
JavaScript 

John Mitchell 

Adapted by Mooly Sagiv 

Reading: links on last slide      Homework 1: 18/3 – 17/4 

Spring 2012 



Why talk about JavaScript? 

• Very widely used, and growing 
– Web pages, AJAX, Web 2.0 

– Increasing number of web-related applications 

• Illustrates core PL concepts 
– First-class functions 

– Objects, in a pure form 

• Some interesting trade-offs and consequences 
– Powerful modification capabilities 

• Add new method to object, redefine prototype, access caller … 

– Difficult to predict program properties in advance 
• Challenge for programmers, implementation, security, correctness 

 

 



Keys to Good Language Design 

• Motivating application 

– C: systems prog, Lisp: symbolic computation,  

   Java: set-top box, JavaScript: web scripting 

• Abstract machine 

– Underlying data structures that programs manipulate 

– JavaScript: web page -> document object model 

• Theoretical considerations 

– ECMA Standard specifies semantics of JavaScript 

– Ankur Taly: An SOS for JavaScript 



What’s a scripting language? 

• One language embedded in another 
– A scripting language is used to write programs that 

produce inputs to another language processor 
• Embedded JavaScript computes HTML input to the browser 
• Shell scripts compute commands executed by the shell 

• Common characteristics of scripting languages 
– String processing – since commands often strings 
– Simple program structure 

• Avoid complicated declarations, to make easy to use 
• Define things “on the fly” instead of elsewhere in program 

– Flexibility preferred over efficiency, safety 
• Is lack of safety a good thing?  Maybe not for the Web! 

• Small programs 



JavaScript History 

• Developed by Brendan Eich at Netscape, 1995  
– Scripting language for Navigator 2 

• Later standardized for browser compatibility 
– ECMAScript Edition 3 (aka JavaScript 1.5) -> ES5, … 

• Related to Java in name only 
– Name was part of a marketing deal 

• Various implementations available 
– Spidermonkey interactive shell interface 
– Rhino: http://www.mozilla.org/rhino/ 
– Browser JavaScript consoles  



Motivation for JavaScript 

• Netscape, 1995 
– Netscape > 90% browser market share 
– Opportunity to do “HTML scripting language” 
– Brendan Eich 

   I hacked the JS prototype in ~1 week in May 
   And it showed!  Mistakes were frozen early 
   Rest of year spent embedding in browser 

• Common uses of JavaScript have included: 
– Form validation 
– Page embellishments and special effects 
– Dynamic content manipulation 
– Web 2.0:  functionality implemented on web client 

• Significant JavaScript applications: Gmail client, Google maps 

 - ICFP talk, 2005 



Design goals  

•  Brendan Eich’s 2005 ICFP talk 

– Make it easy to copy/paste snippets of code 

– Tolerate “minor” errors (missing semicolons) 

– Simplified onclick, onmousedown, etc., event 
handling, inspired by HyperCard 

– Pick a few hard-working, powerful primitives 

• First class functions for procedural abstraction 

• Objects everywhere, prototype-based 

– Leave all else out! 



JavaScript design 

• Functions based on Lisp/Scheme 
– first-class inline higher-order functions 

         function (x) { return x+1; } 

• Objects based on Smalltalk/Self 
– var pt = {x : 10, move : function(dx){this.x += dx}} 

• Lots of secondary issues … 
– “In JavaScript, there is a beautiful, elegant, highly 

expressive language that is buried under a steaming 
pile of good intentions and blunders.” 

                                                                                               Douglas Crockford 



Sample “details” 
• Which declaration of g is used? 

 

 

 

 

 

var f = function(){ var a = g(); 

  function g() { return 1;}; 

  function g() { return 2;}; 

  var g = function() { return 3;} 

  return a;} 

var result = f(); // what is result? 

var scope = “global”; 

function f() { alert(scope); 

         var scope = “local”;  

                   alert(scope);  

// variable initialized here  

//but defined throughout f 



What makes a good programming 
language design? 

