Denotational Semantics

Based on a lecture by
Martin Abadi

Introduction

- Denotational semantics is supposed to be mathematical:
- The meaning of an expression is a mathematical object
- A fair amount of mathematics is involved
- Denotational semantics is compositional
- Denotational semantics is more abstract and canonical than operational semantics
- No small step vs. big step
- Denotational semantics is also called
- Fixed point semantics
- Mathematical semantics
- Scott-Strachey semantics

Plan

- Definition of the denotational semantics of While (first attempt)
- Complete partial orders and related properties
- Montonicity
- Continuity
- Definition of denotational semantics of While

Denotational semantics

- A: $\operatorname{Aexp} \rightarrow(\Sigma \rightarrow \mathrm{N})$
- B: $\operatorname{Bexp} \rightarrow(\Sigma \rightarrow \mathrm{T})$
- S: Stm $\rightarrow(\Sigma \rightarrow \Sigma)$
- Defined by structural induction

Denotational semantics of Aexp

- A: $\operatorname{Aexp} \rightarrow(\Sigma \rightarrow \mathrm{N})$
- $\mathbf{A} \llbracket \mathrm{n} \rrbracket=\{(\sigma, \mathrm{n}) \mid \sigma \in \Sigma\}$
- $\mathbf{A} \llbracket \mathrm{X} \rrbracket=\{(\sigma, \sigma \mathrm{X}) \mid \sigma \in \Sigma\}$
- $\mathbf{A} \llbracket \mathrm{a}_{0}+\mathrm{a}_{1} \rrbracket=\left\{\left(\sigma, \mathrm{n}_{0}+\mathrm{n}_{1}\right) \mid\left(\sigma, \mathrm{n}_{0}\right) \in \mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket,\left(\sigma, \mathrm{n}_{1}\right) \in \mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket\right\}$
- $\mathbf{A} \llbracket \mathrm{a}_{0}-\mathrm{a}_{1} \rrbracket=\left\{\left(\sigma, \mathrm{n}_{0}-\mathrm{n}_{1}\right) \mid\left(\sigma, \mathrm{n}_{0}\right) \in \mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket,\left(\sigma, \mathrm{n}_{1}\right) \in \mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket\right\}$
- $\mathbf{A} \llbracket \mathrm{a}_{0} \times \mathrm{a}_{1} \rrbracket=\left\{\left(\sigma, \mathrm{n}_{0} \times \mathrm{n}_{1}\right) \mid\left(\sigma, \mathrm{n}_{0}\right) \in \mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket,\left(\sigma, \mathrm{n}_{1}\right) \in \mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket\right\}$

Lemma: $\mathrm{A} \llbracket \mathrm{a} \rrbracket$ is a function

Denotational semantics of

Aexp with λ

- A: $\operatorname{Aexp} \rightarrow(\Sigma \rightarrow \mathrm{N})$
- $\mathbf{A} \llbracket n \rrbracket=\lambda \sigma \in \Sigma . n$
- $\mathbf{A} \llbracket \mathrm{X} \rrbracket=\lambda \sigma \in \Sigma . \sigma(\mathrm{X})$
- $\mathbf{A} \llbracket \mathrm{a}_{0}+\mathrm{a}_{1} \rrbracket=\lambda \sigma \in \Sigma .\left(\mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket \sigma+\mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket \sigma\right)$
- $\mathbf{A} \llbracket \mathrm{a}_{0}-\mathrm{a}_{1} \rrbracket=\lambda \sigma \in \Sigma$. $\mathbf{(A \llbracket \mathrm { a } _ { 0 } \rrbracket \sigma - \mathbf { A } \llbracket \mathrm { a } _ { 1 } \rrbracket \sigma)}$
- $\mathbf{A} \llbracket \mathrm{a}_{0} \times \mathrm{a}_{1} \rrbracket=\lambda \sigma \in \Sigma$. $\left(\mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket \sigma \times \mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket \sigma\right)$

