
Advanced Topics in Programming Languages Spring Semester, 2012

Lecture 6: April 24, 2012
Lecturer: Mooly Sagiv Scribe: Michal Balas and Yair Asa

Axiomatic Semantics

6.1 The basic idea

The problem we would like to solve is how to prove that a program does what we require of it.
Given a program, we specify its required behavior based on our intuitive understanding of it.
We can run it according to the operational semantics or denotational semantics and compare
to its behavior there. For some programs we need to be more abstract (for example programs
that receive input), and then it is necessary to use some logic to reason about the program
(and how it behaves on a set of inputs and not in one specific execution path). In this case we
may eventually develop a formal proof system for properties of the program or showing that
it satisfies a requirement. We can then use the proof system to show correctness. These rules
of the proof system are called Hoare or Floyd-Hoare rules. Floyd-rules are for flow-charts
and Hoare-rules are for structured languages. Originally their approach was advocated not
just for proving properties of programs but also giving a method for explaining the meaning
of program. The meaning of a program was specified in terms of “axioms” saying how to
prove properties of it, in other words it is given by a set of verification rules. Therefore, this
approach was named axiomatic semantics.
Axiomatic semantics has many applications, such as:

• Program verifiers

• Symbolic execution tools for bug hunting

• Software validation tools

• Malware detection

• Automatic test generation

It is also used for proving the correctness of algorithms or hardware descriptions, “extended
static checking (e.g., checking array bounds), and documenting programs and interfaces.

2 Advanced Topics in Programming Languages c©Tel Aviv Univ.

6.1.1 Example

An example program that computes the sum of the first hundred numbers:
∑

1≤m≤100m.
S := 0;
N := 1;
while ¬(N = 101) do

S := S +N ;
N := N + 1;

We can see that the commands S := 0;N := 1; initialize the values in the locations. so we
add comments as follows;

S := 0;
{S = 0}
N := 1;
{N = 1}
while ¬(N = 101) do

S := S +N ;
N := N + 1;

We can also add the comment after the execution of the while loop meaning that S will have
the required value.

S := 0;
{S = 0}
N := 1;
{N = 1}
while ¬(N = 101) do

S := S +N ;
N := N + 1;

{N = 101 ∧ S =
∑

1≤m≤100m}
Inside the while loop we add comment on both N and S: N ranges from 1 to 101 and S
represents the partial sum. This comment express the key relationship between the value at
location S and the value at location N .

S := 0;
{S = 0}
N := 1;
{N = 1}
while ¬(N = 101) do

{1 ≤ N < 101 ∧ S =
∑

1≤m<Nm}
S := S +N ;
{1 ≤ N < 101 ∧ S =

∑
1≤m≤Nm}

N := N + 1;

{N = 101 ∧ S =
∑

1≤m≤100m}

The basic idea 3

The assertion S =
∑

1≤m≤Nm is called an invariant of the while-loop because it remains
true under each iteration of the loop.

6.1.2 Partial Correctness and Total Correctness

We can base a proof system on assertions of the form
{P}S{Q}

where P,Q are assertions, i.e. extensions of boolean expressions, and S is a statement (also
called: command). The interpretation of an assertion of this form is: for all states σ which
satisfy P , if the execution of S from state σ terminates in state σ′, then σ′ satisfies Q. In
other words, any terminating execution of S from a state satisfying P ends up in a state
satisfying Q. P is the precondition and Q is the postcondition of the assertion {P}S{Q}.
For example: {y ≤ x}z := x; z := z + 1{y < z} is a valid assertion.

Assertions of this form are known as Hoare triples or Hoare assertions, named after the
logician C.A.R. Hoare.

These assertions are called partial correctness assertions because they do not say anything
about the command S if it fails to terminate.
An example for a statement that does not terminate when executed from any state is:

S ≡ while true do skip
Since S does not terminate, {true}S{false} is a valid partial correctness assertion. In fact
any partial correctness assertion for this specific S is valid.

