
Advanced Topics in Programming Languages

Spring semester, 2012

Extensions to Typed Lambda Calculus

Lecturer: Mooly Sagiv Scribe: Orr Tamir and Bar Avidan

9.1 Lecture Overview

In this lecture we will extend the typed lambda calculus with some interesting features
in our somehow shortest path to Java.

9.2 Typed Lambda Calculus (Review)

9.2.1 Derivation Rules

t ::= terms
x variable

λx : T.t abstraction
t t application

v ::= values
λx : T.t abstraction values

T ::= types
T → T types of functions

Γ ::= context
∅ empty context

Γ, x : T term variable binding

9.2.2 Evaluation Rules

t1 → t′1
(E-APP1)

t1tt2 → t′1t2

t2 → t′2
(E-APP2)

v1t2 → v1t
′
2

1

Lecture 9: Extensions to Typed Lambda Calculus 2

(λx : T11.t12)v2
(E-APPABS)

[x 7→ v2]t12

9.2.3 Type Rules

x : T ∈ Γ
(T-VAR)

Γ ⊢ x : T

Γ, x : T1 ⊢ t2 : T2
(T-ABS)

Γ ⊢ λx : T1.t2 : T1 → T2

Γ ⊢ t1 : T11 → T12 ∧ Γ ⊢ t2 : T11
(T-ABS)

Γ ⊢ t1 t2 : T12

Properties of the type system:

• Uniqueness of types

• Linear time type checking: using the derivation tree backwards(inversion lemma).

• Type Safety

– Well typed programs cannot go wrong, meaning that there is no undefined
semantics and there is no need for runtime checks

• Progress Property: If t is well typed then t is a value or there is an evaluation
step t → t′.

• Preservation Property: If t is well typed and there is an evaluation step t → t′

that is also well typed.

9.3 Unit type

This type is equal to the void type that is popular in many languages.

9.3.1 Derivation Rules

t ::= ... terms
unit constant unit

v ::= ... values
unit constant unit

9.3.2 Type Rules

Γ ⊢ unit : UNIT (T-Unit)

Lecture 9: Extensions to Typed Lambda Calculus 3

T ::= ... types
Unit unit type

9.3.3 Derivation Rules

t1 : T1; t2
(T-ABS)

(λx : T1.Unit t2)t1 ∧ x /∈ FV (t2)

9.4 Ascription

This extension allows us to ascribe a particular type to a given term.

9.4.1 Derivation Rules

T ::= types
t as T

9.4.2 Evaluation Rules

v as T
(E-ASCRIBE)v

t → t′
(E-ASCRIBE1)

t as T → t′

9.4.3 Type Rules

Γ ⊢ t : T
(T-ASCRIBE)

Γ ⊢ t as T1 : T

Note that this extension is only for the comfort of the user and the compiler doesn’t
benefit from it. However the compiler can warn the user if the declared type is not
equal to the proofed type.

There are some situations where ascription can be useful in programming. One
common one is documentation. It can sometimes become difficult for a reader to keep
track of the types of the subexpressions of a large compound expression. Judicious
use of ascription can make such programs much easier to follow. Another use of
ascription is as a mechanism for abstraction. In systems where a given term t may
have many different types (for example, systems with subtyping), ascription can be
used to ”hide” some of these types by telling the typechecker to treat t as if it had
only a smaller set of types.

Lecture 9: Extensions to Typed Lambda Calculus 4

9.5 Let Binding

When writing a complex expression, it is often useful - both for avoiding repetition
and for increasing readability - to give names to some of its subexpressions. The next
extension is similar to local variables definition.

9.5.1 Derivation Rules

t ::= ... terms
let x = t1 in t2 let binding

9.5.2 Evaluation Rules

let x = v1 in t2
(E-LETV)

[x 7→ v1]t2

t1 → t′1
(E-LET)

let x = t1 in t2 → let x = t′1 in t2

9.5.3 Type Rules

Γ ⊢ t1 : t ∧ Γ.x : T ⊢ t2 : T2
(E-LET)

Γ ⊢let x = t1 in t2 : T2 → let x = t′1 in t2

In the untyped lambda calculus we would define the let using a lambda abstraction
(syntactic sugar). But in the typed lambda calculus we need the type of the bounded
variable in the lambda abstraction.

