
Advanced Topics in Programming Languages Spring Semester, 2012

Lecture 5: April 6, 2012
Lecturer: Prof. Mooly Sagiv Scribe: Alexander Matveev and Ariel Jarovsky

Denotational Semantics

5.1 Introduction

5.1.1 A brief overview

In the previous lecture, we learned about operational semantics which describe the behavior
of programs by inductively defining transition relations to express evaluation and execution.
Denotational semantics are a more abstract level of semantics. They take the meaning of a
command to be a partial function on states:

• A : Aexp→ (Σ→ N)

• B : Bexp→ (Σ→ T)

• S : Stm→ (Σ→ σ)

All these are defined by structural induction as described below.

Denotational semantics of Aexp

We can express the semantics as sets of using lambda calculus.
First, we present the semantics using sets:

• A : Aexp→ (Σ→ N)

• AJnK = {(σ, n)|σ ∈ Σ}

• AJXK = {(σ, σX)|σ ∈ Σ}

• AJa0 + a1K = {(σ, n0 + n1)|(σ, n0) ∈ AJa0K, (σ, n1) ∈ AJa1K}

• AJa0 − a1K = {(σ, n0 − n1)|(σ, n0) ∈ AJa0K, (σ, n1) ∈ AJa1K}

• AJa0 ∗ a1K = {(σ, n0 ∗ n1)|(σ, n0) ∈ AJa0K, (σ, n1) ∈ AJa1K}

2 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Lemma: AJaK is a function.

Now, let’s look at the semantics of Aexp with λ:

• A : Aexp→ (Σ→ N)

• AJnK = λσ ∈ Σ.n

• AJXK = λσ ∈ Σ.σ(X)

• AJa0 + a1K = λσ ∈ Σ.(AJa0Kσ + AJa1Kσ)

• AJa0 − a1K = λσ ∈ Σ.(AJa0Kσ −AJa1Kσ)

• AJa0 ∗ a1K = λσ ∈ Σ.(AJa0Kσ ∗AJa1Kσ)

As we can see, the definitions are equivalent.

Denotational semantics of Bexp

We will just show the semantics using sets.

• B : Bexp→ (Σ→ T)

• BJtrueK = {(σ, true)|σ ∈ Σ}

• BJfalseK = {(σ, false)|σ ∈ Σ}

• BJa0 = a1K = {(σ, true)|σ ∈ Σ ∧AJa0Kσ = AJa1Kσ}∪{(σ, false)|σ ∈ Σ ∧AJa0Kσ 6= AJa1Kσ}

• BJa0 ≤ a1K = {(σ, true)|σ ∈ Σ ∧AJa0Kσ ≤ AJa1Kσ}∪{(σ, false)|σ ∈ Σ ∧AJa0Kσ > AJa1Kσ}

• BJ¬bK = {(σ,¬T t)|(σ, t) ∈ BJbK}

• BJb0 ∧ b1K = {(σ, t0 ∧T t1)|(σ, t0) ∈ BJb0K, (σ, t1) ∈ BJb1K}

• BJb0 ∨ b1K = {(σ, t0 ∨T t1)|(σ, t0) ∈ BJb0K, (σ, t1) ∈ BJb1K}

Denotational semantics of a Statement

Denotational semantics of statements are a bit more complicated (and the main goal of
denotational semantics). In the next section we present some fundamental question that
arise when trying to express the semantics of a statement and then we will present the
solution proposed by denotational semantics using Domain Theory.

Domain Theory 3

5.1.2 Denotational semantics of a Statement

Running a statement s starting from a state σ yields another state σ′. Thus, we define the
semantics of a statement to be:

S : Stm→ (Σ→ Σ)

This notation is problematic a little bit, due to the fact that it doesn’t handle not-terminating
statements. To handle such statements, we added a state named ⊥ (“bottom”), to denote a
special outcome for non-terminating commands. We also used the following two conventions:

• For any set X, we write X⊥ for X ∪ ⊥.

• Whenever f ∈ X → X,, we extend f to f ∈ X⊥ → X⊥ such that f(⊥) = ⊥. For a
statement, we defined SJ·K to be a function from Σ⊥ to Σ⊥.

Problems with the ‘while’ statement semantics

How can we define a loop semantics, i.e., what is SJwhile b do sK? We will use the following
equivalence:

W (σ) = if BJbK then W (SJsKσ) else σ

This is not well defined mathematically: W is defined in terms of itself and we don’t know
whether such a function W exists. Even if it does, we don’t know if such a function is unique
(e.g., while true do skip).

5.2 Domain Theory

We will use mathematics to show that the semantics of while are well defined. We will think
about W (σ) = if BJbK then W (SJsKσ) else σ as a recursive equation.

An example. Think about programs as processors of streams of bits (streams of 0’s
and 1’s terminated by $). Which properties can we expect?
Let isone be a function that returns 1$ when the input string has at least a 1, and 0$
otherwise. Let’s look at some examples:

• isone(00...00$) = 0$

• isone(xx..1..$) = 1$

• isone(0...0) =?