Total correctness assertions, on the other hand, are assertions of the form
[P]S[Q]

and the interpretation of such an assertion is: for all states σ which satisfy P , the execution
of S from state σ must terminate in a state σ′ that satisfies Q.

The semantics of assertions for partial correctness:
σ |= A means that the state σ satisfies the assertion A (or: A is true at state σ).
In {P}S{Q}, the statement S denotes a partial function from initial states to final states.
Thus, the partial correctness assertion means:

∀σ, σ′ ∈ Σ.(σ |= P ∧ 〈S, σ〉 → σ′)⇒ σ′ |= Q.
By the denotational semantics:

∀σ ∈ Σ.(σ |= P ∧ SJSKσ 6=⊥)⇒ SJSKσ |= Q.
If we adopt the convention that ⊥ represents an undefined state that satisfies all assertions,
that is, for all A, ⊥|= A, the partial correctness assertion {P}S{Q} can be defined as follows:

∀σ ∈ Σ.σ |= P ⇒ SJSKσ |= Q.

4 Advanced Topics in Programming Languages c©Tel Aviv Univ.

6.2 Assn - an Assertion Language

What kind of assertions should we include? Since we would like to reason about boolean
expressions, we include all the assertions in Bexp. We want to make assertions using the
quantifiers “∀i · · ·” and “∃i · · ·”, therefore we work with extensions of Bexp and Aexp
which include integer variables i over which we can quantify. Then , for example, we use
∃i.k = i × l. to denote that an integer k is a multiple of another l. We also import well
known mathematical concepts, for example, we use: n! = n × (n − 1) × · · · × 2 × 1 for the
factorial function.

We first define Aexpv which is, basically, Aexp extended to include integer variables
i, j, k, etc.. So Aexpv is given by:

a ::= n | X | i | a0 + a1 | a0 − a1 | a0 × a1

where n ranges over numbers, X ranges over locations and i ranges over integer variables.

We extend boolean expressions to include these more general arithmetic expressions and
quantifiers, as well as implication:

A ::= true | false | a0 = a1 | a0 ≤ a1 | A0 ∧ A1 | A0 ∨ A1 | ¬A | A0 ⇒ a1 | ∀i.A |
∃i.A

We call the set of extended boolean assertions, Assn.

6.2.1 Example

A program that computes the gcd of two numbers:

while ¬(M = N) do
if M ≤ N

then N := N −M
else M := M −N

In this example we would like to say that there are no preconditions (true) and that the
postcondition is that M,N both hold the gcd of the original M,N . In order to formulate
this we need to add two variables m,n. Now we can set:
precondition: (M = m) ∧ (N = n) ∧ (m ≥ 0) ∧ (n ≥ 0)
postcondition: M = N = gcd(m,n)

Assn - an Assertion Language 5

6.2.2 Free and Bound Variables

An occurrence of an integer variable i in an assertion is bound if it occurs in the scope of an
enclosing quantifier ∀i or ∃i. Otherwise, it is free.

Examples:

• ∃i.k = i× l
the occurrence of the integer variable i is bound, while those of k, l are free.

• (i+ 100 ≤ 77) ∧ (∀i.j + 1 = i+ 3)
here the same integer variable i has two different occurrences in the same assertion:
the first is free and the second is bound. j is free.

A formal definition using definition by structural induction:
Let FV (a) be the set of free variables of arithmetic expressions, extended by integer variables
(a ∈ Aexpv). By structural induction:

FV (n) = FV (X) = ∅
FV (i) = {i}
FV (a0 + a1) = FV (a0 − a1) = FV (a0 × a1) = FV (a0)

⋃
FV (a1)

for all numbers n, locations X, and integer variables i.
Let FV (A) be the free variables of an assertion A. By structural induction:

FV (true) = FV (false) = ∅
FV (a0 = a1) = FV (a0 ≤ a1) = FV (a0)

⋃
FV (a1)

FV (A0 ∧ A1) = FV (A0 ∨ A1) = FV (A0 ⇒ A1) = FV (A0)
⋃
FV (A1)

FV (¬A) = FV (A)
FV (∀i.A) = FV (∃i.A) = FV (A) \ {i}

for all a0, a1 ∈ Aexpv, integer variables i and assertions A0, A1, A.
Any variable which occurs in an assertion A and is not free is said to be bound. An assertion
with no free variables is closed.