Architect 

Compiler, 

Runtime 
environ-

ment 

Programmer 

Q/A 
Testing 

Diagnostic
Tools 

Programming 
Language 



Language syntax 

• JavaScript is case sensitive 
– HTML is not case sensitive;   onClick, ONCLICK, … are HTML 

• Statements terminated by returns or semi-colons (;) 
–  x = x+1;    same as      x = x+1 

– Semi-colons can be a good idea, to reduce errors 

• “Blocks” 
– Group statements using  { … } 

– Not a separate scope, unlike other languages (see later slide) 

• Variables 
– Define a variable using the var statement 

– Define implicitly by its first use, which must be an assignment 

• Implicit definition has global scope, even if it occurs in nested scope 



Stand-alone implementation 

• Spidermonkey command-line interpreter 
– Read-eval-print loop 

• Enter declaration or statement 

• Interpreter executes 

• Displays value 

• Returns to input state 

– Example 

 

 

 

 
              class web page has link to this implementation 

 

 



Web example: page manipulation 

• Some possibilities 
– createElement(elementName) 
– createTextNode(text) 
– appendChild(newChild) 
– removeChild(node) 
 

• Example: Add a new list item: 

 var list = document.getElementById(‘list1') 

 var newitem = document.createElement('li') 

 var newtext = document.createTextNode(text) 

 list.appendChild(newitem) 

 newitem.appendChild(newtext) 

This example uses the browser Document Object Model (DOM).  

We will focus on JavaScript as a language, not its use in the browser.  



Web example: browser events 

<script type="text/JavaScript"> 

     function whichButton(event) { 

  if (event.button==1) { 

   alert("You clicked the left mouse button!") } 

  else { 

   alert("You clicked the right mouse button!")  

   }} 

</script> 

… 

<body onmousedown="whichButton(event)"> 

… 

</body> 

Mouse event causes  
page-defined function to 
be called  

Other events: onLoad, onMouseMove, onKeyPress, onUnLoad 



JavaScript primitive datatypes 

• Boolean  
– Two values: true and false 

• Number  
– 64-bit floating point, similar to Java double and Double  

– No integer type  

– Special values NaN  (not a number) and Infinity 

• String  
– Sequence of zero or more Unicode characters  

– No separate character type (just strings of length 1) 

– Literal strings using ' or " characters  (must match) 

• Special values  
– null  and undefined 

– typeof(null) = object;     typeof(undefined)=undefined 



JavaScript blocks 

• Use { } for grouping; not a separate scope 

 

 

 

 

 

• Not blocks in the sense of other languages 
– Only function calls and the with statement introduce a 

nested scope 

 

 

var x = 3; 

x; 

{ var x = 4 ; x } 

x; 



JavaScript functions 

• Declarations can appear in function body 
– Local variables, “inner” functions 

• Parameter passing 
– Basic types passed by value, objects by reference 

• Call can supply any number of arguments 
– functionname.length : # of arguments in definition 

– functionname.arguments.length : # args in call 

• “Anonymous” functions (expressions for functions) 
– (function (x,y) {return x+y}) (2,3); 

• Closures and Curried functions 
– function CurAdd(x){ return function(y){return x+y} }; 

More explanation on next slide 



Function Examples 

• Curried function 
       function CurriedAdd(x){ return function(y){ return x+y} }; 

       g = CurriedAdd(2); 

       g(3) 

• Variable number of arguments 
       function sumAll() { 

          var total=0; 

          for (var i=0; i< sumAll.arguments.length; i++)  

                  total+=sumAll.arguments[i]; 

          return(total);  

       } 

       sumAll(3,5,3,5,3,2,6) 



Use of anonymous functions 

• Simulate blocks by function definition and call 
       var u = { a:1, b:2 } 

       var v = { a:3, b:4 } 

       (function (x,y) {                                       //  “begin local block” 

             var tempA = x.a; var tempB =x.b;  //  local variables 

             x.a=y.a; x.b=y.b;  

             y.a=tempA; y.b=tempB  

       }) (u,v)                                                      //   “end local block”  

// Side effects on u,v  because objects are passed by reference 

• Anonymous functions very useful for callbacks 
       setTimeout( function(){ alert("done"); }, 10000) 

       // putting alert("done") in function delays evaluation until call 

 



Objects 

• An object is a collection of named properties 
– Simplistic view in some documentation: hash table or associative array 

– Can define by set of name:value pairs 

• objBob = {name: “Bob", grade: 'A', level: 3}; 

– New properties can be added at any time 

• objBob.fullname = 'Robert'; 

– A property of an object may be a function (=method) 
 

• Functions are also objects 
– A function defines an object with method called “( )” 

   function max(x,y) { if (x>y) return x; else return y;}; 

   max.description = “return the maximum of two arguments”; 



