREDSUCC) iszero 0

⇒ (E-ISZEROZERO) true

Claim. if (iszero (pred (pred 0))) then succ 0 else pred 0 →∗ succ 0

Proof.
if (iszero (pred (pred 0))) then succ 0 else pred 0

E−PREDZERO⇒ (E-IF) if (iszero (pred 0)) then succ 0 else pred 0
E−PREDZERO⇒ (E-IF) if (iszero 0) then succ 0 else pred 0

E−ISZEROZERO⇒ (E-IF) if true then succ 0 else pred 0

⇒ (E-IFTRUE) succ 0

Claim. Evaluating succ (if (iszero (pred 0)) then iszero (succ 0) else false)

results in a stuck state.

Proof.
succ (if (iszero (pred 0)) then iszero (succ 0) else false)

E−PREDZERO⇒ (E-SUCC) succ (if (iszero (0)) then iszero (succ 0) else false)
E−ISZEROZERO⇒ (E-SUCC) succ (if (true) then iszero (succ 0) else false)

E−IFTRUE⇒ (E-SUCC) succ (iszero (succ 0))
E−ISZERONZERO⇒ (E-SUCC) succ (false)

Dom(succ)=Nat⇒ ⊥

1.2.4 Typed Arithmetic Expressions

We now augment our language with static types. Recall that stuck terms correspond to
erroneous or meaningless programs. We would therefore like to be able to tell, without
actually evaluating a term, that its evaluation will definitely not get stuck. To do this, we
need to distinguish between terms whose result is a numeric value and terms whose result
is a boolean. We thus introduce two types, Nat and Bool, for classifying terms in this way.

14 Advanced Topics in Programming Languages c©Tel Aviv Univ.

if true then t1 else t2 → t1 (E-IFTRUE)

if false then t1 else t2 → t2 (E-IFFALSE)

t1 → t′1
(E-IF)

if t1 then t2 else t3 → t′1 then t2 else t3

t1 → t′1
(E-SUCC)

succ t1 → succ t′1

t1 → t′1
(E-PRED)

pred t1 → pred t′1

pred 0 → 0 (E-PREDZERO)

pred (succ t) → t (E-PREDSUCC)

t1 → t′1
(E-ISZERO)

iszero t1 → iszero t′1

iszero 0 → true (E-ISZEROZERO)

iszero (succ t) → false (E-ISZERONZERO)

Figure 1.3: SOS Rules for Untyped Arithmetic Expressions

Type Systems 15

For example, the term if true then false else true has type Bool, while pred (succ

(pred (succ 0))) has type Nat.
Recall that C is not a safe language. Here is an example demonstrating this:

int* x = malloc();

int* y = x;

free (x);

int* z = malloc();

if (y == z) printf(‘‘Strange’’); // L

In this example, x and y are aliased. However, if the compiler does not perform alias analysis,
and—as an optimization—reuses heap locations to save allocation time, the result is that y
and z would point to the same heap location at label L, and therefore ‘‘Strange’’ would
be printed.

The above program typechecks. However, according to the following (fragment of) SOS
for C, where we denote the free (allocated) heap locations in state s using the s.free (s.alloc)
notation, this program is not safe:

(x, s) 7→ v
(E-FREE)

(free(x);, s)→ s[x 7→ null, s.free = s.free ∪ {v}, s.alloc = s.alloc \ {v}]

s.free 6= ∅
(E-MALLOC)

(malloc();, s)→ s′. (ιv ∈ s.free. (s′.free = s.free \ {v}, s′.alloc = s.alloc ∪ {v}))

(E, s)→ v
(E-ASSIGN)

(L = E;, s)→ s ∪ {L 7→ v}

The typing relation for arithmetic expressions, written “t : T”, is defined by a set of
inference rules assigning types to terms. These are summarized in Figure 1.4. The rules
T-TRUE and T-FALSE assign the type Bool to the boolean constants true and false. Rule
T-IF assigns a type to a conditional expression based on the types of its subexpressions: the
guard t1 must evaluate to a boolean, while t2 and t3 must both evaluate to values of the
same type. The two uses of the single metavariable T express the constraint that the result
of the if is the type of the then- and else- branches, and that this may be any type (either
Nat or Bool).

