
Advanced Topics in Programming Languages Spring Semester, 2012

Lecture 12: Featherweight Java
Lecturer: Mooly Sagiv Scribe: Adam Morrison

12.1 Introduction

In this lecture we apply the ideas from previous lectures to directly define and reason about
Featherweight Java (FJ), an object-oriented language based on Java. FJ is a subset of Java
(every FJ program is a Java program) designed with the goal of making its type safety
proof as short as possible, while still capturing the essence of Java’s safety arguments. FJ
therefore incorporates many of Java’s interesting aspects, such as the “everything is an
object” philosophy and dynamic casting, but drops any feature that would make the safety
proof longer without making it significantly different.

For example, one central feature that FJ omits is mutation (i.e., the assignment operator),
as supporting it would require modeling the heap. The features of Java that FJ does model
include mutually recursive class definitions, object creation, field access, method invocation,
method override, subtyping and casting.

As a compact language model, FJ is useful for modeling extensions of Java. Adapting a
language extension to FJ focuses attention on essential aspects of the extension. The original
FJ paper [1] demonstrated this by adding generic classes to FJ.

12.2 Nominal vs. structural types systems

FJ’s type system differs from what we saw in previous lectures. Until now we have been
working with structural type systems, in which a type is determined by its structure. In a
structural system the following types are equivalent:

Euros = {amount : Float} Dollars = {amount : Float}

The names Euros and Dollar are simply cosmetic abbreviations. Consequentially, in a struc-
tural system subtyping is also determined by the structure of the type. For example, the rules
used in previous lectures imply that Product = {name : String, price : Float} is a subtype
of Employee = {name : String} even though intuitively this seems strange.

2 Advanced Topics in Programming Languages c©Tel Aviv Univ.

In contrast, FJ has a nominal type system in which the name of a type is part of its definition,
so Euros and Dollars are distinct types. As a result, it is up to the programmer to explicitly
identify the subtyping relation by declaring which classes a newly defined class extends. The
compiler verifies these declarations, i.e., that the fields and methods of the new class really
do extend its superclasses.

Nominal systems simplify many practical aspects of the programming language, perhaps
explaining why they are present in many popular languages. First, representing recursive
types (such as a Node in a linked list that has a field next of the same type) and mutually-
recursive types is straightforward. In a structural system representing such types requires
complex formal mechanisms. Second, the explicit subtype declarations make it easy for the
compiler to represent and check the subtyping relation. A structural system requires either
performing a full structural test for each subtype test, or using more sophisticated represen-
tation techniques. The compiler in a nominal system can embed the representation of the
types into the program by tagging each object with a header pointing to metadata describ-
ing the object’s type and pointing to its supertypes. This simplifies the implementation of
languages features such as run-time type testing (e.g., instanceOf), printing structures and
reflection. Structural system can embed a similar representation but it constitutes an addi-
tional mechanism, since there are no compile-time type names that the run-time tags can
match to. Finally, nominal systems prevent spurious subsumption – mixing of different types
that are structurally compatible, such as passing Euros to a DollarsToEuros function. For
a structural system, the program needs to use single-field variants (Lecture 10) or abstract
data types to avoid this problem.

Interestingly, most research works deal with structural systems. Working with types in a
nominal system requires working with respect to some global collection of type names and
their definitions, which complicates definitions and proofs. In a structural system (without
recursive types) a type can be treated as a closed entity. Furthermore, advanced language
features for type abstraction, such as parametric polymorphism, abstract data types, user-
defined type operators, functors, etc. do not fit cleanly into nominal systems.

12.3 Syntax

We present the formal definition of FJ’s syntax. As will be seen, we simplify the formal
definition by making some requirements on the structure of FJ code, e.g., that fields are
always initialized in their declaration order.

Syntax 3

Metavariables: B, C, D and E range over class names; f and g range over field names; m
ranges over method names, v and u range over values, and x ranges over parameter names.