Basic object features 

• Creating and modifying objects 
var r = new Rectangle(8.5, 11); 
r. area = function () { return this.width * this.height ;} 
var a = r. area;  

• Better to do it in the constructor 
 function Rectangle(w, h) { 
    this.width = w; this.height = h ; 

this.area= function() {var r = new Rectangle(8.5, 11); 
    this. area = function () { return this.width * this.height ;} 
} 
var r =  new Rectangle(8.5, 11); 
var a = r.area() ; 



Code and data can be shared via Prototypes 

• Rectangle with shared area computation 
 function Rectangle(w, h) { 

    this.width = w; this.height = h ; 

    } 
Rectangle.prototype.area= function()  { 
return this.width * this.height ;} 

    var r =  new Rectangle(8.5, 11); 

     var a = r.area() ; 
Also supports inheritance (see the Definitive 
Guide) 
 

 



Changing Prototypes 

• Use a function to construct an object 
     function car(make, model, year) {  
         this.make = make;  
         this.model = model;  
         this.year = year;  
     }  

• Objects have prototypes, can be changed 
     var c = new car(“Tesla”,”S”,2012); 
     car.prototype.print = function () { 
         return this.year + “ “ + this.make + “ “ + this.model;} 
     c.print(); 
 



Objects and this 

•  Property of the activation object for function call 

– In most cases, this  points to the object which has the 
function as a property (or “method”). 

– Example :  

        var o  = {x : 10, f : function(){return this.x}} 

        o.f(); 

        10 

 
 this is resolved dynamically when the method is executed 



JavaScript functions and this 

    var x = 5; var y = 5; 

    function f() {return this.x + y;} 

    var o1 = {x : 10} 

    var o2 = {x : 20} 

    o1.g = f; o2.g = f;   

    o1.g()  15 

    o2.g()  25 

    var f1 = o1.g ; f1()   10 
                  

   
Both o1.g and o2.g refer to the same function. 

Why are the results for o1.g() and o2.g() different ? 



Local variables stored in “scope object” 

Special treatment for nested functions 
var o = { x: 10, 
             f : function() {  
                                 function g(){ return this.x } ;  
                                 return g(); 
              } 
}; 
o.f() 
 
 
Function g gets the global object as its this property ! 



Language features in the course 

• Stack memory management 
– Parameters, local variables in activation records 

• Garbage collection 
– Automatic reclamation of inaccessible memory 

• Closures 
– Function together with environment (global variables) 

• Exceptions 
– Jump to previously declared location, passing values 

• Object features 
– Dynamic lookup, Encapsulation, Subtyping, Inheritance 

• Concurrency 
– Do more than one task at a time (JavaScript is single-threaded) 



Stack memory management 

• Local variables in activation record of function 

function f(x) { 

    var y = 3; 

    function g(z) { return y+z;}; 

    return g(x); 

} 

var x= 1; var y =2; 

f(x) + y; 

 

 



Closures 

• Return a function from function call 

      function f(x) { 
          var y = x; 
          return function (z){y += z; return y;} 
      } 
      var h = f(5); 
      h(3); 

• Can use this idea to define objects with “private” fields 
 
 

 
 
 
 
 

– Can implement breakpoints 

uniqueId function () { 
   if (!argument.calle.id) arguments.calee.id=0; 
   return arguments.callee.id++; 
}; 



Implementing Closures 
function f(x) {  
   function g(y) { return x + y; }; 

   return g ; 

 } 

var h = f(3); 

var j  = f(4); 

var z = h(5); 

var w = j(7); 

global 
h 

undefined 

undefined 

undefined undefined 

j 
z w 



Implementing Closures(1) 
function f(x) {  
   function g(y) { return x + y; }; 

   return g ; 

 } 

var h = f(3); 

var j  = f(4); 

var z = h(5); 

var w = j(7); 

global 
h 

undefined 

undefined undefined 

j 
z w 

f 
3 

… 

x 

g 



Implementing Closures(2) 
function f(x) {  
   function g(y) { return x + y; }; 

   return g ; 

 } 

var h = f(3); 

var j  = f(4); 

var z = h(5); 

var w = j(7); 

global 
h 

undefined 
undefined 

j z 
w 

f 
3 

… 

x 

g 

f 

4 

… 

x 

g 



Implementing Closures(3) 
function f(x) {  
   function g(y) { return x + y; }; 

   return g ; 