4 Advanced Topics in Programming Languages c©Tel Aviv Univ.

The last case is the interesting one and it catches the first property we want to introduce.
Any program describe a function between it’s input and it’s output. For programs dealing
with streams we do not just require that the output must be a function of the input, but
that for any step in the program the (partial) output must be a function of the (partial)
input. If we reason about the isone example, the only possible partial output for isone(0...0)
is the empty string ε. This property is called motonicity.

5.2.1 Motonicity

Informally, motonicity requires that more information about the input is reflected in more
information about the output. In order to express this precisely we are going to present
some mathematical background in Domain Theory.

Definition (Partial Order): A relation v is a partial order if it is a refelxive, transitive and
anti-symmetric relation. We write x v y if and only if x is in a relation with y and we say
that x is “smaller” or “less than” y.
Examples:

• For 2 streams of bits, x, y, x v y if and only if x is a prefix of y. For example: 0001111
is a prefix of 0001111111111110001, and 0 if not a prefix of 1111.

• For programs, we use the following relation: No output is less than some output (other
outputs are not related one to the other). Pay attention that non-terminating pro-
grams have no output. Thus, their output is smaller than the output of a terminating
program.

Definition (Poset): A set equipped with a partial order is a poset.

Definition (Motonicity): Let D,E be posets. A function f : D → E is monotonic if and
only if ∀x, y ∈ D.x v y ⇒ f(x) v f(y).

Examples:

1. Let D,E = N and v=≤, then any linear growing function f : N ⇒ N, f(x) = ax +
b (a ≥ 0) is monotonic. Let x ≤ y, then f(y)− f(x) = (ay+ b)− (ax+ b) = a(y−x) ≤
0⇒ f(x) ≤ f(y).

2. Recall the isone example. Let’s show that isone(0k) = ε. 0k v 0k$, 0k v 0k1$.
Since isone must be monotone it follows that isone(0k) v isone(0k$) = 0, isone(0k) v
isone(0k1$) = 1, then isone(0k) = ε.

.

Domain Theory 5

5.2.2 Chains

Definition (Chain):

• Let (X,v) be a poset. A chain is a countable increasing sequence< xi >= {xi ∈ X|x0 v x1 v . . .}.

• An upper bound in a chain is an element which is ”bigger” than all of the other elements
in the chain.

• The least upper bound is the ”smallest” among all of the upper bounds (we write⊔
<xi>, i.e. ∀i ∈ N.xi v

⊔
<xi> and

⊔
<xi> v y for any other upper bound y.

Claim 5.1 For any upper bounded chain, there exists a unique least upper bound.

5.2.3 Complete Partial Orders

Definition (Complete Partial Order):

• We say that a partial order P is complete if every chain in P has a least upper bound,
also in P . We call such P is a cpo (complete partial order).

• A cpo with a least upper bound (or “bottom”) element, ⊥, is called a pointed cpo (or
pcpo). ⊥ has to be “smaller” than any other element in the order P .

Examples:

1. Any set S with the order P such that ∀x, y ∈ S.x v y ↔ x = y is a cpo. In this case,
each chain contains a singe element (maybe with repetitions). Thus, for each chain,
the least (upper) bound is the only element on it.

2. Adding a ⊥ element to the last order P , which satifies ⊥ v x for every x, makes P a
pcpo.

3. The natural numbers N with the order ≤ is not a cpo. This is because the chain
{0 ≤ 1 ≤ 2 ≤ . . .} has no upper bound.

4. The natural number and infinity (∞) with the order ≤ is a pcpo. It’s bottom element
is 0 and every chain has an upper bound, ∞.

5. Let S be a set, and P (S) be it’s power set. The order ⊆ is a pcpo on P (S): let C be
a chain, an upper bound for C is S (∀A ∈ P (S).A ⊆ S, thus S is an upper bound of
every set in P (S). The bottom element is ∅ ∈ P (S).

6 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Constructing Complete Partial Order

Suppose D,E are pointed cpo’s, then D × E is also a cpo. The induced order is given by:

(x, y) vD×E (x′, y′)⇔ x vD x′ ∧ y vE y
′

The “bottom” element is ⊥D×E = (⊥D,⊥E). For a pair of chains xi, yi we define the “join”
(least upper bound) of the pair of chains as:

⊔
D×E(xi, yi) = (

⊔
D xi,

⊔
E yi).

The pointwise induced relation

Suppose we have a program with variables and we don’t want to bound the number of them.
We define the point induced relation which maps the set of variables (S) to the set values E
- a pcpo - in the following way:

m v m′ ⇔ ∀s ∈ S.m(s) v m′(s)

We also define the minimal element of the relation by: ⊥S→E = λs.⊥E. And finally, the
“join” of two maps is given by the following formula:

⊔
(m,m′) = λs.m(s)

⊔
E m

′(s).

5.2.4 Continuity

Claim 5.2 Let f : D → E be a monotonic function, then f maps a chain of elements in D
to a chain of elements in E, i.e.:

x0 v x1 v x2 v . . .⇒ f(x0) v f(x1) v f(x2) v . . .