Notation: For z ∈ {B, C, D, E, f, g, t, x, v} we write z̄ as shorthand for z1, . . . , zn for some
n. For method declaration M, we write M̄ as shorthand for M1 . . . Mn (no commas). Pairs of
sequences are abbreviated similarly, with “C̄ f̄” standing for C1 f1, . . . , Cn fn, “C̄ f̄;” standing
for C1 f1; . . . ; Cn fn;, and “this.f̄ = f̄;” for this.f1 = f1; . . . ; this.fn = fn;. We assume such
sequences do not contain duplicate names.

Featherweight Java syntax
CL ::= Class declarations

class C extends C {C̄ f̄; K M̄} Introduces a class C with superclass D that
has (1) fields f̄ of types C̄, which have distinct
names from D’s fields, (2) one constructor K

and a set of methods M̄, which can override
some of D’s methods.

K ::= Constructor declarations
C(C̄ f̄) {super(f̄); this.f̄ = f̄; } The constructor takes as many parameters as

there are instance variables and in the same
order as they are declared. It first calls the
superclass constructor and then assigns the
parameters to the instance’s fields.

M ::= Method declarations
C m(C̄ x̄) {return t; } A method named m with result type D and

parameters x of types C. Since we omit as-
signments, the method only returns a term t

where the variables x are bound.

t ::= Terms
x Variables: We assume that the set of vari-

ables includes the special variable this which
is never used as an argument to a method.

t.f Field access
t.m(t̄) Method invocation
new C(t̄) Object creation
(C)t Cast

v ::= Values
new C(v̄) Object creation

4 Advanced Topics in Programming Languages c©Tel Aviv Univ.

12.4 Subtyping

We define a class table, CT , that maps from class names to class declarations, e.g.,

CT (Cat) = class Cat extends Animal { ... }

But since Object is not explicitly defined, how shall we define CT (Object)? We solve this
technical problem by recognizing that Object is a special object which will not have a class
table entry (i.e., Object 6∈ dom(CT)). We will see this distinction as we add a special case
for Object when looking up field names, since Object has no fields.

A FJ program is a pair (CT, t) consisting of the term to be evaluated, t, and the class table
with respect to which t is evaluated. From now on we will assume a fixed class table CT .

We derive the typing relation, <:, from the class table:

Definition of <: relation
C <: C

C <: D D <: E
C <: E

CT (C) = class C extends D {...}
C <: D

We assume that the <: relation is antisymmetric (i.e., the only allowed cycles are of the form
C <: C).

12.5 Operational semantics

To define the operational semantics (and later the typing rules) we require some auxiliary
definitions.

Field lookup: fields(C) is the sequence C̄ f̄ of all of C’s fields (including those inherited
from C’s superclasses). Formally:

fields(Object) = ε

CT (C) = class C extends D{C̄ f̄; K M̄}
fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Operational semantics 5

Methods: The type of method m in class C, mtype(m, C), is a pair consisting of a sequence
of argument types, B̄, and the type of the result, B. We use the notation B̄ 7→ B. Similarly,
the body of the method, mbody(m, C) is the pair (x̄, t) of the sequence of parameters x̄ and
a term t. Formally:

CT (C) = class C extends D{C̄ f̄; K M̄}
B m (B̄ x̄) {return t; } ∈ M̄

mtype(m, C) = B̄→ B

CT (C) = class C extends D{C̄ f̄; K M̄}
m is not defined in M̄

mtype(m, C) = mtype(m, D)

CT (C) = class C extends D{C̄ f̄; K M̄}
B m (B̄ x̄) {return t; } ∈ M̄

mbody(m, C) = (x̄, t)

CT (C) = class C extends D{C̄ f̄; K M̄}
m is not defined in M̄

mbody(m, C) = mbody(m, D)

Method override The predicate override(m, D, C̄→ C0) if true if method m with argument
types C̄ and result C0 may be defined in class D. It checks that either m is not defined in D’s
superclasses, or that if it is, then m’s arguments and return type match those of the classes
it extends. Formally:

mtype(m, D) = D̄→ D0 implies C̄ = D̄ and C0 = D0

override(m, D, C̄→ C0)

6 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Semantics We now formally define a small step operation semantics for FJ. We will use
the following class table as a running example to illustrate the evaluation rules:

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object first;

Object second;