 } 

var h = f(3); 

var j  = f(4); 

var z = h(5); 

var w = j(7); 

global 
h 

8 
undefined 

j z 
w 

f 
3 

… 

x 

g 

f 

4 

… 

x 

g 



Implementing Closures(4) 
function f(x) {  
   function g(y) { return x + y; }; 

   return g ; 

 } 

var h = f(3); 

var j  = f(4); 

var z = h(5); 

var w = j(7); 

h= null; 

global 
h 

8 
11 

j z 
w 

f 
3 

… 

x 

g 

f 

4 

… 

x 

g 



Garbage collection 

• Automatic reclamation of unused memory 
– Navigator 2: per page memory management 

• Reclaim memory when browser changes page 

– Navigator 3: reference counting 
• Each memory region has associated count 

• Count modified when pointers are changed 

• Reclaim memory when count reaches zero 

– Navigator 4: mark-and-sweep, or equivalent 
• Garbage collector marks reachable memory 

• Sweep and reclaim unreachable memory 

Reference http://www.unix.org.ua/orelly/web/jscript/ch11_07.html 

Discuss garbage collection in connection with memory management 



Exceptions 

• Throw an expression of any type 
      throw "Error2";  

      throw 42;  

      throw {toString: function() { return "I'm an object!"; } };  

• Catch  
      try { … 

      } catch (e if e == “FirstException") {        // do something 

      } catch (e if e == “SecondException") {    // do something else 

      } catch (e){                               // executed if no match above 

      }  

 
Reference: http://developer.mozilla.org/en/docs/ 

                Core_JavaScript_1.5_Guide :Exception_Handling_Statements 



Object features 

• Dynamic lookup 
– Method depends on run-time value of object 

• Encapsulation 
– Object contains private data, public operations 

• Subtyping 
– Object of one type can be used in place of another 

• Inheritance 
– Use implementation of one kind of object to 

implement another kind of object 

 



Concurrency 

• JavaScript itself is single-threaded 
– How can we tell if a language provides concurrency? 

• AJAX provides a form of concurrency 
– Create XMLHttpRequest object, set callback function 
– Call request method, which continues asynchronously 
– Reply from remote site executes callback function 

• Event waits in event queue… 

– Closures important for proper execution of callbacks 

• Another form of concurrency 
– use SetTimeout to do cooperative multi-tasking 

• Maybe we will explore this in homework … 

 



Unusual features of JavaScript 

• Some built-in functions 
– Eval (next slide), Run-time type checking functions, … 

• Regular expressions 
– Useful support of pattern matching 

• Add, delete methods of an object dynamically 
– Seen examples adding methods. Do you like this? Disadvantages? 

– myobj.a = 5; myobj.b = 12; delete myobj.a; 

• Redefine native functions and objects (incl undefined) 

• Iterate over methods of an object 
– for (variable in object) { statements } 

• With statement (“considered harmful” – why??) 
– with (object) { statements } 

 



JavaScript eval 

• Evaluate string as code 
– The eval function evaluates a string of JavaScript code, in 

scope of the calling code 

• Examples 
   var code = "var a = 1"; 
   eval(code); // a is now '1‘ 
   var obj = new Object();  
   obj.eval(code); // obj.a is now 1 

• Most common use  
– Efficiently deserialize a large, complicated JavaScript data 

structures received over network via XMLHttpRequest  

• What does it cost to have eval in the language? 
– Can you do this in C?   What would it take to implement? 

 
 



Other code/string conversions 

• String computation of property names 

 

 

 

• In addition 
• for (p in o){....} 

• o[p] 

• eval(...)  

     allow strings to be used as code and vice versa 

 

var m = "toS"; var n = "tring"; 

Object.prototype[m + n] = function(){return undefined}; 



Lessons Learned 

• Few constructs make a powerful language 

• Simplifies the interpreter 

• But the interaction can be hard to understand 
for programmers 

– JSLint 

• Hard for compilation, verification, … 



References 

• Brendan Eich, slides from ICFP conference talk 
• Tutorial 

– http://www.w3schools.com/js/  

• JavaScript 1.5 Guide 
– http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide 

• Douglas Crockford 
– http://www.crockford.com/JavaScript/ 
– JavaScript: The Good Parts, O’Reilly, 2008.  (book) 

– David Flanagan 
– JavaScript: The Definitive Guide O’Reilly 2006 (book) 

– Ankur Taly 
– An Operational Semantics for JavaScript 

 