Continuity means that the output generated using an infinite view of the input does not
contain more information than all of the output based on finit inputs.
Scott’s thesis claims that the semantics of programs can be described by a continuous func-
tion.

Claim 5.3
⊔

i〈f(xi)〉 v f(
⊔

i〈xi〉).

Proof: From the definition of the upper bound it follows that ∀x ∈ 〈xi〉.x v
⊔

i〈xi〉.
From the monotonicity of f follows that ∀x ∈ 〈xi〉.f(x) v f(

⊔
i〈xi〉).

Then, f(
⊔

i〈xi〉) is an upper bound for any element in the chain 〈f(xi)〉, and so it is “grater”
that the least upper bound, i.e.

⊔
i〈f(xi)〉 v f(

⊔
i〈xi〉)

Fixed Point Theorem 7

Note that the inverse is not always true, i.e., it is not always the case that f(
⊔

i〈xi〉) v⊔
i〈f(xi)〉.

For example, let’s take D = E = {(x, y) |x, y ∈ N ∪ {∞} ∧ x ≤ y}. Also, let f : N → N
be ∀x ∈ N.f(x) = 1 and f(∞) = ∞. Now, let’s look at the chain 〈xi〉 = N. Then,
f(
⊔
〈xi〉) = f(∞) =∞, but

⊔
〈f(xi)〉 =

⊔
〈1〉 = 1.

So we got that f(
⊔
〈xi〉) =∞ 6= 1 =

⊔
〈f(xi)〉, i.e., there is a chain that does not fulfill the

continuity condition. Thus, f is discontinuous.

Definition A function f : D → E is continuous iff for every chain of the range 〈xi〉:

•
⊔

i〈f(xi)〉 v f(
⊔

i〈xi〉).

• f(
⊔

i〈xi〉) v
⊔

i〈f(xi)〉

Claim 5.4 Every continuous function is monotonic.

Examples of Continuos Functions

For the partial order (N ∪ {∞} ,≤):

1. The identity function (id(
⊔
ni) =

⊔
id(ni))

2. A constant function const(n) = k

3. If isone(0∞) = ε, then isone is continuous.

Claim 5.5 For a flat cpo A, any monotonic function f : A⊥ → A⊥, such that f is strict, is
continuous.

Proof:
Since A is a flat cpo, it follows that ∀a1, a2.a1 v a2 ⇔ a1 = ⊥ ∨ a1 = a2.
Let 〈xi〉 be a chain and let

⊔
〈xi〉 = Ti.

A is flat, then Ti ∈ 〈xi〉.
Since f is monotonic, it follows that ∀a ∈ 〈xi〉.f(a) v f(Ti).
Then,

⊔
〈f(xi)〉 = f(Ti) = f(

⊔
〈xi〉), so f is continuous.

5.3 Fixed Point Theorem

Let us recall that we want to show the validity of the semantics of the while statement. We
saw that the semantics of while were defined recursively. This leads us to the need of solving
a recursive equation. This is equivalent to find a fixed point to the equation F (W) = W .

8 Advanced Topics in Programming Languages c©Tel Aviv Univ.

We want that the solution to be continuous. This will ensure our ability to prove correctness
about composed programs using structural induction (examples can be found at the end of
the chapter).

5.3.1 The Fixed Point Theorem

Theorem 5.6 Let D be a pcpo and F : D → D be a continuous function. Let F k =
λx.F (F (. . . (F (x)) . . .)) be F composed on itself k times, then:

1. For any fixed point x of F and k ∈ N: F k(⊥) v x.

2. The least of all fixed points is
⊔

k F
k(⊥).

In our case F will be a state transformer function: F : [[Σ⊥ → Σ⊥]→ [Σ⊥ → Σ⊥]].

Proof:

1. By induction on k:

• Base: F 0(⊥) = ⊥ v x - follows immediately since we use a pointed cpo.

• Induction Step: F k+1(⊥) = F (F k(⊥)) v F (x) = x - follows from continuity (and
monotonicity) of F and from the induction assumption.

2. It suffices to show that
⊔

k F
k(⊥) is a fix point.

• F (
⊔

k F
k(⊥)) =

⊔
k F

k+1(⊥) - follows by the conitnuity of F .

•
⊔

k F
k+1(⊥) =

⊔
k F

k(⊥) - since we are making join over all the k’s, we are there’s
no difference between F k+1(⊥) and F k(⊥).

Why is it sufficient to find the least fixed point?

If F is continuous on a pointed cpo, by using the theorem we know how to find the least
fixed point. All other fixed points can be regarded as refinements of the least one. They
contain more information, as they are more precise. In general they are also more arbitrary
and make less sense for our purposes.

Fixed Point Theorem 9

Back to the While Statement

We are interested in solving the recursive equation about the while statement:

W (σ) =

W (SJsKσ) if BJbK(σ) = true
σ if BJbK(σ) = false
⊥ otherwise

This is equivalent to solving the equation W = F (W) where F is defined as:

F = λw.λσ. =

w(SJsKσ) if BJbK(σ) = true
σ if BJbK(σ) = false
⊥ otherwise

Several examples of how using this equation can be founded at the end of the chapter.