Pair(Object first, Object second) {

super(); this.first = first; this.second = second; }

Pair SetFirst(Object newFirst) {

return new Pair(newFirst, this.second); }

}

Field projection:

fields(C) = C̄ f̄

(new C (v̄)) .fi −→ vi
(E-PROJNEW)

new Pair(new A(), new Pair(new A(), new B())).second

−→
new Pair(new A(), new B())

t0 −→ t′0

t0.f −→ t′0.f
(E-FIELD)

new Pair(new A(), new Pair(new A(), new B())).second.first

−→
new Pair(new A(), new B()).first

Method invocation: We use standard call-by-value semantics. When we have all the
values, we bind the actual parameters to the formal parameters and evaluate the term.
Notice that we exploit the fact that FJ has no side effects: If a formal parameter appears
more than once in the body, the argument value may be duplicated. But since there are no
side effect, this cannot be observed.

Operational semantics 7

mbody(m, C) = (x̄, t0)

(new C (v̄)) .m(ū) −→ [x̄ 7→ ū, this 7→ new C(v̄)] t0
(E-INVKNEW)

new Pair(new A(), new B()).setFirst(new B())

−→
[newFirst 7→ new B(), this 7→ new Pair(new A(), new B())]
new Pair(newFirst, this.second)

t0 −→ t′0

t0.m(t̄) −→ t′0.m(t̄)
(E-INVK-RECV)

ti −→ t′i

v0.m(v̄, ti, t̄) −→ v′0.m(v̄, t′i, t̄)
(E-INVK-ARG)

ti −→ t′i

new C(v̄, ti, t̄) −→ new C(v̄, t′i, t̄)
(E-NEW-ARG)

Casting: When casting from one type to another, we keep the cast until its subject has
been reduced to an object, at which point we can check if the cast is valid or not. If the
cast is valid, we simply remove it: any field or method accessed will be valid. Otherwise, the
evaluation is stuck, leading to a run-time error.

C <: D
(D)(new C(v̄)) −→ new C(v̄)

(E-CASTNEW)

(Object)(new Pair(new A(), new B()))

−→
new Pair(new A(), new B()))

t0 −→ t′0

(C)t0 −→ (C)t′0
(E-CAST)

Here is a more interesting derivation:

((Pair)(new Pair(new Pair(new A(), new B()),

new B()).first)).setFirst(new B())

−→ (E-PROJNEW)

((Pair)(new Pair(new A(), new

B()))).setFirst(new B())

−→ (E-CASTNEW)

(new Pair(new A(), new B())).setFirst(new B()) −→ (E-INVNEW)
new Pair(new B(), new B())

8 Advanced Topics in Programming Languages c©Tel Aviv Univ.

12.6 Typing

The typing rules for FJ are presented below. As in previous lectures, Γ is the environment
mapping from variables to types, where t : C means that t is of type C. We use the abbrevi-
ation Γ ` t̄ : C̄ for the sequence Γ ` t̄1 : C̄1, . . . ,Γ ` t̄n : C̄n.

Except for casting, the typing rules correspond to the evaluation rules. For constructors and
method invocations, the rules verify that each argument has a type that is a subtype of the
one declared for the formal parameter.

x : C ∈ Γ

Γ ` x : C
(T-VAR)

Γ ` t0 : C0 fields(C0) = C̄ f̄

Γ ` t0.fi : Ci
(T-FIELD)

Γ ` t0 : C0
mtype(m, C0) = D̄→ C
Γ ` t̄ : C̄ C̄ <: D̄

Γ ` t0.m(t̄) : C
(T-INVK)

fields(C) = D̄ f̄
Γ ` t̄ : C̄ C̄ <: D̄
Γ ` new C(t̄) : C

(T-NEW)

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCAST)

Γ ` t0 : D C <: D C 6= D

Γ ` (C)t0 : C
(T-DCAST)

x̄ : C̄, this : C ` t0 : E0 E0 <: C0
CT (C) = class C extends D {...}

override(m, D, C̄→ C0)

C0 m (C̄ x̄) {return t0; } OK in C
Method typing

K = C(D̄ ḡ, C̄ f̄) {super(ḡ); this.f̄ = f̄; }
fields(D) = D̄ ḡ M̄ OK in C

class C extends D {C̄ f̄; K M̄} OK
Class typing

Type safety 9

12.7 Type safety

Here we prove that FJ is type safe, by stating and proving a preservation theorem and a
progress theorem for FJ. When it is clear from the context, we will write Γ ` t : C simply as
t : C.