6.2.3 Substitution

Visualization of an assertion A, with free occurrences of integer variable i:
- - - i - - - i - - - -

Let a be a “pure” arithmetic expression (contains no integer variables). Then the result of
substituting a for i is:

A[a/i] ≡ - - - a - - - a - - - -
In general substitutions, if a contains integer variables then it may be necessary to rename
some bound variables ofA in order to avoid some variables of a becoming bound by quantifiers
in A.

Let i be an integer variable and a an arithmetic expression without integer variables. We
use structural induction to define substitution into arithmetic expressions:

6 Advanced Topics in Programming Languages c©Tel Aviv Univ.

n[a/i] ≡ n
X[a/i] ≡ X
j[a/i] ≡ j
i[a/i] ≡ a
(a0 + a1)[a/i] ≡ (a0[a/i] + a1[a/i])
(a0 − a1)[a/i] ≡ (a0[a/i]− a1[a/i])
(a0 × a1)[a/i] ≡ (a0[a/i]× a1[a/i])

when n is a number, X a location, j an integer variable (j 6= i) and a0, a1 ∈ Aexpv. Now
we define substitutions of a (no free variables in a) for i in assertions:

true[a/i] ≡ true
false[a/i] ≡ false
(A0 = A1)[a/i] ≡ (A0[a/i] = A1[a/i])
(A0 ≤ A1)[a/i] ≡ (A0[a/i] ≤ A1[a/i])
(A0 ∧ A1)[a/i] ≡ (A0[a/i] ∧ A1[a/i])
(A0 ∨ A1)[a/i] ≡ (A0[a/i] ∨ A1[a/i])
(¬A)[a/i] ≡ ¬(A[a/i])
(A0 ⇒ A1)[a/i] ≡ (A0[a/i]⇒ A1[a/i])
(∀j.A)[a/i] ≡ (∀j.A[a/i])
(∀i.A)[a/i] ≡ (∀i.A)
(∃j.A)[a/i] ≡ (∃j.A[a/i])
(∃i.A)[a/i] ≡ (∃i.A)

where a0, a1 ∈ Aexpv, A0, A1, A are assertions and j is an integer variable with j 6= i.
For substitution in place of a location X we use the same notation. The formal definition

is similar to the one above.
A ≡ - - - X - - - X - - - -
A[a/X] ≡ - - - a - - - a - - - -

Example Assertions:

• i is a prime number:
PRIME ≡ ∀j, k . j × k = i⇒ (j = 1 ∨ k = 1)

• i is the least common multiple of j, k:
LCM ≡ i = (| j × k | /gcd(j, k))

6.3 Semantics of Assertions

The extended arithmetic expressions include integer variables. In order to describe the value
of such an expression we must first interpret integer variables as particular integers.

Semantics of Assertions 7

An interpretation is a function assigning integer to each integer variable: I :Intvar→N.

The meaning of Aexpv:
We define a semantic function Av giving the value of an arithmetic expression a with integer
variables in a particular state σ in a particular interpretation I. It is written as AvJaKIσ or
(AvJaK(I))(σ). It is defined by structural induction:

AvJnKIσ = n
AvJXKIσ = σ(X)
AvJiKIσ = I(i)
AvJa0 + a1KIσ = AvJa0KIσ + AvJa1KIσ
AvJa0 − a1KIσ = AvJa0KIσ − AvJa1KIσ
AvJa0 × a1KIσ = AvJa0KIσ × AvJa1KIσ

This extends the semantics for arithmetics expressions without integer variables.

For all a ∈ Aexp, for all states σ and for all interpretations I
AJaKσ = AvJaKIσ

The meaning of Assn:
The semantic function requires an interpretation function as a further argument, since inte-
ger variables are included. The interpretation function provides a value in N, which is the
interpretation of integer variables.
We use I[n/i] to define the interpretation got from I by changing the value of i to n.