5.3.2 Fixed Point Theorem Requirements

The fixed point idea does not suffice for defining the semantic of while since:

• Some functions have more than one fixed point. For example, let’s look at the
function:

F (w)σ =

{
w(σ) if σ(x) 6= 0
σ if σ(x) = 0

Every function w satisfying w(σ) = σ if σ(x) = 0 will be a fixed point of F.

• Some functions have no fixed points. For example, the function:

F (w) =

{
w1 if w1 = w2

w2 otherwise

If w1 6= w2, then clearly there will be no function w, s.t. F (w) = w, since F (w1) =
w2 6= w1. Thus, F has no fixed points at all.

The solution to both problems above can be fixed by imposing another requirement on the
fixed point.
Let’s look at 3 scenarios in order to add requirements for the fixed point theorem.
We will use the While b do S statement:

1. The statement terminates.

2. The statement loops in S.

3. The statement loops in the while.

We will now examine each case.

10 Advanced Topics in Programming Languages c©Tel Aviv Univ.

The statement terminates:

That means, there are states s1..sn, such that:

BJbKsi =

{
t if i < n
f if i = n

Recall that the functions B and S is the semantic operation of Boolean and Statement ex-
pressions, respectively, and SdsJSKsi = si+1fori < n.
An example of such statement and a state that satisfy these requirements:
(While x ≥ 0 do x := x - 1, s(x) ≥ 0)

Let g be any fixed point of F, where (F, g)s = gs There are 2 cases:

1. i < n: (g, si) = (F, g)si = ifBJbKsi then (g ◦ SdsJSK)si.
Since we have that i < n, then BJbKsi is true and the result is that:
ifBJbKsi then (g ◦ SdsJSK)si = g(SdsJSK)si = (g, si+1)

2. i = n: (g, sn) = (F, g)sn = ifBJbKsn then (g ◦ SdsJSKsn).
Since we have that i = n, then BJbKsn is false. So we skip, and get:
ifBJbKsn then (g ◦ SdsJSKsn) = sn

So, every fixed point g of F will suffice for (g, s) = s.
Conclusion: We do not need for extra requirements that will help us to choose the fixed
point.

The execution loops locally:

This means that there are states s1, .., sn such that, BJbKsi = true for i < n, and:

SdsJSKsi =

{
si+1 if i < n
Undefined if i = n

An example of such statement that satisfy these requirements is:

(while x ≤ 0 do
if x = 0 then

while true do skip;
else x := x + 1,

s(x) < 0)

Fixed Point Theorem 11

Let g be any fixed point of F, where (F, g)s = gs. As in the previous case, we have 2
cases:

1. i < n: exactly like the previous.

2. i = n: (g, sn) = (F, g)sn = ifBJbKsn then (g ◦ SdsJSKsn) = g(SdsJSKsn) = Undefined

Thus any fixed point g of F will satisfy (g, s) = Undefined
Conclusion: As in previous case, we do noto need for extra requirements that will help us
to choose the fixed point.

The execution loops globally:

This means that there are states s1, .. such that BJbKsi = true for all i and SdsJSKsi = si+1

for all n.

An example of such statement is:
(while x = 0 do skip, s(x) 6= 0)
Let g be any fixed point of F, where (F, g)s = gs. Like the previous cases we have that
(g, si) = (g, si+1).
Thus, we get that (g, s0) = (g, si) for all i and we cannot determine the value of (g, s0).
This is the place where the various fixed points of F may differ.
As noted in the above example, every function F:

(Fg)s =

{
(g, s) if s(x) 6= 0
s if s(x) = 0

So any partial function g which satisfy: (g, s) = s if x = 0 will be a fixed point of F. But we
want the fixed point to be:

SdsJ while (x = 0) do skip Ksi =

{
s0 if s0(x) = 0
Undefined if s0(x) 6= 0

So our preferred fixed point of F is the function:

(g, s) =

{
Undefined if s(x) = 0
s if s(x) 6= 0

The property that differ g from a different fixed point g’ of F is that whenever (g, s) = s′

then (g′, s) = s′ but not necessarily that if (g′, s) = s′ then (g, s) = s′

Conclusion: The desired fixed point of F should be some partial function such that:

1. (F,g) = g

2. if Fg′ = g′ and g′ 6= g then (g, s) = s′ → (g′, s) = s′ for all s and s’.

12 Advanced Topics in Programming Languages c©Tel Aviv Univ.

5.4 Examples of the Fixed Point Theorem

In all the following examples we will use the function F : [[Σ⊥ → Σ⊥]→ [Σ⊥ → Σ⊥]]:

F = λw.λσ. =

w(SJsKσ) if BJbK(σ) = true
σ if BJbK(σ) = false
⊥ otherwise

as we presented in the previous sections and we will just define the condition b and the
setatement s.
Note: Whenever a function is required and ⊥ is given instead, we refer to the function
⊥ = λσ.⊥, i.e., the function that receives any state and allways returns ⊥.