Interestingly, we will see that the type system defined thus far does not imply type safety of
FJ. We will need to add an additional typing rule to obtain our result.

12.7.1 Preservation theorem

In previous lectures we proved preservation theorems of the following form:

If t : C and t −→ t′, then t′ : C.

But because of subtyping in the language such a statement is false for FJ:

(Object) new B() (E-CASTNEW)
−→ new B()

We therefore want to want to prove the following preservation theorem:

If t : C and t −→ t′, then t′ : C′ for some C′ <: C.

Let us try to prove it. As usual we use induction on the derivation of t : C and consider the
last step of the derivation. For example,

Case T-FIELD: t = t0.fi : Ci t0 : C0, fields(C0) = C̄ f̄

In this case, t −→ t′ by either E-PROJNEW or E-FIELD. If t −→ t′ by E-PROJNEW,
then t0 = new C(v̄) and so t′ = vi. In the derivation of t0 : C0 we must have an application
of T-NEW for t0:

fields(C0) = C̄ f̄
v̄ : D̄ D̄ <: C̄

t0 = new C(v̄) : C0

implying that t′ = vi : Di <: Ci.

Otherwise, if t −→ t′ by E-FIELD then t′ = t′0.f where t0 −→ t′0. Applying the induction
hypothesis to the derivation of t0 : C0 we obtain that t′0 : C′0 for some C′0 <: C0. By the class

10 Advanced Topics in Programming Languages c©Tel Aviv Univ.

typing rule we have fields(C′0) = fields(C0), D̄ ḡ. Since fi is one of C0’s fields, we can apply
T-FIELD and conclude:

t′0 : C′0 fields(C′0) = fields(C0), D̄ ḡ

t′0.fi : Ci
.

The remaining cases that do not involve casting are similarly straightforward, so let us focus
on casting.

Case T-UCAST: t = (C)t0 : C t0 : D, D <: C

If t −→ t′ by E-CASTNEW, then t0 = new D(v̄), and we have:

D <: C
(C)(new D(v̄)) −→ new D(v̄)

Because t0 is well-typed, T-NEW applies to t′ and so t′ : D <: C.

If t −→ t′ by E-CAST, then we have:

t0 −→ t′0

(C)t0 −→ (C)t′0

Applying the induction hypothesis to the derivation of t0 : D we obtain that t′0 : C′0 <: D <: C,
so we can apply T-UCAST and infer that t′ : C:

t′0 : C′0 C′0 <: C

(C)t0 : C
.

Case T-DCAST: t = (C)t0 : C t0 : D, C <: D, C 6= D

Notice first that it cannot be that t −→ t′ by E-CASTNEW, since then we’d have:

D <: C
(C)(new D(v̄)) −→ new D(v̄)

where t0 = new D(v̄), implying that D <: C which is impossible because we know from the
induction hypothesis that C <: D, C 6= D and the relation <: is antisymmetric.

It must therefore be the case that t −→ t′ by E-CAST. Thus, we have:

t0 −→ t′0

(C)t0 −→ (C)t′0

We try to proceed as in the upcast case, applying the induction hypothesis to the derivation
of t0 : D and obtaining that t′0 : C′0 <: D.

Type safety 11

Now, if C′0 <: C we can infer (as before) using T-UCAST that t′ : C. An example term (where
t0 −→ t′0 by E-CAST) is:

(Animal︸ ︷︷ ︸
C

) (Object︸ ︷︷ ︸
D

) new Cat︸︷︷︸
C′0

()

︸ ︷︷ ︸
t′0︸ ︷︷ ︸

t0

If C <: C′0 we can infer using T-DCAST that t′ : C. For example,

(PersianCat︸ ︷︷ ︸
C

) (Animal︸ ︷︷ ︸
D

) new Cat︸︷︷︸
C′0

()

︸ ︷︷ ︸
t′0︸ ︷︷ ︸

t0

Remark: This term, while well-typed, has
undefined semantics. We pay this price for
supporting the notion of specializing objects
via downcasts – we will only know at run-
time if this term gets evaluated, at which
point an error will be generated. (In full Java
an exception would be thrown and the pro-
gram can continue.) We will deal with this
issue formally when proving the progress the-
orem in the next subsection.

