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Introduction 

• Denotational semantics is supposed to be 

mathematical: 

– The meaning of an expression is a mathematical object 

– A fair amount of mathematics is involved 

• Denotational semantics is compositional 

• Denotational semantics is more abstract and 

canonical than operational semantics  

– No small step vs. big step 

• Denotational semantics is also called 

– Fixed point semantics 

– Mathematical semantics 

– Scott-Strachey semantics 



Plan 

• Definition of the denotational semantics of 

While (first attempt) 

• Complete partial orders and related 

properties 

– Montonicity 

– Continuity 

• Definition of denotational semantics of 

While  



Denotational semantics 

• A: Aexp  (N) 

• B: Bexp (T) 

• S: Stm () 

• Defined by structural induction 



Denotational semantics of Aexp 
• A: Aexp  (N) 

• A n = {(, n) |  } 

• A X = {(,  X) |  } 

• A a0+a1 = {(, n0+n1) | (, n0)Aa0, (,n1)Aa1} 

• A a0-a1 = {(, n0-n1) | (, n0)Aa0, (,n1)Aa1} 

• A a0a1 = {(, n0  n1) | (, n0)Aa0, (,n1)Aa1} 

 

 

 
Lemma: A a  is a function 



Denotational semantics of  

Aexp with  
• A: Aexp  (N) 

• A n =  .n 

• A X = .(X) 

• A a0+a1 = .(A a0+Aa1) 

• A a0-a1 = .(A a0-Aa1) 

• A a0a1 = .(A a0  Aa1) 



Denotational semantics of Bexp 
• B: Bexp  (T) 

• B true = {(, true) |  } 

• B false = {(, false) |  } 

• B a0=a1 = {(, true) |   & Aa0=Aa1 } 
                    {(, false) |   & Aa0Aa1 } 

• B a0a1 = {(, true) |   & Aa0  Aa1 } 
                    {(, false) |   & Aa0Aa1 } 

• B b = {(, T t) |  , (, t) Bb}  

• B b0b1 = {(, t0 Tt1) |  , (, t0) Bb0, (, t1) Bb1 } 

• B b0b1 = {(, t0 Tt1) |  , (, t0) Bb0, (, t1) Bb1 } 

 

Lemma: Bb is a function 



Denotational semantics of statements? 

• Running a statement s starting from a 

state  yields another state ’ 

• So, we may try to define S s as a 

function that maps  to ’:  

– S .: Stm (  ) 



Denotational semantics of commands? 

• Problem: running a statement might not yield anything 

if the statement does not terminate 

• We introduce the special element  to denote a special 

outcome that stands for non-termination 

• For any set X, we write X for X  {} 

 

• Convention: 

– whenever f  X  X  we extend f to X  X  

“strictly” so that f() =  



Denotational semantics of statements? 

• We try: 

– S .  : Stm (   ) 

• S skip= 

• S  s0 ; s1 = S s1  (S s0  ) 

• S if b then s0 else s1 =  

   if Bb  then S s0  else S s1  



Examples 

• S X:= 2; X:=1= [X1] 

• S if true then X:=2; X:=1 else … = [X1]  

• The semantics does not care about intermediate 

states 

• So far, we did not explicitly need  



Denotational semantics of loops? 

• S while b do s   = ? 



Denotational semantics of statements? 

• Abbreviation W=S while b do s 
• Idea: we rely on the equivalence  

 while b do s  if b then (s; while b do s) else skip 

• We may try using unwinding equation 

W() = if Bb then W(Ss ) else  

• Unacceptable solution 

– Defines W in terms of itself 

– It not evident that a suitable W exists 

– It may not describe W uniquely  

(e.g., for while true do skip) 



Introduction to Domain Theory 

• We will solve the unwinding equation through a 

general theory of recursive equations 

• Think of programs as processors of streams of bits 

(streams of 0’s and 1’s, possibly terminated by $) 

What properties can we expect? 

input output 



Motivation 

• Let “isone” be a function that must return “1$” 
when the input string has at least a 1 and “0$” 
otherwise 

– isone(00…0$)  = 0$ 

– isone(xx…1…$) =1$ 

– isone(0…0) =? 