5.4.1 while true do skip

• BJbK = BJtrueK = λσ.true.

• SJsK = SJskipK = λσ.σ.

Then, F = λw.λσ.w(σ). We will now iterate over F k(⊥) until we reach a fixed point:

1. F 0(⊥) = ⊥ - since 0 invocations is as no function was applied, that is, the function
returns the input.

2. F 1(⊥) = F (F 0(⊥)) = λw.λσ.w(σ)(⊥) = λσ.⊥(σ) = λσ.λσ.⊥(σ) = λσ.⊥. Thus,
F (⊥) = λσ.⊥.

3. F 2(⊥) = F (F (⊥)) = F (λσ.⊥) = λw.λσ.w(σ)(λσ.⊥) = λσ.λσ.⊥(σ) = λσ.⊥. Thus,
F 2(⊥) = λσ.⊥.

Hence, we have found a fixed point: w = λσ.⊥. In other words, SJwhile true do skipK =
λσ.⊥. This behavior is really expected, since our program loops infinitely and does not end,
thus we want the function to describe a non-terminating behavior at any state.
Now we want to show that w = λσ.⊥ is the least fixed point. Since we use the flat cpo, we
get that ⊥ v σ. Hence, λσ.⊥ is “smaller” than any other function (by the point inference
relation) and thus, it is the least fixed point.

5.4.2 while false do skip

• BJbK = BJfalseK = λσ.false.

• SJsK = SJskipK = λσ.σ.

Examples of the Fixed Point Theorem 13

Then, F = λw.λσ.σ. We will now iterate over F k(⊥) until we reach a fixed point:

1. F 0(⊥) = ⊥

2. F 1(⊥) = F (F 0(⊥)) = λw.λσ.σ(⊥) = λσ.σ.

3. F 2(⊥) = F (F (⊥)) = F (λσ.σ) = λw.λσ.σ(λσ.σ) = λσ.σ.

We got that F 2(⊥) = λσ.σ = F (⊥), thus w = λσ.σ is a fixed point.
Then it follows by induction that for any k > 1, F k(⊥) = F (F k−1(⊥)) = F (F k−2(⊥)) =
F k−1(⊥), i.e., F k(⊥) = F k−1(⊥) = λσ.σ.
Now, by the Fixed Point Theorem, we know that the least fixed point is

⊔
k F

k(⊥) =⊔
k λσ.σ = λσ.σ, as expected.

5.4.3 while x != 3 do x = x - 1

• BJbK = BJx != 3K = λσ.σ(x) 6= 3.

• SJsK = SJx = x - 1K = λσ.σ[x 7→ σ(x)− 1].

Then,

F = λw.λσ. =

{
w(σ[x 7→ σ(x)− 1]) σ(x) 6= 3
σ σ(x) = 3

We will now iterate over F k(⊥) until we reach a fixed point:

1. F 0(⊥) = ⊥

2.

F 1(⊥) = F (F 0(⊥)) =[1] λσ.

{
λσ.⊥(σ[x 7→ σ(x)− 1]) σ(x) 6= 3
σ σ(x) = 3

=

{
λσ.⊥ σ(x) 6= 3
σ σ(x) = 3

In [1] we have done β-reduction and assigned F 0(⊥) = λσ.⊥ to w.

3.

F 2(⊥) = F (F (⊥)) =

{
F (⊥)(σ[x 7→ σ(x)− 1]) σ(x) 6= 3
σ σ(x) = 3

Let’s find how this function behaves. Le σ′ be a state exactly as σ (we will use it to
show the “old” state, whereas σ will represent the “new” state).

F (⊥)(σ[x 7→ σ′(x)− 1]) = λσ.

{
σ σ(x) = 3
⊥ σ(x) 6= 3

(σ[x 7→ σ′(x)− 1]) =[2]

λσ.

{
σ[x 7→ 3] σ′(x) = 4
⊥ σ′(x) 6= 4

14 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Note that in [2] we applied again β-reduction. Finally, we get that:

F 2(⊥) = λσ.

{
σ[x 7→ 3] σ(x) =∈ {3, 4}
⊥ σ(x) /∈ {3, 4}

This result agrees with our expectation that the loop terminates after one iteration only if
x’s original value was between 3 and 4, otherwise it does not terminate. In the later case, ⊥
is the expresses this the best.
Then, it follows by induction on the number of iterations that,

F k(⊥) = λσ.

{
σ[x 7→ 3] 3 ≤ σ(x) ≤ 3 + k − 1
⊥ otherwise

We have shown the basis of the induction, now we assume that it is true for k− 1 and prove
it for k.

F k(⊥) = F (F k−1(⊥)) = λσ.

{
F k−1(⊥)(σ[x 7→ σ(x)− 1]) σ(x) 6= 3
σ σ(x) = 3

=

λσ.

σ[x 7→ 3] 4 ≤ σ(x) ≤ 3 + k − 1
σ σ(x) = 3
⊥ otherwise

= λσ.