9.6 Pairs

Most programming languages provide a variety of ways of building compound data
structures. The simplest of these is pairs, or more generally tuples, of values. We treat
pairs in this section, then do the more general cases of tuples and labeled records. In
order to support pairs we add two new forms of term, pairing, written {t1, t2}, and
projection, written t.1 for the first projection from t and t.2 for the second projection.
In addition we add one new type constructor, T1 × T2.

Lecture 9: Extensions to Typed Lambda Calculus 5

9.6.1 Derivation Rules

t ::= ... terms
{t, t} pair
t.1 first projection
t.2 second projection

v ::= ... values
{v, v} pair value

T ::= ... types
T1 × T2 pair type

9.6.2 Evaluation Rules

{v1, v2}.1
(E-PairBeta1)v1

{v1, v2}.1
(E-PairBeta2)v2

t → t′
(E-Proj1)

t.1 → t.1′

t → t′
(E-Proj2)

t.2 → t.2′

t1 → t′1
(E-Pair1)

{t1, t2} → {t′1, t2}

t2 → t′2
(E-Pair1)

{v1, t2} → {v1, t′2}

9.6.3 Type Rules

Γ ⊢ t1 : T1 ∧ Γ ⊢ t2 : T2
(T-Pair)

Γ ⊢ {t1, t2} : T1 × T2

Γ ⊢ t : T1 × T2
(T-Proj)

Γ ⊢ t.1 : T1

Γ ⊢ t : T1 × T2
(T-Proj2)

Γ ⊢ t.2 : T2

Note that the evaluation order defined in this semantics implies an eager evaluation.
We could have define a lazy evaluation but with a cost of non-determinism and harder
proofs.

Lecture 9: Extensions to Typed Lambda Calculus 6

9.6.4 Examples

• {pred 4, if true then false else false}.1

– {pred 4, if true then false else false}.1
– {3, if true then false else false}.1
– {3, false}.1
– 3

• (λx:Nat × Nat. x.2) {pred 4, pred 5}

– (λx:Nat × Nat. x.2) {pred 4, pred 5}
– (λx:Nat × Nat. x.2) {3, pred 5}
– (λx:Nat × Nat. x.2) {3,4}
– {3,4}.2
– 4

9.7 Tuples

This extension is a generalization of Pairs.

9.7.1 Derivation Rules

t ::= ... terms{
ti}

}
i∈1..n

tuple

t.i projection

v ::= ... values
{vi}i∈1..n tuple value

T ::= ... types
T1 × T2...× Tn tuple type

9.7.2 Evaluation Rules

{vi}i∈1..n.j
(E-ProjTuple)vj

t → t′
(E-Proj)

t.j → t.j′

tj → t′j
(E-Tuple)

{v1, .., vj−1, tj, ..tn} → {v1, .., vj−1, t
′
j, ..tn}

Lecture 9: Extensions to Typed Lambda Calculus 7

9.7.3 Type Rules

∀i,Γ ⊢ ti : Ti
(T-Tuple)

Γ ⊢ {ti}1..n : T1 × T2...× Tn

Γ ⊢ t : T1 × T2...× Tn
(T-Proj)

Γ ⊢ t.i : Ti

For example, {1,2,true} is a 3-tuple containing two numbers and a boolean. Its type
is written {Nat,Nat,Bool}.

9.8 Records

Records allow an elegant to organize data. In C# or Java they are very popular
(Map,Dictionary). They are also standard in ML, Haskel and Scala. We could also
define them in the untyped lambda calculus.

9.8.1 Derivation Rules

t ::= ... terms
{li = ti}i∈1..n record

t.l projection

v ::= ... values
{li = vi}i∈1..n tuple value

T ::= ... types
l1 → T1 × l2 → T2...× ln → Tn Record type

9.8.2 Evaluation Rules

{li = vi}i∈1..n.lj
(E-ProjRCD)vj

t → t′
(E-Proj)

t.l → t.l′

tj → t′j
(E-RCD)

{l1 = v1, .., lj−1 = vj−1, lj = tj, ..ln = tn} → {l1 = v1, .., lj−1 = vj−1, lj = tj, ..ln = tn}

Lecture 9: Extensions to Typed Lambda Calculus 8

9.8.3 Type Rules

∀i,Γ ⊢ ti : Ti
(T-RCD)

Γ ⊢ {li = ti}1..n : l1 → T1 × l2 → T2...× ln → Tn

Γ ⊢ t : l1 → T1 × l2 → T2...× ln → Tn
(T-ProjRCD)

Γ ⊢ t.li : Ti

The generalization from n− ary tuples to labelled records is equally straightforward.
We simply annotate each field tj with a label li drawn from some predetermined set
L. For example, {x=5} and {partno=5524,cost=30.27} are both record values, their
types are {x:Nat} and {partno:Nat,cost:Float}. We require that all the labels in a
given record term or type be distinct.