• Monotonicity : Output is never retracted 

– More information about the input is reflected in 
more information about the output 

• How do we express monotonicity precisely? 



Montonicity 

• Define a partial order 

x  y 

– A partial order is reflexive, transitive, and 

antisymmetric 

– y is a refinement of x 

• For streams of bits x y when x is a prefix of y 

• For programs, a typical order is: 

– No output (yet)   some output 



Montonicity 

• A set equipped with a partial order is a 
poset 

• Definition:  

– D and E are postes 

– A function f: D E is monotonic if 
x, y D: x D y  f(x) E f(y)  

– The semantics of the program ought to be a 
monotonic function 

• More information about the input leads to more 
information about the output 



Montonicity Example 
• Consider our “isone” function with the prefix 

ordering 

• Notation: 

– 0k is the stream with k consecutive 0’s 

– 0 is the infinite stream with only 0’s 

• Question (revisited): what is isone(0k )? 

– By definition, isone(0k$) = 0$ and isone(0k1$) = 1$ 

– But 0k 0k$ and 0k  0 k1$ 

– “isone” must be monotone, so: 

• isone( 0k )  isone( 0k$) = 0$ 

• isone( 0k )  isone( 0k1$) = 1$ 

– Therefore, monotonicity requires that isone(0k ) is a 
common prefix of 0$ and 1$, namely  



Motivation 

• Are there other constraints on “isone”? 

• Define “isone” to satisfy the equations 

– isone()= 

– isone(1s)=1$ 

– isone(0s)=isone(s) 

– isone($)=0$ 

• What about 0? 

• Continuity: finite output depends only on finite 
input (no infinite lookahead) 



Chains 

• A chain is a countable increasing sequence 

<xi> = {xi  X | x0 x1  … } 

• An upper bound of a set if an element “bigger” 

than all elements in the set 

• The least upper bound is the “smallest” among 

upper bounds: 

– xi   <xi> for all i  N 

– <xi>  y for all upper bounds y of <xi>  

and it is unique if it exists 



Complete Partial Orders 

• Not every poset has an upper bound 

– with   n and nn for all n N 

– {1, 2} does not have an upper bound 

• Sometimes chains have no upper bound 

0   1    2  … 
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The chain  

0 12… 

does not have an upper bound 



Complete Partial Orders 

• It is convenient to work with posets where every 

chain (not necessarily every set) has a least upper 

bound 

• A partial order P is complete if every chain in P 

has a least upper bound also in P  

• We say that P is a complete partial order (cpo) 

• A cpo with a least (“bottom”) element  is a 

pointed cpo (pcpo) 



Examples of cpo’s 

• Any set P with the order  
x y if and only if x = y is a cpo 
It is discrete or flat 

• If we add  so that  x for all x  P, we get a flat pointed 
cpo 

• The set N with  is a poset with a bottom, but not a 
complete one 

• The set N  {  } with n  is a pointed cpo 

• The set N with is a cpo without bottom 

• Let S be a set and P(S) denotes the set of all subsets of S 
ordered by set inclusion 
– P(S) is a pointed cpo 



Constructing cpos 

• If D and E are pointed cpos, then so is  

D × E 

(x, y)  D×E (x’, y’) iff x D x’ and yE y’ 

D×E =  (D , E ) 

 (x i , y i ) = ( D x i , E y i) 



Constructing cpos (2) 

• If S is a set of E is a pcpos, then so is  

S  E 

m  m’ iff s S: m(s) E m’(s) 

SE = s. E 

 (m , m’ ) = s.m(s) E m’(s) 



Continuity 

• A monotonic function maps a chain of 
inputs into a chain of outputs: 
x0  x1 …   f(x0)  f(x1)  … 

• It is always true that: 
i <f(xi)>  f(i <xi>) 