Denotational semantics of Bexp

- B: $\operatorname{Bexp} \rightarrow(\Sigma \rightarrow \mathrm{T})$
- B \llbracket true $\rrbracket=\{(\sigma$, true $) \mid \sigma \in \Sigma\}$
- B \llbracket false $\rrbracket=\{(\sigma$, false $) \mid \sigma \in \Sigma\}$
- $\mathbf{B} \llbracket \mathrm{a}_{0}=\mathrm{a}_{1} \rrbracket=\left\{(\sigma\right.$, true $\left.) \mid \sigma \in \Sigma \& \mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket \sigma=\mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket \sigma\right\} \cup$ $\left\{(\sigma\right.$, false $\left.) \mid \sigma \in \Sigma \& \mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket \sigma \neq \mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket \sigma\right\}$
- $\mathbf{B} \llbracket \mathrm{a}_{0} \leq \mathrm{a}_{1} \rrbracket=\left\{(\sigma\right.$, true $\left.) \mid \sigma \in \Sigma \& \mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket \sigma \leq \mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket \sigma\right\} \cup$ $\left\{(\sigma\right.$, false $\left.) \mid \sigma \in \Sigma \& \mathbf{A} \llbracket \mathrm{a}_{0} \rrbracket \sigma \nsubseteq \mathbf{A} \llbracket \mathrm{a}_{1} \rrbracket \sigma\right\}$
- $\left.\mathbf{B} \llbracket \mathrm{\imath b} \rrbracket=\left\{(\sigma,\urcorner_{\mathrm{T}} \mathrm{t}\right) \mid \sigma \in \Sigma,(\sigma, \mathrm{t}) \in \mathbf{B} \llbracket \mathrm{b} \rrbracket\right\}$
- B $\llbracket \mathrm{b}_{0} \wedge \mathrm{~b}_{1} \rrbracket=\left\{\left(\sigma, \mathrm{t}_{0} \wedge_{\mathrm{T}} \mathrm{t}_{1}\right) \mid \sigma \in \Sigma,\left(\sigma, \mathrm{t}_{0}\right) \in \mathbf{B} \llbracket \mathrm{b}_{0} \rrbracket,\left(\sigma, \mathrm{t}_{1}\right) \in \mathbf{B} \llbracket \mathrm{b}_{1} \rrbracket\right\}$
- B $\llbracket \mathrm{b}_{0} \vee \mathrm{~b}_{1} \rrbracket=\left\{\left(\sigma, \mathrm{t}_{0} \vee_{\mathrm{T}} \mathrm{t}_{1}\right) \mid \sigma \in \Sigma,\left(\sigma, \mathrm{t}_{0}\right) \in \mathbf{B} \llbracket \mathrm{b}_{0} \rrbracket,\left(\sigma, \mathrm{t}_{1}\right) \in \mathbf{B} \llbracket \mathrm{b}_{1} \rrbracket\right\}$

Lemma: $\mathrm{B} \llbracket \mathrm{b} \rrbracket$ is a function

Denotational semantics of statements?

- Running a statement s starting from a state σ yields another state σ,
- So, we may try to define $\mathbf{S} \llbracket \mathrm{s} \rrbracket$ as a function that maps σ to σ^{\prime} :
$-\mathbf{S} \llbracket . \rrbracket: \mathrm{Stm} \rightarrow(\Sigma \rightarrow \Sigma)$

Denotational semantics of commands?

- Problem: running a statement might not yield anything if the statement does not terminate
- We introduce the special element \perp to denote a special outcome that stands for non-termination
- For any set X, we write X_{\perp} for $X \cup\{\perp\}$
- Convention:
- whenever $\mathrm{f} \in \mathrm{X} \rightarrow \mathrm{X}_{\perp}$ we extend f to $\mathrm{X}_{\perp} \rightarrow \mathrm{X}_{\perp}$ "strictly" so that $f(\perp)=\perp$

Denotational semantics of statements?

- We try:
$-\mathrm{S} \llbracket . \rrbracket: \operatorname{Stm} \rightarrow\left(\Sigma_{\perp} \rightarrow \Sigma_{\perp}\right)$
- $\mathrm{S} \llbracket$ skip $\rrbracket \sigma=\sigma$
- $\mathrm{S} \llbracket \mathrm{s}_{0} ; \mathrm{s}_{1} \rrbracket \sigma=\mathrm{S} \llbracket \mathrm{s}_{1} \rrbracket\left(\mathrm{~S} \llbracket \mathrm{~s}_{0} \rrbracket \sigma\right)$
- $\mathrm{S} \llbracket$ if b then s_{0} else $\mathrm{s}_{1} \rrbracket \sigma=$ if $B \llbracket b \rrbracket \sigma$ then $S \llbracket s_{0} \rrbracket \sigma$ else $S \llbracket \mathrm{~s}_{1} \rrbracket \sigma$

Examples

- $\mathrm{s} \llbracket \mathrm{X}:=2 ; \mathrm{X}:=1 \rrbracket_{\sigma=\sigma[\mathrm{X} \mapsto 1]}$
- S [if true then $\mathrm{X}:=2 ; \mathrm{X}:=1$ else ... $]_{\sigma=} \sigma[\mathrm{X} \mapsto 1]$
- The semantics does not care about intermediate states
- So far, we did not explicitly need \perp

Denotational semantics of loops?

- $\mathrm{S} \llbracket$ while b do $\mathrm{s} \rrbracket \sigma=$?

Denotational semantics of statements?