9.9 Pattern Matching

• An elegant way to access records

• Checked by the compiler

• Shortens the code

• Standard in ML, Haskel, Scala

• Can be expressed in the untyped lambda calculus

We do not discuss the subject here.

9.10 Sums

Many programs need to deal with heterogeneous collections of values. For example, a
list cell can be either nil or a cons cell carrying a head and a tail, a node of an abstract
syntax tree in a compiler can represent a variable, an abstraction, an application, etc.
The type-theoretic mechanism that supports this kind of programming is variant
types. Before introducing variants in full generality, let us consider the simpler case
of binary sum types. A sum type describes a set of values drawn from exactly two
given types.

9.10.1 Derivation Rules

t ::= ... terms
inl t tagging(left)
inr t tagging(right)

case t of inl x ⇒ t|inr x ⇒ t case

Lecture 9: Extensions to Typed Lambda Calculus 9

v ::= ... values
inl v tagged value(left)
inr v tagged value(right)

T ::= ... types
T1 + T2 sum type

9.10.2 Evaluation Rules

case (inl v) of inl x1 ⇒ t1|inr x2 ⇒ t2
(E-CaseINL)

[x1 7→ v]t1

case (inr v) of inl x1 ⇒ t1|inr x2 ⇒ t2
(E-CaseINR)

[x2 7→ v]t2

t → t′
(E-Case)

case t of inl x1 ⇒ t1|inr x2 ⇒ t2 → case t′ of inl x1 ⇒ t1|inr x2 ⇒ t2

t1 → t′1
(E-INL)

inl t1 → inl t′1

t1 → t′1
(E-INR)

inr t1 → inl t′1

9.10.3 Type Rules

Γ ⊢ t1 : T1
(T-INL)

Γ ⊢ inl t1 : T1 + T2

Γ ⊢ t2 : T2
(T-INR)

Γ ⊢ inr t1 : T1 + T2

Γ, x1 : T1 ⊢ t1 : T ∧ Γ, x2 : T2 ⊢ t1 : T ∧ Γ ⊢ t : T1 + T2
(T-CASE)

Γ ⊢ case t of inl x1 ⇒ t1|inr x2 ⇒ t2 : T

9.10.4 Example

Suppose we are using the types
PhysicalAddr = {firstlast:String, addr:String};
VirtualAddr = {name:String, email:String};

to represent different sorts of address-book records. If we want to manipulate both
sorts of records uniformly we can introduce the sum type:

Addr = PhysicalAddr + VirtualAddr;
each of whose elements is either a PhysicalAddr or a V irtualAddr.
We create elements of this type by tagging elements of the component types PhysicalAddr

Lecture 9: Extensions to Typed Lambda Calculus 10

and V irtualAddr. For example, if pa is a PhysicalAddr, then inl pa is an Addr. (The
names of the tags inl and inr arise from thinking of them as functions that ”inject”
elements of PhysicalAddr or V irtualAddr into the left and right components of the
sum type Addr).

inl : PhysicalAddr → Addr
inr : VirtualAddr → Addr

We use a case construct that allows us to distinguish whether a given value comes
from the left or right branch of a sum. For example, we can extract a name from an
Addr like this:

getName = λa:Addr.
case a of

inl x ⇒ x.firstlast
| inr y ⇒ y.name;

The type of the whole getName function is Addr → String.

9.11 Sums with Unique Types

With sums, as we defined them, most of the properties of the type system are pre-
served, but one rule fails: the Uniqueness of Types. The difficulty arises from the
tagging constructs inl and inr. The typing rule T − INL, for example, says that,
once we have shown that t1 is an element of T1, we can derive that inl t1 is an element
of T1 + T2 for any type T2. For example, we can derive both inl 5 : Nat+Nat and inl
5 : Nat+Bool (and infinitely many other types). The failure of uniqueness of types
means that we cannot build a typechecking algorithm using the inversion lemma.
Potential solutions:

• Use type reconstruction (not shown).