• But 
f(i <xi>) i <f(xi)>  
is not always true 



A Discontinuity Example  
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f(i <xi>) i <f(xi)> 



Continuity 

• Each f(xi) uses a “finite” view of the input 

• f(<xi> ) uses an “infinite” view of the input 

• A function is continuous when 

f(<xi>) = i <f(xi)> 

• The output generated using an infinite view of the 

input does not contain more information than all 

of the outputs based on finite inputs 

• Scott’s thesis: The semantics of programs can be 

described by a continuous functions 



Examples of Continuous Functions  

• For the partial order ( N { },  ) 
– The identity function is continuous 

id(ni)  = id(ni ) 

– The constant function “five(n)=5” is continuous 
five(ni)  = five(ni ) 

– If isone(0) = then isone is continuos 

• For a flat cpo A, any monotonic function  
f: A A 
such that f is strict is continuous 

• Chapter 8 of the Wynskel textbook includes many 
more continuous functions 



• Solve the equation: 

 

 

where W:∑  ∑ 

W= Swhile be do s  
• This equation can be written as W = F( W) 

with:               W(Ss )  if Bb()=true  

•  F(W)= .                     if Bb()=false  

                                           if Bb()=   
 

               W(Ss )  if Bb()=true  

 W() =                    if Bb()=false  

                                 if Bb()=   

Fixed Points 



Fixed Point (cont) 

• Thus we are looking for a solution for W = F( W) 

– a fixed point of F 

• Typically there are many fixed points 

• We may argue that W ought to be continuous 
W [∑  ∑] 

• Cut the number of solutions 

• We will see how to find the least fixed point for 
such an equation provided that F itself is 
continuous 



Fixed Point Theorem 

• Define Fk = x. F( F(… F( x)…)) (F composed k times) 

• If D is a pointed cpo and F : D  D is continuous, 
 then  
– for any fixed-point x of F and k  N 

    Fk ()  x 

– The least of all fixed points is  
k F

k () 

• Proof: 
i. By induction on k. 

• Base: F0 ( ) =    x 

• Induction step: Fk+1 (  ) = F( Fk ( ))  F( x) = x 

ii. It suffices to show that k F
k ()  is a fixed-point 

• F(k F
k ()) = k F

k+1 (  ) = k F
k () 



Fixed-Points (notes) 

• If F is continuous on a pointed cpo, we 
know how to find the least fixed point 

• All other fixed points can be regarded as 
refinements of the least one 

• They contain more information, they are 
more precise 

• In general, they are also more arbitrary 

• They also make less sense for our purposes 



Denotational Semantics of While 

• ∑ is a flat pointed cpo 
– A state has more information on non-termination 

– Otherwise, the states must be equal to be comparable 
(information-wise) 

•  We want strict functions ∑  ∑ 
(therefore, continuous functions) 

• The partial order on ∑  ∑  
f  g iff f(x) = or f(x) = g(x) for all x  ∑ 

– g terminates with the same state whenever f terminates 

– g might terminate for more inputs 



Denotational Semantics of While 

• Recall that W is a fixed point of 
F:[[∑ ∑][∑ ∑]] 

 

 

• F is continuous  

• Thus, we set 
 Swhile b do c = Fk() 

• Least fixed point 
– Terminates least often of all fixed points 

• Agrees on terminating states with all fixed point 

                      w(Ss()) if Bb()=true  

 F(w) = .                    if Bb()=false  

                                       if Bb()=   



Denotational Semantics of While 

• S skip = . 

• S X := exp = .[X  Aexp  ] 

• S s0 ; s1 = . S s1  (S s0  ) 

• S if b then s0 else s1 =  

         . if Bb  then S s0  else S s1  

• S  while b do s = Fk()  k=0, 1, …  where 
 F = w. . if Bb()=true w(Ss()) else   
                 



Example(1) 

• while true do skip 

• F:[[∑ ∑][∑ ∑]] 

 

 
                      w(Ss()) if Bb()=true  

 F = w..                    if Bb()=false  

                                       if Bb()=   

Btrue=.true Sskip=. 