We can specify the meaning of assertions in Assn in the same way we did for expressions
in Aexpv using a semantics function. Or given an interpretation I define directly the states
which satisfy an assertion.

We extend the set of states Σ to the set Σ⊥ which includes the value⊥ for non-terminating
computation. By structural induction we define when σ |=I A (A ∈ Assn), i.e., when state
σ satisfies A in interpretation I. Then we extend it so ⊥|=I A. We define by structural
induction for all σ ∈ Σ:

σ |=I true
σ |=I (a0 = a1) if AvJa0KIσ = AvJa1KIσ
σ |=I (a0 ≤ a1) if AvJa0KIσ ≤ AvJa1KIσ
σ |=I A ∧B if σ |=I A and σ |=I B
σ |=I A ∨B if σ |=I A or σ |=I B
σ |=I ¬A if not σ |=I A
σ |=I A⇒ B if (not σ |=I A) or σ |=I B
σ |=I ∀i.A if σ |=I[n/i] A for all n ∈ N
σ |=I ∃i.A if σ |=I[n/i] A for some n ∈ N
⊥|=I A

The semantics of boolean expressions (which are certain kinds of assertions): For all b ∈

8 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Bexp, for all states σ and for all interpretations I
BJbKσ = true iff σ |=I b, and
BJbKσ = false iff not σ |=I b

6.3.1 Partial Correctness Assertions

The partial correctness, as defined in subsection 6.1.2, does not interest us as programmers,
since finding out whether it is true at a particular state is not that important to us. What
will usually be more interesting is whether it is true at all states. This will be discussed
next.

6.3.2 Validity

Let I be an interpretation and consider {P}c{Q}. We want this partial correctness assertion
to be true at all states with respect to the interpretation I, i.e.

∀σ ∈ Σ⊥.σ |=I {P}c{Q}
or:

|=I {P}c{Q}
In fact, we are interested to know whether or not it is true at all states for all interpretations
I, i.e.

|= {P}c{Q}
This is called the validaity. When |= {P}c{Q} we say the partial correctness assertion
{P}c{Q} is valid.

For example, consider
{i < X}X := X + 1{i < x}

we are interested in whether or not it is true at all states for all interpretations I rather then
in a particular value associated with i by the interpretation I.

Similarly, for any assertion A we say |= A iff for all interpretations I and states σ, σ |=I A.
Then A is valid.

6.3.3 Examples

• Suppose |= (P ⇒ Q).
Then for any interpretation I

∀σ ∈ Σ.((σ |=I P)⇒ (σ |=I Q))
i.e. P I ⊆ QI .
So |= (P ⇒ Q) iff for all interpretations I, all states which satisfy P also satisfy Q.

• Suppose |= {P}c{Q}.
Then for any interpretation I

Proof Rules for Partial Correctness 9

Σ⊥

P I
QI

∀σ ∈ Σ.((σ |=I P)⇒ (CJcKσ |=I Q))
i.e. the image of P under CJcK is included in Q, i.e. CJcKP I ⊆ QI .

Σ⊥

P I QI
C[[c]]

So |= {P}c{Q} iff for all interpretations I, if c is executed from a state which satisfies
A then if its execution terminates in a state, that state will satisfy B.
Remark: P I and QI are not necessarily disjoint.

6.4 Proof Rules for Partial Correctness

Hoare rules are a set of proof rules that are syntax-directed. This rules reduce proving a par-
tial correctness assertion of a compound command to proving partial correctness assertions
of its immediate subcommands.