• Use subtyping (not shown).

• User annotation, as we show next.

9.11.1 Derivation Rules

t ::= ... terms
inl t as T tagging(left)
inr t as T tagging(right)

case t of inl x ⇒ t|inr x ⇒ t case

v ::= ... values
inl v as T tagged value(left)
inr v as T tagged value(right)

Lecture 9: Extensions to Typed Lambda Calculus 11

T ::= ... types
T1 + T2 sum type

9.11.2 Evaluation Rules

case (inl v as T) of inl x1 ⇒ t1|inr x2 ⇒ t2
(E-CaseINL)

[x1 7→ v]t1

case (inr v as T) of inl x1 ⇒ t1|inr x2 ⇒ t2
(E-CaseINR)

[x2 7→ v]t2

t → t′
(E-Case)

case t of inl x1 ⇒ t1|inr x2 ⇒ t2 → case t′ of inl x1 ⇒ t1|inr x2 ⇒ t2

t1 → t′1
(E-INL)

inl t1 as T → inl t′1 as T

t1 → t′1
(E-INR)

inr t1 as T → inl t′1 as T

9.11.3 Type Rules

Γ ⊢ t1 : T1
(T-INL)

Γ ⊢ inl t1 as T1 + T2 : T1 + T2

Γ ⊢ t2 : T2
(T-INR)

Γ ⊢ inr t1 as T1 + T2 : T1 + T2

Γ, x1 : T1 ⊢ t1 : T ∧ Γ, x2 : T2 ⊢ t1 : T ∧ Γ ⊢ t : T1 + T2
(T-CASE)

Γ ⊢ case t of inl x1 ⇒ t1|inr x2 ⇒ t2 : T

9.12 Variants

Binary sums generalize to variants just as tuples generalize to records. Instead of
T1 + T2, we write < l1 : T1, l2 : T2 >, where l1 and l2 are field labels. Instead of inl t
as T1 + T2, we write < l1 = t > as < l1 : T1, l2 : T2 >. And instead of labelling the
branches of the case with inl and inr, we use the same labels as the corresponding
sum type.

Lecture 9: Extensions to Typed Lambda Calculus 12

9.12.1 Derivation Rules

t ::= ... terms
< l = t > as T tagging

case t of < li = xi > x ⇒ ti, i ∈ 1..n case

v ::= ... values
< l = v > as T tagged value

T ::= ... types
< li = Ti >i∈1...n type of variants type

9.12.2 Evaluation Rules

case (< lj = v > as T) of < li = xi ⇒ ti, i ∈ 1...n x2 ⇒ t2
(E-CaseVariant)

[xj 7→ v]tj

t → t′
(E-Case)

case t of inl x1 ⇒ t1|inr x2 ⇒ t2 → case t′ of inl x1 ⇒ t1|inr x2 ⇒ t2

ti → t′i
(E-VARIANT)

< li = ti > as T →< li = t′i > as T

9.12.3 Type Rules

Γ ⊢ tj : Tj
(T-VARIANT)

Γ ⊢< lj = tj > as < li = Ti >, i = 1..n :< li = Ti >, i = 1..n

∀i,Γ, xi : Ti ⊢ ti : T ∧ Γ ⊢ t :< li = Ti >, i = 1..n
(T-CASE)

Γ ⊢ case t of < li = xi >⇒ ti, i = 1..n : T

9.12.4 Example

We now look back at the Sums’ section example.
PhyisicalAddr = {firstlast: String, add:String}
VirtualAddr = {name: String, email:String}
Addr = <physical: PhisicalAddr, virtual: VirtualAddr>

getName = λa:Addr.
case a of

<physical=x> ⇒ x.firstlast
| <virtual=y> ⇒ y.name;

getName : Addr → String

Lecture 9: Extensions to Typed Lambda Calculus 13

9.12.5 Uses of Varients

• Options (optional values)
Consider this type definition:

OptionalNat =< none : Unit, some : Nat >;

An element of this type is either the trivial unit value with the tag none or
else a number with the tag some. In other words, the type OptionalNat is
isomorphic to Nat extended with an additional distinguished value none. For
example, the type

Table = Nat → OptionalNat;

represents finite mappings from numbers to numbers: the domain of such a
mapping is the set of inputs for which the result is < some = n > for some n.

emptyTable = λn : Nat. < none = unit > as OptionalNat;
emptyTable : Table

This is a constant function that returns none for every input.

extendTable =
λt : Table.m : Nat.v : Nat.
λn : Nat.
if equal n m then < some = v > as OptionalNat
else t n;

extendTable : Table → Nat → Nat → Table
extendTable takes a table and adds (or overwrites) an entry mapping the

input m to the output < some = v >.