F =  w..w() 

F0()=   F1() =   F2() =   



Example(2) 

• while false do s 

• F:[[∑ ∑][∑ ∑]] 

 

 
                      w(Ss())  if Bb()=true  

 F = w..                    if Bb()=false  

                                       if Bb()=   

Bfalse=.false 

F = w.. 

F0()=   F1() = .  F2() = . . 



Example(3) 

 while x3 do x = x -1  = Fk()  k=0, 1, …  

where 
F = w. . if (x)3 w([x  (x) -1])  else   

  

 

 

F0()  

F1() if  (x)3 ([x  (x) -1])  else    

if  (x)3 then   else    

F2() if  (x)3  then F1([x  (x) -1] ) else   

if  (x)3  then (if [x  (x) -1] x 3 then  else  [x  (x) -1] ) else   

if  (x)3  (if (x) 4 then  else  [x  (x) -1] ) else   

if  (x) {3, 4} then [x  3] else    

Fk() 

lfp(F)            

 

if  (x) {3, 4, …k} then [x  3] else   

if  (x)  3 then [x  3] else    



Example 4 Nested Loops 

S == 

Z := 0 ; 

while X > 0 do ( 

     Y := X; 

      while (Y>0) do  

              Z := Z + Y ; 

              Y: =  Y- 1; ) 

    X = X – 1 

    ) 

sinner-loop= 

[Y0][Z  (Z)+(Y) * ((Y)+1)/2] if (Y)0 

 
if (Y)<0 

souter-loop= 

[Y0] 
[X0] 
[Z  (Z)+(X)  ((X) + 1)  (1 + (2(X) + 1)/3)/4 ] 

if (X)0 

 
if (X)<0 sS= 

[Y0] 
[X0] 
[Z  (X)  ((X) + 1)  (1 + (2(X) + 1)/3)/4 ] 

if (X)0 

 
if (X)<0 



Equivalence of Semantics 

• , ’:  

 ’=Ss<s, > ’ <s, >* ’  



Complete Partial Orders 

• Let (D, ) be a partial order 

– D is a complete lattice if every subset has both 

greatest lower bounds and least upper bounds 



Knaster-Tarski Theorem 

• Let f: L L be a monotonic function on a 

complete lattice L 

• The least fixed point lfp(f) exists 

– lfp(f) = {x L: f(x)x} 



Fixed Points 

 A monotone function f: L  L where  
(L, , , , , ) is a complete lattice 

 Fix(f) = { l: l  L, f(l) = l} 

 Red(f) = {l: l  L, f(l)  l} 

 Ext(f) = {l: l  L, l  f(l)} 

– l1  l2  f(l1 )   f(l2 ) 

 Tarski’s Theorem 1955: if f is monotone 
then: 

–  lfp(f)  =   Fix(f) =  Red(f)  Fix(f) 

–  gfp(f) =   Fix(f) =  Ext(f)   Fix(f) 

 

 

f() 

f() 

f2() 

f2() 

Fix(f) 

Ext(f) 

Red(f) 

gfp(f) 

lfp(f) 



Summary 

• Denotational definitions are not necessarily better than 
operational semantics, and they usually require more 
mathematical work 

• The mathematics may be done once and for all 

• The mathematics may pay off: 

• Some of its techniques are being transferred to operational 
semantics. 

• It is trivial to prove that 
“If Bb1 = Bb2 and C c1 = Cc2  
then  
Cwhile b1 do c1 = Cwhile b2 do c2”  
(compare with the operational semantics) 



Summary 

• Denotational semantics provides a way to declare 
the meaning of programs in an abstract way 
– Can handle  

• side-effects 

• loops 

• Recursion 

• Gotos 

• non-determinism 

– But not low level concurrency 

• Fixed point theory provides a declarative way to 
specify computations 
– Many usages  