The rules for numbers have a similar form. T-ZERO gives the type Nat to the constant
0. T-SUCC gives a term of the form succ t1 the type Nat, as long as t1 has type Nat.

16 Advanced Topics in Programming Languages c©Tel Aviv Univ.

true : Bool (T-TRUE)

false : Bool (T-FALSE)

0 : Nat (T-ZERO)

t1 : Bool, t2 : T, t3 : T

(T-IF)
if t1 then t2 else t3 : T

t : Nat

(T-ISZERO)
iszero t : Bool

t : Nat

(T-PRED)
pred t : Nat

t : Nat

(T-SUCC)
succ t : Nat

Figure 1.4: Type Rules for Booleans (Bool) and Natural Numbers (Nat)

Likewise, T-PRED and T-ISZERO say that pred yields a Nat when its argument has type
Nat and iszero yields a Bool when its argument has type Nat.

Formally, the typing relation for arithmetic expressions is the smallest binary relation
between terms and types satisfying all instances of the rules in Figure 1.4. A term t is
typable (or well typed) if there is some T such that t : T.

Inversion of Typing The “inversion of the typing” lemma—also known as the “genera-
tion” lemma—gives us a compendium of basic statements of the form “If a term of the form
succ t1 has any type at all, then it has type Nat.”. These appear in Figure 1.6. Each of
these statements follows immediately from the shape of the corresponding typing rule.

The inversion lemma leads directly to a recursive algorithm for calculating the types of
terms, since it tells us, for a term of each syntactic form, how to calculate its type (if it has
one) from the types of its subterms.

In Section 1.2.3, we introduced the concept of evaluation derivation, where we illustrated
the derivation tree from a term to its value. Similarly a typing derivation is a tree of instances

Type Systems 17

of the typing rules, from a term t to its type T to conclude that t : T. Figure 1.7 illustrates
the derivation tree for the typing statement if iszero 0 then 0 else pred 0 : Nat.

Type Inference Contrary to type checking, where the input is both a term t and a type
T, and the algorithm is to decide whether t : T, the input to a type-inference problem is just
the term t, and the output is a type T such that t : T (if possible). One way of implementing
type inference is by traversing the AST bottom up, and assign types to nodes according to
the typing rules, where the typing axioms handle the leaf nodes.

We illustrate the above algorithm using the example program in Figure 1.5. The algo-
rithm scans the AST in bottom-up, prefix order. IT starts from the AST root, and descends
to the leftmost “CONST ZERO” node, which it assigns type Nat according to the T-ZERO
axiom. The next step is to assign the iszero 0 expression type Bool, which is possible by
applying the T-ISZERO rule. Next, the true branch of the if condition is visited, where—
again—the T-ZERO axiom is applied. Finally, the false branch is visited, where the “CONST
ZERO” node gets type Nat according to T-ZERO and then the pred 0 expression gets type
Nat according to T-PRED.

Uniqueness of Types An important theorem, dubbed the “Uniqueness of Types” theo-
rem, states that each term t has at most one type. That is, if t is typable, then its type is
unique. Moreover, there is just one derivation of this typing built from the inference rules
in Figure 1.4. The proof is by structural induction on t using the appropriate clause of the
inversion lemma (plus the induction hypothesis) for each case.

Note that while the simple type system we are dealing with satisfies that every term has
a single type (if it has any type at all), and there is always just one derivation tree witnessing
this fact, type systems with subtyping require that both of these properties be relaxed: A
single term may have many types, and there may in general be many ways of deriving the
statement that a given term has a given type.