{
σ[x 7→ 3] 3 ≤ σ(x) ≤ 3 + k − 1
⊥ otherwise

Note that we have not found a fixed point yet, in contrast to what we had in examples 1
and 2. But, by the Fixed Point Theorem the least fixed point is given by

⊔
k F

k(⊥). Now,
we will calculate it.⊔
k

F k(⊥) =
⊔
k

λσ.

{
σ[x 7→ 3] 3 ≤ σ(x) ≤ 3 + k − 1
⊥ otherwise

→∞ λσ.

{
σ[x 7→ 3] σ(x) ≥ 3
⊥ otherwise

Again, the least fixed point reflects the behavior we expect from the program: the loop will
terminate only if the initial value of x is grater or equal than 3.

5.4.4 A nested loop example

Z = 0;
while (X > 0) do {
Y = X;
while (Y > 0) do {
Z = Z + Y ;
Y = Y − 1;
}
X = X − 1;
}

Examples of the Fixed Point Theorem 15

This is a deep example which should finally provide the reader the understanding of the
Fixed Point Theorem and it’s applications. This example also makes use of the power of
Denotational semantics: the fact that they are completely compositional. In order to
make this example easier we assume that σ : V ars → Σ ∪ {⊥}. In order to understand
and calculate the result of this program we will examine each of it’s sub-parts and then we
will join the whole results into the mathematical object which describes the program output
(depending on the given input).

Let’s start by the inner loop, let’s call it Loopin.

Z = 0;
while (Y > 0) do {
Z = Z + Y ;
Y = Y − 1;
}

As in the previous examples we start by defining the function F as described previously.
Define

• BJbK = BJy > 0K = λσ.σ(y) > 0.

• SJsK = SJz = z + y; y = y - 1K = λσ.σ[(σ(z) + σ(y))/z, (σ(y)− 1)/y].

We define F as follows:

F = λw.λσ.

{
w(σ[(σ(z) + σ(y))/z, (σ(y)− 1)/y] if σ(y) > 0
σ if σ(y) = 0

Start by F0(⊥) = ⊥. Now,

F (F0(⊥)) = λσ.

{
w(⊥[(σ(z) + σ(y))/z, (σ(y)− 1)/y] if σ(y) > 0
σ if σ(y) = 0

and then:

F (F0(⊥)) = λσ.

{
⊥ if σ(y) > 0
σ if σ(y) = 0

Now let’s calculate the next iteration:

F2(⊥) = F (F (⊥)) =

λσ.

 λσ.

{
⊥ if σ(y) > 0
σ if σ(y) = 0

(σ[(σ(z) + σ(y))/z, (σ(y)− 1)/y]) if σ(y) > 0

σ if σ(y) = 0

16 Advanced Topics in Programming Languages c©Tel Aviv Univ.

F2(⊥) =λσ.

⊥ if σ(y) > 1
σ(0/y, σ(z) + 1/z) if σ(y) = 1
σ if σ(y) = 0

We can appreciate from the last iteration that after one iteration of the function (we should
remember that the first invocation of F is just testing the condition of the loop without
entering it) we get that the loop terminates only if the value of y is less than 2, this agrees
with the intuition since the loop decrements 1 from y each iteration and stops when y =
0. Now, let’s prove by induction on the number of invocations of F (that is the number of
iterations of the loop -minus 1) that F terminates if the initial value of y is less than k and
in this case the final value of y is 0 and the final value of z is the initial value of z plus the
sum of the numbers from 1 to σ(y), or as a function:

Fk(⊥) = λσ.

{
σ[0/y, (σ(z) + 0.5σ(y)(σ(y) + 1))/z if σ(y) < k
⊥ if σ(y) ≥ k

The basis of the induction was proven when we calculated the first 2 invocations of F. Now
we assume that this is valid for k-1 and prove for k:

Fk−1(⊥) = λσ.

{
σ[0/y, (σ(z) + 0.5σ(y)(σ(y) + 1))/z] if σ(y) < k − 1
⊥ if σ(y) ≥ k − 1

Fk(⊥) = Fk(Fk−1(⊥)) = λσ.

{
Fk−1(⊥)(σ[(σ(z) + σ(y))/z, (σ(y)− 1)/y]) if σ(y) > 0
σ if σ(y) = 0

then:

Fk(⊥) = λσ.

{
σ[0/y, (σ(z) + σ(y) + 0.5(σ(y)− 1)(σ(y))/z] if σ(y) < k
⊥ otherwise

if σ(y) > 0

σ if σ(y) = 0

then:

Fk(⊥) = λσ.

{
σ[0/y, (σ(z) + σ(y)(σ(y) + 1))/z] if σ(y) < k
⊥ otherwise

if σ(y) > 0

σ if σ(y) = 0

then:

Fk(⊥) = λσ. =

{
σ[0/y, (σ(z) + σ(y)(σ(y) + 1))/z] if σ(y) < k
⊥ if σ(y) ≥ k

Explanations: [1] Note that since we assign σ(y)−1 to y, and σ(z)+σ(y) to z the expression
σ(z)+0.5σ(y)(σ(y)+1) turns into σ(z)+σ(y)+0.5(σ(y)−1)σ(y). Note that σ(y)+0.5(σ(y)−

Examples of the Fixed Point Theorem 17

1)σ(y) = σ(y)(1 + 0.5σ(y)− 0.5) = 0.5σ(y)(σ(y) + 1). [3] Note that if we take σ(y) = 0 then
σ(z) + σ(y)(σ(y) + 1) = σ(z), so in this case doing the assignment to σ will remain σ as is,
since we assign to y and z the values they had previously.