10 Advanced Topics in Programming Languages c©Tel Aviv Univ.

6.4.1 Hoare Proof Rules for Partial Correctness

1. Rule for skip: {A}skip{A}
2. Rule for assignments: {B [a/X]}X := a{B}

3. Rule for sequencing:
{A}c0{C}{C}c1{B}
{A}c0; c1{B}

4. Rule for conditionals:
{A ∧ b}c0{B}{A ∧ ¬b}c1{B}

{A}if b then c0 else c1{B}

5. Rule for while loops:
{A ∧ b}c{A}

{A}while b do c{A ∧ ¬B}

6. Rule of consequence:
|= (A→ A′){A′}c{B} |= (B → B′)

{A}c{B}

6.5 Example - Using Hoare rules

Y := 1;
while X > 0 do

Y := X ∗ Y ;
X := X − 1;

This code computes n! where n is the initial value of X.
We will use Hoare’s rules to prove this.
We begin by setting our precondition :

P := {X = n ∧ n ≥ 0}

Now we go to the first statement :
Y := 1;

This is assignment so we will use rule no. 2 :

{X = n ∧ n ≥ 0}Y := 1; {X = n ∧ Y = 1 ∧ n ≥ 0}

We need the postcondition to match the precondition of the next statement (While) so can
latter use rule no. 3. Therefore we will now use rule no. 6 :

{X = n ∧ n ≥ 0}Y := 1; {X ≥ 0 ∧ n ≥ 0 ∧ Y = n!/X!}

Example - Using Hoare rules 11

We move on to next statement which is the while. We begin with it’s most inner statements.
Therefore we begin with Y := X ∗ Y ; using rule no. 2:

{X ≥ 0 ∧ n ≥ 0 ∧ Y = n!/X!}Y := X ∗ Y ; {X > n ∧ n ≥ 0 ∧ Y = n!/(X − 1)!}

In the same way we do statement X := X − 1; :

{X > 0 ∧ n ≥ 0 ∧ Y = n!/(X − 1)!}X := X − 1; {X ≥ 0 ∧ n ≥ 0 ∧ Y = n!/X!}

We combine the two using rule no. 3 :

{X ≥ 0 ∧ n ≥ 0 ∧ Y = n!/X!}Y := X ∗ Y ;X := X − 1; {X ≥ 0 ∧ n ≥ 0 ∧ Y = n!/X!}

In order to use rule no. 5 on the loop we need the precondition of the inner statement to
match the invariant and the boolean condition. Therefore we will now use rule no. 6 on the
last statement :

{X ≥ 0∧n ≥ 0∧Y = n!/X!∧X > 0}Y := X ∗Y ;X := X−1; {X ≥ 0∧n ≥ 0∧Y = n!/X!}

No we can use rule no. 5 on the while statement:

{X ≥ 0∧n ≥ 0∧Y = n!/X!} while X > 0 do Y := X∗Y ;X := X−1; {X ≥ 0∧n ≥ 0∧Y = n!/X!∧ 6 X > 0}

We will use rule no. 6 on the while statement in order for the postcondition the match the
final wanted result:

{X ≥ 0 ∧ n ≥ 0 ∧ Y = n!/X!} while X > 0 do Y := X ∗ Y ;X := X − 1; {Y = n!}

Lastly we will combine the while with first statement using rule no. 3 to get the complete
proof:

{X = n ∧ n ≥ 0}Y := 1; while X > 0 do Y := X ∗ Y ;X := X − 1; {Y = n!}

12 Advanced Topics in Programming Languages c©Tel Aviv Univ.

6.6 Soundness

Every rule should preserve validity, in the sense that if the assumptions in the rule’s premise
is valid then so is its conclusion. When this holds of a rule it is called sound. When every
rule of a proof system is sound, the proof system itself is said to be sound. It follows then by
rule-induction that every theorem obtained from the proof system of Hoare rules is a valid
partial correctness assertion.
The proof of soundness of the rules depends on some facts about substitution.
Lemma 6.8: Let I be an interpretation. Let a, a0 ∈ Aexpv. Let X ∈ XLoc. Then for all
interpretions I and states σ

Av[[a0[a/X]]]Iσ = Av[[a0]]Iσ[Av[[a]]Iσ/X]

Lemma 6.9: Let I be an interpretation. Let B ∈ Assn,X ∈ Loc and a ∈ Aexp. For all
states σ ∈ Σ

σ |=I B[a/X]iffσ[A[[a]]σ/X] |=I B.