We can use the result that we get back from a Table lookup by wrapping a case
around it. For example, if t is our table and we want to look up its entry for 5,
we might write

x = case t(5) of
< none = u > ⇒ 999

| < some = v > ⇒ v;
providing 999 as the default value of x in case t is undefined on 5.

• Enumeration
An enumeration is a variant type in which the field type associated with each
label is Unit. For example, a type representing the days of the working week
might be defined as:

Weekday =< monday : Unit, tuesday : Unit, wednesday : Unit,
thursday : Unit, friday : Unit >;

Lecture 9: Extensions to Typed Lambda Calculus 14

Since the type Unit has only unit as a member, the type Weekday is inhabited
by precisely five values, corresponding one-for-one with the days of the week.
The case construct can be used to define computations on enumerations.

nextBusinessDay = w : Weekday.
case w of

< monday = x >⇒< tuesday = unit > as Weekday
| < thursday = x >⇒< wednesday = unit > as Weekday
| < wednesday = x >⇒< thursday = unit > as Weekday
| < tuesday = x >⇒< friday = unit > as Weekday
| < friday = x >⇒< monday = unit > as Weekday;

• Single-Field Variants
Another interesting special case is variant types with just a single label l:

V =< l : T >;

Although is doesn’t seem very useful, it can be helpful in some situations. The
main use of such types is to enforce some behaviour of the program.
For example, suppose we are writing a program to do financial calculations in
multiple currencies. Such a program might include functions for converting be-
tween dollars and euros. If both are represented as Floats, then these functions
might look like this:

dollars2euros = λd : Float.timesfloat d 1.1325;
dollars2euros : Float → Float
euros2dollars = λe : Float.timesfloat e 0.883;
euros2dollars : Float → Float

Suppose we then start with a dollar amount
mybankbalance = 39.50;

We can easily perform manipulations that make no sense at all. For example,
we can convert my bank balance to euros twice:

dollars2euros (dollars2euros mybankbalance);

Since all our amounts are represented simply as floats, there is no way that
the type system can help prevent this sort of nonsense. However, if we define
dollars and euros as different variant types (whose underlying representations
are floats) then we can define safe versions of the conversion functions that will
only accept amounts in the correct currency:

DollarAmount =< dollars : Float >;
EuroAmount =< euros : Float >;

dollars2euros =
λd:DollarAmount.

Lecture 9: Extensions to Typed Lambda Calculus 15

case d of < dollars = x >⇒
< euros = timesfloat x 1.1325> as EuroAmount;

dollars2euros : DollarAmount → EuroAmount

euros2dollars =
λe:EuroAmount.
case e of < euros = x >⇒
< dollars = timesfloat x 0.883> as DollarAmount;

euros2dollars : EuroAmount → DollarAmount

Now the typechecker can track the currencies used in our calculations and re-
mind us how to interpret the final results:

mybankbalance = < dollars = 39.50 > as DollarAmount;
euros2dollars (dollars2euros mybankbalance);

< dollars = 39.49990125 > as DollarAmount : DollarAmount

Moreover, if we write a nonsensical double-conversion, the types will fail to
match and our program will (correctly) be rejected:

dollars2euros (dollars2euros mybankbalance);

Will cause an ”Error: parameter type mismatch”.

• Dynamic Types
Even in statically typed languages, there is often the need to deal with data
whose type cannot be determined at compile time. This occurs in particular
when the lifetime of the data spans multiple machines or many runs of the
compiler, when, for example, the data is stored in an external file system or
database, or communicated across a network. To handle such situations safely,
many languages offer facilities for inspecting the types of values at run time.
We can use Varients to address this issue, we do not show it here.