In summary, we prove:

Fk(⊥) = λσ.

{
σ[0/y, (σ(z) + 0.5σ(y)(σ(y) + 1))/z] if σ(y) < k
⊥ if σ(y) ≥ k

if we take k to (positive) infinity we get that: Fk(⊥) = λσ.σ[0/y, (σ(z)+0.5σ(y)(σ(y)+1))/z].
Thus, by the Fixed Point Theorem we get that the mathematical function of the inner loop
is:
SJLoopinK = λσ.σ[0/y, (σ(z) + 0.5σ(y)(σ(y) + 1))/z].
Now we want to analyze the outer loop

Z = 0;
while (X > 0) do {
Y = X;
Loopin
X = X − 1;
}

Since the Denotational Semantics are compositional, we can write the inner loop as Loopin.
Moreover, when analyzing the semantic meaning of the outer loop we can look at the in-
ner one as a simple command making use of the function we computed above. We de-
fine h(x) = 0.5x(x + 1). Now let’s denote by s the body of the loop, then: SJsKσ =
SJx = x − 1; K(SJLoopin; K(SJy = x; Kσ)) = SJx = x − 1; K(SJLoopin; Kσ[σ(x)/y]) = SJx =
x− 1; Kσ[0/y, σ(z) + h(σ(x))/z] = σ[(σ(x)− 1)/x, 0/y, (σ(z) + h(σ(x)))/z]
Also, denote by b = x > 0, then BJx > 0K = λσ.σ(x) > 0. So, we define F us follows:

F = λw.λσ.

{
w(σ[(σ(x)− 1)/x, 0/y, (σ(z) + h(σ(x)))/z]) if σ(x) > 0
σ if σ(x) = 0

As in the previous examples, we start with F0(⊥) = ⊥, and now we calculate the first
invocation of F:

F (F (⊥)) = λσ.

{
w(⊥[(σ(x)− 1)/x, 0/y, (σ(z) + h(σ(x)))/z]) if σ(x) > 0
σ if σ(x) = 0

then:

F (F (⊥)) = λσ.

{
⊥ if σ(x) > 0
σ if σ(x) = 0

18 Advanced Topics in Programming Languages c©Tel Aviv Univ.

This is the expected value of entering the loop 0 times, that is the condition must be fulfilled
before doing any iteration of the loop.

F2(⊥)) = λσ.

 λσ. =

{
⊥ if σ(x) > 0
σ if σ(x) = 0

(σ[(σ(x)− 1)/x, 0/y, (σ(z) + h(σ(x)))/z]) if σ(x) > 0

σ if σ(x) = 0

then:

F2(⊥)) = λσ.

σ if σ(x) = 0
σ(0/x, 0/y, (σ(z) + 1)/z) if σ(x) = 1
⊥ if σ(x) > 1

To give the reader a bit more intuition before going through the general case, k, we will
calculate the next iteration:

F3(⊥)) = λσ.

σ if σ(x) = 0
σ(0/x, 0/y, (σ(z) + 1)/z) if σ(x) = 1
σ(0/x, 0/y, (σ(z) + 1 + 3)/z) if σ(x) = 2
⊥ if σ(x) > 1

We left the reader the proof of this last function. Now, the general case is:

Fk(⊥) = λσ.

{
σ[0/x, 0/y, (σ(z) + σ(x)(σ(x) + 1)(σ(x) + 2)/6)z if σ(x) < k
⊥ if σ(x) ≥ k

We will show this by induction on k, the number of iterations in the loop: First of all, we
define u(x) = x(x+ 1)(x+ 2)/6. Now,

Fk(⊥) = F (Fk−1(⊥)) = λσ.

{
Fk−1(⊥)σ[(σ(x)− 1)/x, 0/y, (σ(z) + h(σ(x)))/z] if σ(x) > k
σ if σ(x) = k

then:

Fk(⊥) = λσ.

{
σ[0/x, 0/y, (σ(z) + h(σ(x)) + u(σ(x)− 1))/z] if σ(x) < k − 1
⊥ otherwise

if σ(x) > k

σ if σ(x) = k

then:

Fk(⊥) = λσ.

{
σ[0/x, 0/y, (σ(z) + u(σ(x)))/z] if σ(x) < k
⊥ otherwise

Note that [1] follows from the induction assumption on k = k−1. We only have to prove [2].
We will prove that h(x) + u(x − 1) = u(x), and [2] follows from that when assigning x the

Examples of the Fixed Point Theorem 19

value of σ(x). h(x)+u(x−1) = x(x+1)/2+(x−1)x(x+1)/6 = x(x+1)/2∗(1+(x−1)/3) =
x(x+ 1)/2 ∗ (x− 1 + 3)/3 = x(x+ 1)(x+ 2)/6. And this proves [2]. Now, by the Fixed Point
Theorem, the function that represents the outer loop is:

SJLoopoutK = Fk = λσ.