Safety = Progress + Preservation As discussed above, the most basic property of a
type system is safety (also called soundness): Well-typed terms do not “go wrong”. Formally,
a term goes wrong if its evaluation reaches a “stuck state” that is not designated as a final
value, but where the evaluation rules do not tell us what to do next. We would like to assert
that well-typed terms do not get stuck. This is done in two steps, commonly known as the
progress and preservation theorems:

• Progress A well-typed term is not stuck. Either it is a value or it can take a step
according to the evaluation rules.

• Preservation If a well-typed term takes a step of evaluation, then the resulting term is
also well typed.

18 Advanced Topics in Programming Languages c©Tel Aviv Univ.

if iszero 0 then 0 else pred 0

ZERO-TEST
PRED

EXPRESSION

CONDITIONAL
EXPRESSION

…

CONDITION IF-BRANCH
ELSE-BRANCH

E-IS-ZERO
-ZERO

CONST ZERO By rule T-ZERO

: Nat

By rule T-ZERO

: Nat

By rule T-PRED

: Nat

By rule T-ZERO

: Nat

By rule T-ISZERO

: Boolean

By rule T-IF

: Nat

CONST ZERO

CONST ZERO

Figure 1.5: Example Program and Its Corresponding AST Annotated with Types

true : R ⇒ R : Bool

false : R ⇒ R : Bool

if t1 then t2 else t3 : R ⇒ t1 : Bool, t2 : T, t3 : T

0 : R ⇒ R : Nat

succ t : R ⇒ R : Nat, t : Nat

pred t : R ⇒ R : Nat, t : Nat

iszero t : R ⇒ R : Bool, t : Nat

Figure 1.6: Rules of the Generation Lemma

Figure 1.7: Derivation Tree for if iszero 0 then 0 else pred 0 : Nat

Type Systems 19

Together, these two properties—whose proof, taken from [8], appears below—tell us that a
well-typed term can never reach a stuck state during evaluation.

For the proof of the progress theorem, it is convenient to record a couple of facts about
the possible shapes of the canonical forms of types Bool and Nat (i.e., the well-typed values
of these types):

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value according to the grammar in
Figure 1.2.

Proof sketch: For the first part, according to the grammar in Figure 1.2, values in our
language are in one of the following forms: true, false, 0 and succ nv, where nv ∈ Nat.
The first two cases immediately yield the desired result. As for the remaining two cases,
these cannot occur: v is assumed to be of type Bool, and the inversion lemma tells us that 0
and succ nv can have only type Nat, and not Bool. The second part is proved in a similar
fashion.

Now we can prove the progress theorem. The lemma on canonical forms facilitates the
proof in establishing certain useful facts. For example, if we know that term t1 in expression
t=pred t1 is a value, then the lemma guarantees that this value is either 0 or succ nv for
some nv, and thus one of the rules E-PREDZERO or E-PREDSUCC applies to t.

Proof sketch: The proof of the progress theorem is done by induction on a derivation of
t : T. The T-TRUE, T-FALSE and T-ZERO cases are immediate, since t in these cases is
a value. Next, consider case case of T-IF, where

t = if t1 then t2 else t3 with t1 : Bool t2 : T t3 : T.

By the induction hypothesis, either t1 is a value, or else there is some t′1 such that that t1
→ t′1. If t1 is a value, then the canonical-forms lemma assures us that it must be either
true or false, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other
hand, if t1 → t′1, then by T-IF, t = if t′1 then t2 else t3.

For T-SUCC, where

t = succ t1 with t1 : Nat,

the induction hypothesis tells us that either t1 is a value or there is some t′1 such that t1 →
t′1. If t1 is a value, then by the canonical-forms lemma, it is a numeric value, and thus t is
also a numeric value. Alternatively, if t1 → t′1, then by E-SUCC, succ t1 → succ t′1.

The remaining cases—those of T-PRED and T-ISZERO—are proved similarly.