But what happens if C and C′0 are unrelated by <:? Our proof gets stuck! This problem
happens due to our use of small step operational semantics, which can derive programs such
as:

(Cat︸︷︷︸
C

) (Object︸ ︷︷ ︸
D

) new Dog︸︷︷︸
C′0

()

︸ ︷︷ ︸
t′0︸ ︷︷ ︸

t0

To overcome this technical modeling problem, we introduce a new typing rule for such
“stupid” casts:

Γ ` t0 : D C 6<: D D 6<: C
stupid warning

Γ ` (C)t0 : C
(T-SCAST)

Applying the stupid cast rule in this case allows the proof to carry through. We indicate the
special nature of stupid casts by including the hypothesis stupid warning in the T-SCAST

12 Advanced Topics in Programming Languages c©Tel Aviv Univ.

type rule. A true Java compiler rejects such casts, and an FJ typing corresponds to a legal
Java typing only if it does not contain this rule.

Having introduced stupid casts, we must consider them in the preservation proof:

Case T-SCAST: t = (C)t0 : C t0 : D, C 6<: D, D 6<: C, stupid warning

Because D 6<: C, it cannot be that t −→ t′ by E-CASTNEW. Thus E-CAST must apply and
so t = (C) t0, t

′ = (C) t′0 and t0 −→ t′0. Applying the induction hypothesis to the derivation
of t0 : D we find that t′0 : C′0 <: D. Because a FJ class has one superclass, C′0 6<: C. Further,
C 6<: C′0 as otherwise C <: D. Thus we can apply T-SCAST

t′0 : C′0 C′0 6<: C C 6<: C′0
stupid warning

(C)t′0 : C

and we are done. We have therefore proved:

Theorem 12.1 (Preservation) If t : C and t −→ t′, then t′ : C′ for some C′ <: C.

12.7.2 Progress theorem

Here we show a variant of the progress theorems seen in previous lectures. We will show that
the only way a well-typed FJ program can get stuck is if it reaches a point where it cannot
perform a downcast.

There are several ways in which the semantics can get stuck: (1) accessing an undefined field
in class, (2) calling an undefined method, (3) calling a method with the wrong number of
arguments, (4) trying to cast from C to D where C 6<: D.

The last case is the more interesting case which we will focus on. Thus, we first rule out the
other cases by proving they never happen for well-typed programs.

Lemma 12.2 Suppose t is a well-typed term. Then:

1. If t = new C0(t̄).f, then fields(C0) = C̄ f̄ and f ∈ f̄.

2. If t = new C0(t̄).m(s̄), then mbody(m, C0) = (x̄, t0) and |x̄ |= |s̄|.

Proof: Immediate from the typing rules.

Before proceeding to show that a well-typed program can only get stuck because of an
impossible cast, we develop a formal mechanism to explicitly identify the failing cast when
it exists. The set of evaluation contexts for FJ is defined as follows:

Type safety 13

E ::=
[] hole
E.f field access
E.m(t̄) method invocation (receiver)
v.m(v̄, E, t̄) method invocation (argument)
new C(v̄, E, t̄) object creation (argument)
(C)E cast

Each evaluation context is a term with a hole (written []) inside it. For example,

[].foo
[].foo.bar
new C(new D(), [].foo.bar, new E())

We write E[t] for the ordinary term obtained by replacing the hole in E with t.

The idea behind evaluation contexts is to capture the notion of the “next subterm to be
reduced” in the following sense:

Lemma 12.3 If t −→ t′ then there are unique E, r and r′ such that (1) t = E[r], (2)
t′ = E[r′], and (3) r −→ r′ by one of E-PROJNEW, E-INVKNEW or E-CASTNEW.