{
σ[0/x, 0/y, (σ(z) + u(σ(x)))/z] if σ(x) < k
⊥ otherwise

then:

Fk = λσ.σ =

{
[0/x, 0/y, (σ(z) + σ(x)(σ(x) + 1)(σ(x) + 2)/6)/z] if σ(x) < k
⊥ otherwise

Now we’ve just been left with the following program: Z = 0;
Loopout In order to analyze this small program we just have to apply the concatenating rule:
SJz = 0;Loopout; K = SJLoopoutK� SJz = 0K = λσ.σ[0/x, 0/y, (σ(z) + σ(x)(σ(x) + 1)(σ(x) +
2)/6)/z]� λσ.σ[0/z] = λσ.σ[0/x, 0/y, (σ(x)(σ(x) + 1)(σ(x) + 2)/6)/z].
Thus, the function that represents the whole program is: λσ.σ[0/x, 0/y, (σ(x)(σ(x)+1)(σ(x)+
2)/6)/z].

5.4.5 Factorial Example

The factorial program: SdsJy := 1;while(x = 1)do(y := y ∗ x;x := x− 1)K. Our function F
(for the while) will be:

(F, g)s = =

{
g(SdsJ(y := y ∗ x;x := x− 1)Ks) if BJ(x = 1)Ks = t
s if BJ(x = 1)Ks = f

Lets calculate Fn(⊥):
F0(⊥)s = ⊥ (since F0 is the identity function).
Since the factorial must start with 1 we get:

F1(⊥)s = F (⊥)s = =

{
⊥ if (s, x) 6= 1
s if (s, x) = 1

Now, the second iteration is:

F2(⊥)s = F (F (⊥)s) = =

⊥ if s(x) 6= 1, 2
s[(s(y) ∗ 2)/y, 1/x] if s(x) = 2
s[(s(y))/y, 1/x] if s(x) = 1

Thus, we can conclude that:

Fn(⊥)s = =

⊥ if s(x) 6= 1, 2
s[(s(y) ∗ n!)/y, 1/x] if 1 ≤ s(x) ≤ n
⊥ otherwise

20 Advanced Topics in Programming Languages c©Tel Aviv Univ.

So, the fixed point is:

F (⊥) = λw.λs. =

⊥ if s(x) 6= 1, 2
s[(s(y) ∗ s(x)!)/y, 1/x] if 1 ≤ s(x)
⊥ otherwise

5.4.6 Advanced Topics in Denotational Semantics

In this section, we present a couple of theorems (without proofs) that talk about advanced
concepts in denotational semantics.

Equivalence Of Semantics

It can be easily shown that there is an equivalence between denotational semantics, natural
semantics and structural operational semantics (small step semantics) as claimed by the next
theorem:

Theorem 5.7 ∀σ, σ′ ∈ Σ : σ′ = SJsKσ ⇔< s, σ >→ σ′ ⇔< s, σ >⇒ ∗σ′

Complete Lattices

Definition Let (D,v) be a partial order.
D is a complete lattice if every subset has both greatest lower bounds and lest lower bounds.

The following theorem shows that for a complete lattice, there is another way to find the
least fixed point of a function.

Theorem 5.8 (Knaster-Tarski Theorem) Let f : L→ L be a monotonic function on a
complete lattice L. Then a least fixed point lfp(f) exists, and lfp(f) = u{x ∈ L : f(x) v x}

This is a practical way to find the lfp since it might take us an infine number of applications
of f to reach the lfp.

Or in a more formal way:
Let f : L → L be a monotonic function where (L,v,t,u,⊥,>) is a complete lattice and
define:

1. Fix(f) = {l : l ∈ L, f(l) = l}

2. Red(f) = {l : l ∈ L, f(l) v l}

3. Ext(f) = {l : l ∈ L, l v f(l)}

Theorem 5.9 (Tarski 1955) If f is monotone then:

Examples of the Fixed Point Theorem 21

• lfp(f) = uFix(f) = uRed(f) v Fix(f)

• gfp(f) = tFix(f) = tExt(f) v Fix(f)

5.4.7 Summary

1. Denotational definitions are not necessarily better than operational semantics, and
they usually require more mathematical work.

2. The mathematics may be done once and for all

3. The mathematics may pay off:

4. Some of its techniques are being transferred to operational semantics.

5. It is trivial to prove that: IfBJb1K = BJb2K and CJc1K = CJ c2 K then CJwhile b1 do c1 K =
CJwhile b2 do c2 K (compare with operational semantics).

6. Denotational semantics provides a way to declare the meaning of programs in an ab-
stract way. It can handle side-effects, loops, recursion, gotos, non-determinism, but
now low-level concurrency.

7. Fixed point theory provides a declarative way to specify computations, which gives
many usages.

22 Advanced Topics in Programming Languages c©Tel Aviv Univ.

Bibliography

23