9.13 General Recursion

We have seen that, in the untyped lambda-calculus, recursive functions can be defined
with the aid of the fix combinator.

Recursive functions can be defined in a typed setting in a similar way. For example,
here is a function iseven that returns true when called with an even argument and
false otherwise:

ff = ie:NatBool.
λx:Nat.
if iszero x then true
else if iszero (pred x) then false
else ie (pred (pred x));

Lecture 9: Extensions to Typed Lambda Calculus 16

ff : (Nat → Bool) → Nat → Bool

iseven = fix ff;
iseven : Nat → Bool

iseven 7;
false : Bool

However, there is one important difference from the untyped setting: fix itself cannot
be defined in the simply typed lambda-calculus.

9.14 Recursion

We add the letrec syntax in order to solve the problem of the fix combinator, which
is missing on the typed lambda calculus, so now we can use recursion, as shown next.

9.14.1 Derivation Rules

t ::= ... terms
fix t fixed point of t

letrec x : T1 = t1 in t2
.
= let x = (fix(λx : T1.t1)) in t2 letrec

9.14.2 Evaluation Rules

fix(λx : T1.t2))
(E-FixBeta)

[x 7→ (fix(λx : T1.t2)]t2

t → t′
(E-FIX)

fix t → fix t′

9.14.3 Type Rules

Γ ⊢ t:T1 → T1
(T-REFER)

Γ ⊢ fix t : T1

9.15 Lists

The typing features we have seen can be classified into base types like Bool and Unit,
and typeconstructors like → and × that build new types from old ones. Another
useful type constructor is List. For every type T , the type List T describes finite-
length lists whose elements are drawn from T . Lists are straightforward to define,
but they will become more interesting with polymorphism.

Lecture 9: Extensions to Typed Lambda Calculus 17

9.16 References

Nearly every programming language provides some form of assignment operation that
changes the contents of a previously allocated piece of storage. This mechanism is
called reference and it is used to mutate the store (or a heap). With references we
can also make aliases of variables, allocate memory, and free allocated memory.

9.16.1 Basics

The basic operations on references are allocation, dereferencing, and assignment.
To allocate a reference, we use the ref operator, providing an initial value for the
new cell.

r = ref 5;
r : Ref Nat

The response from the typechecker indicates that the value of r is a reference to a cell
that will always contain a number. To read the current value of this cell, we use the
dereferencing operator !.

!r;
5 : Nat

To change the value stored in the cell, we use the assignment operator.
r := 7;
unit : Unit

If we dereference r again, we see the updated value.
!r;
7 : Nat

9.16.2 References and Aliasing

It is important to bear in mind the difference between the reference that is bound to
r and the cell in the store that is pointed to by this reference.

r = ref 13;

If we make a copy of r, for example by binding its value to another variable s,
s = r;
s : Ref Nat

what gets copied is only the reference, not the cell. We can verify this by assigning a
new value into s:

s := 82;
unit : Unit

And if we read it out via r:

Lecture 9: Extensions to Typed Lambda Calculus 18

!r;
82 : Nat

The references r and s are said to be aliases for the same cell.

9.16.3 Dangling References

Dangling reference problem: we allocate a cell holding a number, save a reference to
it in some data structure, use it for a while, then deallocate it and allocate a new cell
holding a boolean, possibly reusing the same storage. Now we can have two names
for the same storage cell: one with type Ref Nat and the other with type Ref Bool.
Deallocation causes confusion, and violates type safety. The common way to address
this problem in modern languages, is to use a garbage collector, which deallocates
every memory cell which is not reachable from the program.

9.16.4 Type Rules

Γ ⊢ t : T
(T-REF)

Γ ⊢ ref t : ref T

Γ ⊢ t : ref T
(T-DEREF1)

Γ ⊢!t : T

Γ ⊢ t1 : ref T ∧ Γt2 : T
(T-REFER)

Γ ⊢ t1 = &t2 : Unit

This typing method is simplifying the reality, since it does not refer to memory and
allocations at all. It is possible to formalize the references’ operational behaviour,
and use then in a type safe way, on our type system.

9.17 Summary

Typed lambda calculus can be extended to cover many programming language fea-
tures. It is possible to enforce type safety in realistic situations.

Bibliography

[1] Pierce, Benjamin C., Types and Programming Languages, The MIT Press, 2002,
pp. 118-146, 153-170.

19