Theorem: Let {A}c{B} be a partial correctness assertion. If ` {A}c{B} then {A}c{B}.

Proof : Clearly if we can show each rule is sound (i.e preserves validity in the sense that if
its premise consists of valid assertions and partial correctness assertions then so is its con-
clusion) then by rule-induction we can see that every theorem is valid.

The rule for skip : Clearly |= {A}skip{A} so the rule for skip is sound.

The rule for assignment: Assume c ≡ (X := a).
Let I be an interpretation. We have σ |=I B[a/X] iff σ[A[[a]]σ/X] |=I B, by Lemma
6.9 Thus.σ |=I B[a/X] → C[[X := a]]σ |=I B, and hence |= {B[a/X]}X; = a{B}, showing
the soundness of the assignment rule.

The rule for sequencing: Assume |= {A}c0{C} and |= {C}c1{B}.
Let I be an interpretation. Suppose σ |=I A. Either σ |=I b or σ |=I ¬b. In the former
case σ |=I A ∧ b so C[[c0]]σ |=I B, as |=I {A ∧ b}c0{B}. In the latter case σ |=I A ∧ ¬b so
C[[c1]]σ |=I B, as |=I {A ∧ ¬b}c1{B}. This ensures |= {A}if b then c0 else c1{B}

The rule for while-loops: Assume |= {A∧b}c{A}, i.e. A is an invariant. w ≡ while b do c.

Let I be an interpretation. Recall that C[[w]] = ∪n∈wΘn where Θ0 = Θ, Θn+1 = {(σ, σ′)|B[[b]]σ =
true and (σ, σ′) ∈ Θn ◦ C[[c]]} ∪ {(σ, σ′|B[[b]]σ = false)}

Ideal Completeness 13

We shall show by mathematical induction that P (n) holds where P (n)↔ def∀σ,σ′∈Σ(σ, σ′) ∈
Θn and σ |=I A→ σ′ |=I A ∧ ¬b

For all |=I A |= C[[ω]]σ |=I A ∧ ¬b

For all states σ, and hence that |= {A}ω{A ∧ ¬b}, as required.

Base case n = 0;When n = 0,Θ0 = ∅ so that induction hypothesis P (0) is vacuously true.

Induction Step: We assume the induction hypothesis P (n) holds for n ≥ 0 and attempt
to prove P (n + 1). Suppose (ω, ω′) ∈ Θn+1 and ω |=I A. Either (i)B[[b]]ω = true and
(ω, ω′) ∈ Θn ◦ C[[c]], or (ii)B[[b]]ω = false and ω′ = ω

We show in either case that ω′ |=I A ∧ ¬b. Assume (i). As B[[b]]ω = true we have ω |=I b
and hence ω |=I A∧ b. Also (ω, ω′′) ∈ C[[c]] and (ω′′, ω′) ∈ Θn for some state ω′′. We obtain
ω′ |=I A, as |= {A ∧ b}c{A}. From the assumption P (n), we obtain ω′ |=I A ∧ ¬b.
Assume (ii). As B[[b]]ω = false we have ω |=I ¬b and hence ω |=I A ∧ ¬b. But ω′ = ω.
This establishes the induction hypothesis P (n+ 1). By mathematical induction we conclude
P (n) holds for all n. Hence the rule for while loops is sound.

The consequence rule: Assume |= (A→ A′) and |= {A′}c{B′} and |= (B′ → B).
Let I be an interpretation. Suppose ω |=I A. Then ωIA′, hence C[[c]]ω |=I B′ and hence
C[[c]]ω |=I B. Thus {A}c{B}. The consequence rule is sound.

By rule-induction, every theorem is valid.

6.7 Ideal Completeness

Gödel’s Incompleteness Theorem implies there is no complete proof system for establishing
precisely the valid assertions. The Hoare rules inherit this incompleteness. However by
separating incompleteness of the assertion language from incompleteness due to inadequacies
in the axioms and rules for the programming language constructs, we can obtain relative
completeness. The proof that Hoare rules are relatively complete relies on the idea of weakest
liberal precondition, and leads into a discussion of verification-condition generators.