The proof that types are preserved is also by induction on a derivation of t. At each

20 Advanced Topics in Programming Languages c©Tel Aviv Univ.

step of the induction, we assume that the desired property holds for all subderivations (i.e.,
that if s : S and s → s’, then s’ : S, whenever s : S is proved by a subderivation of
the present one) and proceed by case analysis on the final rule in the derivation.

Proof sketch: We show only a subset of the cases (the others are similar):

• T-TRUE t = true T = Bool: If the last rule in the derivation is T-TRUE, then
we know from the form of this rule that t must be the constant true and T must be
Bool. However, then t is a value, so it cannot be the case that t → t’ for any t’,
and the requirements of the theorem are vacuously satisfied.

• T-SUCC t = succ t1 T = Nat t1 : Nat: By inspecting the evaluation rules
in Figure 1.3, we see that there is just one rule, E-SUCC, that can be used to derive t

→ t’. The form of this rule tells us that t1 → t′1. Since we also know t1 : Nat, we
can apply the induction hypothesis to obtain t′1 : Nat, from which we obtain succ

t′1 : Nat, i.e., t’ : T, by applying rule T-SUCC.

• ...

Some refer to the preservation theorem as subject reduction or subject evaluation. The
reason is that a typing statement t : T can be thought of as a sentence, “t has type T.”.
The term t is the subject of the sentence, and the subject-reduction property then says that
the truth of the sentence is preserved under reduction of the subject.

To appreciate the importance of demanding both progress and preservation, consider the
effect of removing the true : Bool typing rule. If we then consider program

if (iszero 0) then 0 else succ 0,

then this expression is well typed with type Nat. This is because iszero 0 has type Bool

according to the T-ISZERO rule, and 0 and succ 0 both have type Nat according to the
T-ZERO and T-SUCC rules, respectively. However, if we now perform the iszero 0 →
true derivation step, then we arrive at the expression

if true then 0 else succ 0,

which is no longer typable.
Thus, we have lost preservation. We started with a well-typed expression, but after

taking a step according to the semantics, we arrived at an expression that is not typable.
Notice that progress is still retained: Well-typed terms are not stuck. This was true before,
and necessarily remains true if we preserve the original SOS rules and reduce the set of well-
typed terms (which is what we did). The consequence is that we cannot prove our original
program safe using our type system having given up on preservation.

A final comment is that unlike uniqueness of types, which does not hold in all type sys-
tems, progress and preservation are considered basic requirements. Still, there are languages

Summary 21

where these properties do not hold, but which can nevertheless be considered type safe. A
notable example is Java. Formalizing the operational semantics of Java in a small-step style
does not yield type preservation in the form given here (cf. [8], chapter 19). However, this
turns out to be an artifact of the formalization, rather than a defect in the Java language.
since it disappears, for example, in a big-step presentation of the semantics.

1.3 Summary

Type systems provide a useful mechanism for enforcing certain safety properties in a conser-
vative manner. The type system can be combined with the run-time system and/or static
program analysis. An important property of type systems is that they enable interaction
with the developer, and thus form a kind of specification. An alternative to type systems is
static program analysis, where abstractions of concrete values are inferred at every program
point.

22 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Bibliography

[1] http://langpop.com/.

[2] www.cs.vu.nl/~wanf/pubs/sos.pdf.

[3] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The Art of
Automatic Memory Management. Chapman & Hall/CRC, 2011.

[4] A. Kennedy and D. Syme. Design and implementation of generics for the .net common
language runtime. In PLDI, pages 1–12, 2001.

[5] Xavier Leroy. The effectiveness of type-based unboxing. Technical report, Boston College,
Computer Science Department, 1997.

[6] D. Mandelin, L. Xu R., and Bod́ık D. Kimelman. Jungloid mining: helping to navigate
the api jungle. pages 48–61, 2005.

[7] J. Mitchell. Concepts in Programming Languages. Cambridge University Press, 2004.

[8] B.C. Pierce. Types and Programming Languages. The MIT Press, 2002.

23