Proof: By induction on the derivation of t −→ t′.

The inductive step is a case analysis of each possible last step in the derivation. If it is one
of E-PROJNEW, E-INVKNEW or E-CASTNEW, we can take E = [], r = t and r′ = t′.

Now consider, for example, E-FIELD. Then t = t0.f, t
′ = t′0.f and t0 −→ t′0. By the induc-

tive hypothesis, there are unique E0, r0 and r′0 such that (1) t0 = E0[r0], (2) t′0 = E0[r
′
0],

and (3) r0 −→ r′0 by one of E-PROJNEW, E-INVKNEW or E-CASTNEW. Then E = E0.f
(which is a valid evaluation context), r0 and r′0 satisfy our requirements. The remaining cases
are similarly straightforward.

Theorem 12.4 (Progress) Suppose t is a well-typed term. Then either

1. t −→ t′ for some t′.

2. t is a value.

3. t = E[(C)(new D(v̄))], for some evaluation context E, and D 6<: C.

14 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Proof: We proceed using induction on the typing derivation of t. Let us consider the last
step in the derivation:

Case T-FIELD: t = t0.fi : Ci t0 : C0, fields(C0) = C̄ f̄

From the induction hypothesis on t0, the following are possible: (1) t0 −→ t′0, and then
E-FIELD applies to t, or (2) t0 is a value, and then E-PROJNEW applies to t and yields
a value, or (3) t0 = E0[(C0)(new D0(v̄))] with D0 6<: C0, and then t = E[(C0)(new D0(v̄))] for
E = E0.fi. Similar arguments apply to T-INVK and T-NEW.

Case T-UCAST: t = (C)t0 : C t0 : D, D <: C

Applying the induction hypothesis to t0, we have that either (1) t0 −→ t′0 and then E-
CAST applies, or (2) t0 is a value and then E-CASTNEW applies, yielding a value, or (3)
t0 = E0[(C0)(new D0(v̄))] with D0 6<: C0, and then t = E[(C0)(new D0(v̄))] for E = (C)E0.

Case T-DCAST: t = (C)t0 : C t0 : D, C <: D, C 6= D

We apply the induction hypothesis to t0. As before, if t0 −→ t′0 then E-CAST applies, and if
t0 = E0[(C0)(new D0(v̄))] with D0 6<: C0, and then t = E[(C0)(new D0(v̄))] for E = (C)E0. But
if t0 is a value then we are stuck, since E-CASTNEW does not apply. However, Lemma 12.3
applied to the last step in the evaluation derivation of t implies that t = E[r], for some E
and r, and inspecting Lemma 12.3’s proof shows that r must be of the form r = (C)new D(v̄),
with D 6<: C because we know that C <: D. The remaining T-SCAST case is analogous.

12.8 Conclusion

In this lecture we showed semantics and typing of a language where objects and classes
are primitive mechanisms, and proved it type safe. By treating objects as primitive, we
can reason about their operational semantics and typing behavior directly. This approach is
compatible with the way users think of their programs, and is therefore useful for language
design and documentation.

Chapter 18 in the book takes a different approach, encoding objects, classes, and inheritance
using features from the simply typed lambda-calculus. This lower-level approach helps in
understanding the way objects are translated into lower-level languages by compilers, and
in understanding the interactions between objects and other language features.

Ideally, we would like to benefit from the advantages of both approaches. For this we need to
define the semantics and typing of the high level language as well as a translation from this
language to a simpler lower-level language. Finally, we need to prove that the translation

Conclusion 15

is correct, i.e., that the translation preserves the evaluation and typing properties of the
high-level language. Such a formulation and proof were done for FJ by League, Trifonov,
and Shao [2].

Bibliography

[1] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a mini-
mal core calculus for Java and GJ. ACM Transactions on Programming Languages and
Systems, 23(3):396–450, May 2001.

[2] Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation
of Featherweight Java. ACM Transactions on Programming Languages and Systems,
24(2):112–152, 2002.

16

	Introduction
	Nominal vs. structural types systems
	Syntax
	Subtyping
	Operational semantics
	Typing
	Type safety
	Preservation theorem
	Progress theorem

	Conclusion