14 Advanced Topics in Programming Languages c©Tel Aviv Univ.

6.7.1 Weakest Precondition

Definition: wp(c,Q) - the weakest condition such that every terminating computation of s
results in a state satisfying Q.

[[wpI(c,Q)]] = {σ ∈ Σ⊥|S[[c]]σ ∈I Q}

Theorem: Assn is expressive
Proof : We show by structural induction on commands c that for all assertions B there is
an assertion w[[c,B]] such that for all interpretations I

wpI [[c, B]] = w[[c, B]]I

for all commands c.
For example we will show the if command : c ≡ if b then c0 else c1 : Define

w[[if b then c0 else c1, B]] ≡ [(b ∧ w[[c0, B]])] ∨ [(¬b ∧ w[[c1, B]])]

Then, for σ ∈ Σ and interpretation I,

σ ∈ wpI [[c, B]] iff C[[c]]σ |=I B

iff
([B[[b]]σ = true and C[[c0]]σ |=I B]

or
([B[[b]]σ = false and C[[c1]]σ |=I B]

iff
(σ |=I b and σ |=I w[[c0, B]

or
(σ |=I ¬b and σ |=I w[[c1, B]

, by induction iff
σ |= I[(b ∧ w[[c0, B]])] ∨ [(¬b ∧ w[[c1, B]])]

iff
σ |= Iw[[c, B]]

Lemma: For command c and B ∈ Assn, let w[[c,B]] be an assertion expressing the weakest
precondition i.e. w[[c, B]]I = wpI[[c, B]]. Then

{w[[c, B]]}c{B}

Ideal Completeness 15

Proof : Let w[[c,B]] be an assertion which expresses the weakest precondition of a command
c and postcondition B. We show by structural induction on c that

` {w[[c, B]]}c{B} for all B ∈ Assn

for all commands c.
For example we will show the if command : c ≡ if b then c0 else c1 : In this case,
for σ ∈ Σ and interpretation I,

σ |= Iw[[c, B]] iff C[[c]]σ |=I B

iff

([B[[b]]σ = true and C[[c0]]σ |=I B]

or

([B[[b]]σ = false and C[[c1]]σ |=I B]

iff

(σ |=I b and σ |=I w[[c0, B]

or

(σ |=I ¬b and σ |=I w[[c1, B]

iff

σ |= I[(b ∧ w[[c0, B]])] ∨ [(¬b ∧ w[[c1, B]])]

Hence

|= w[[c, B]]⇔ [(b ∧ w[[c0, B]]) ∨ [(¬b ∧ w[[c1, B]]

Theorem: The proof system for partial correctness is relatively complete, i.e. for any partial
correctness assertion {A}c{B},

` {A}c{B} if |= {A}c{B}

Proof : Suppose |= {A}c{B}. Then by the above lemma ` {w[[c, B]]}c{B} where w[[c, B]]I

= wpI [[c, B]] for any interpretation I. Thus as |= (A ⇒ w[[c, B]]), by the consequence rule,
we obtain |= {A}c{B}.

16 Advanced Topics in Programming Languages c©Tel Aviv Univ.

6.7.2 Verification Conditions

Since Assn is expressive, the validity of a partial correctness assertion of the form {P}c{Q}
is equivalent to the validity of the assertion A ⇒ wJc, BK, from which the command has
been eliminated. In this way, given a theorem prover for predicate calculus we may hope
to derive a theorem prover for our programs. Unfortunately, obtaining wJc, BK is inefficient
and not practical.

However, we can use automatic theorem provers to show partial correctness and to check
the validity of such assertions. We start by generating assertions that describe the partial
correctness of the program. This is also referred to as annotating the program by assertions.
We define the syntactic set of annotated commands by:

c ::= skip | X := a | c0; (X := a) | c0; {D}c1 |
if b then c0 else c1 | while b do {D}c

where X is a location, a an arithmetic expression, b a boolean expression, c, c0, c1 are anno-
tated commands and D is an assertion such that in c0; {D}c1, the annotated command c1 is
not an assignment.
The general idea: an assertion at a point in the annotated command is true whenever flow
of control reaches that point. Thus we only annotate commands of the form c0; c1 at the
point where the control shifts from c0 to c1. When c1 is an assignment the annotation can
be derived simply from a postcondition.

An annotated partial correctness assertion is of the form {A}c{B} where c is an annotated
command. We can say that an annotated partial correctness assertion is valid when its
associated (unannotated) partial correctness assertion is.
For example, the following annotated while loop:

{A} while b do {D}c{B}
contains an assertion D which we hope is an invariant, meaning that:

{D ∧ b}c{D}
is valid.
In order to ensure that

{A} while b do {D}c{B}
is valid, if D is an invariant, it suffices to show that both:

A⇒ D, D ∧ ¬b⇒ B
are valid.
We can derive {A} while b do c{B} from {D ∧ b}c{D} using the Hoare rules.

Not all annotated partial correctness assertions are valid. We define the verification con-
ditions (vc) by structural induction of annotated commands:

Summary 17

vc({A}skip{B}) = {A⇒ B}
vc({A}X := a{B}) = {A⇒ B[a/X]}

vc({A}c0;X := a{B}) = vc({A}c0{B[a/X]})
vc({A}c0; {D}c1{B}) = vc({A}c0{D}) ∪ vc({D}c1{B})

where c1 is not an assignment
vc({A}if b then c0 else c1{B}) = vc({A ∧ b}c0{B} ∪ vc({A ∧ ¬b}c1{B})
vc({A}while b do {D}c{B}) = vc({D ∧ b}c{D}) ∪ {A⇒ D} ∪ {D ∧ ¬b⇒ B}

To show that an annotated partial correctness assertion is valid it is sufficient to show its
verification conditions are valid. Thus, the program verification can be done by the theorem
prover for predicate calculus. An example for such a program is Gypsy(CITE).

While validity of verification conditions is sufficient to guarantee the validity of an an-
notated partial correctness assertion - it is not necessary (can happen when the invariant
chosen is in appropriate for the pre and post conditions).
Example:

{true}while false do {false}skip{true}
The above annotated while-loop is valid with false as an invariant. However, its verification
conditions contain:

true ⇒ false
which is not a valid assertion.

Various theorem-provers:

• Z3 - http://research.microsoft.com/en-us/um/redmond/projects/z3/

• Isabelle - http://isabelle.in.tum.de/nominal/activities/cas09/

• ESC/Java - http://en.wikipedia.org/wiki/ESC/Java

• Spec# - http://research.microsoft.com/en-us/projects/specsharp/

6.8 Summary

Axiomatic semantics provides an abstract semantics. It is appropriate for arguing program
correctness, and therefore can be used to explain programming.

It has many extensions, such as:

• Procedures

• Concurrency

• Events

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://isabelle.in.tum.de/nominal/activities/cas09/
http://en.wikipedia.org/wiki/ESC/Java
http://research.microsoft.com/en-us/projects/specsharp/

18 Advanced Topics in Programming Languages c©Tel Aviv Univ.

• Rely/Guarantee

• Heaps

There are many automatic tools based on axiomatic semantics for various applications,
e.g. theorem-provers and program verifiers. However, more effort is required to make it more
efficient and practical.

6.9 Further Reading

• Glynn Winskel. The formal semantics of programming languages: an introduction.
MIT Press, Cambridge, MA, USA, 1993. (Chapters 6 and 7)

	The basic idea
	Example
	Partial Correctness and Total Correctness

	Assn - an Assertion Language
	Example
	Free and Bound Variables
	Substitution

	Semantics of Assertions
	Partial Correctness Assertions
	Validity
	Examples

	Proof Rules for Partial Correctness
	Hoare Proof Rules for Partial Correctness

	Example - Using Hoare rules
	Soundness
	Ideal Completeness
	Weakest Precondition
	Verification Conditions

	Summary
	Further Reading