- Abbreviation W=s 【while b do s】
- Idea: we rely on the equivalence while b do $s \sim$ if b then (s; while b do s) else skip
- We may try using unwinding equation

$$
\mathrm{W}(\sigma)=\text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket \sigma \text { then } \mathrm{W}(\mathrm{~S} \llbracket \mathrm{~s} \rrbracket \sigma) \text { else } \sigma
$$

- Unacceptable solution
- Defines W in terms of itself
- It not evident that a suitable W exists
- It may not describe W uniquely (e.g., for while true do skip)

Introduction to Domain Theory

- We will solve the unwinding equation through a general theory of recursive equations
- Think of programs as processors of streams of bits (streams of 0's and 1's, possibly terminated by \$) What properties can we expect?

Motivation

- Let "isone" be a function that must return " $1 \$$ " when the input string has at least a 1 and " $0 \$$ " otherwise
- isone (00...0\$) $=0 \$$
- isone (xx...1...\$)=1\$
- isone ($0 \ldots 0$) =?
- Monotonicity : Output is never retracted
- More information about the input is reflected in more information about the output
- How do we express monotonicity precisely?

Montonicity

- Define a partial order $\mathrm{x} \sqsubseteq \mathrm{y}$
- A partial order is reflexive, transitive, and antisymmetric
$-y$ is a refinement of x
- For streams of bits $x \sqsubseteq y$ when x is a prefix of y
- For programs, a typical order is:
- No output (yet) \subseteq some output

Montonicity

- A set equipped with a partial order is a poset
- Definition:
-D and E are postes
- A function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{E}$ is monotonic if $\forall \mathrm{x}, \mathrm{y} \in \mathrm{D}: \mathrm{x} \sqsubseteq_{\mathrm{D}} \mathrm{y} \Rightarrow \mathrm{f}(\mathrm{x}) \sqsubseteq_{\mathrm{E}} \mathrm{f}(\mathrm{y})$
- The semantics of the program ought to be a monotonic function
- More information about the input leads to more information about the output

Montonicity Example

- Consider our "isone" function with the prefix ordering
- Notation:
-0^{k} is the stream with k consecutive 0 's
-0^{∞} is the infinite stream with only 0 's
- Question (revisited): what is isone $\left(0^{\mathrm{k}}\right)$?
$-\operatorname{By}$ definition, isone $\left(0^{\mathrm{k}} \$\right)=0 \$$ and isone $\left(0^{\mathrm{k}} 1 \$\right)=1 \$$
- But $0^{\mathrm{k}} \sqsubseteq 0^{\mathrm{k}} \$$ and $0^{\mathrm{k}} \sqsubseteq 0^{\mathrm{k}} 1 \$$
- "isone" must be monotone, so:
- isone $\left(0^{\mathrm{k}}\right) \sqsubseteq$ isone $\left(0^{\mathrm{k}} \$\right)=0 \$$
- isone ($\left.0^{\mathrm{k}}\right) \sqsubseteq$ isone $\left(0^{\mathrm{k}} 1 \$\right)=1 \$$
- Therefore, monotonicity requires that isone $\left(0^{\mathrm{k}}\right)$ is a common prefix of $0 \$$ and $1 \$$, namely ε

Motivation

- Are there other constraints on "isone"?
- Define "isone" to satisfy the equations
- isone $(\varepsilon)=\varepsilon$
- isone(1s)=1\$
- isone(0s)=isone(s)
- isone(\$)=0\$
- What about 0^{∞} ?
- Continuity: finite output depends only on finite input (no infinite lookahead)

Chains

- A chain is a countable increasing sequence $\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle=\left\{\mathrm{x}_{\mathrm{i}} \in \mathrm{X} \mid \mathrm{x}_{0} \sqsubseteq \mathrm{x}_{1} \sqsubseteq \ldots\right\}$
- An upper bound of a set if an element "bigger" than all elements in the set
- The least upper bound is the "smallest" among upper bounds:
$-\mathrm{x}_{\mathrm{i}} \sqsubseteq \sqcup<\mathrm{x}_{\mathrm{i}}>$ for all $\mathrm{i} \in \mathrm{N}$
$-\sqcup\left\langle x_{i}\right\rangle \sqsubseteq y$ for all upper bounds y of $\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle$ and it is unique if it exists

Complete Partial Orders

$$
0 \quad 1 \quad 2 \ldots
$$

- Not every poset has an upper bound
- with $\perp \sqsubseteq \mathrm{n}$ and $\mathrm{n} \sqsubseteq \mathrm{n}$ for all $\mathrm{n} \in \mathrm{N}$
$-\{1,2\}$ does not have an upper bound
- Sometimes chains have no upper bound

$$
\begin{gathered}
\text { The chain } \\
0 \leq 1 \leq 2 \leq \ldots
\end{gathered}
$$

does not have an upper bound

Complete Partial Orders

- It is convenient to work with posets where every chain (not necessarily every set) has a least upper bound
- A partial order P is complete if every chain in P has a least upper bound also in P
- We say that P is a complete partial order (сро)
- A cpo with a least ("bottom") element \perp is a pointed cpo (рсро)

Examples of cpo's

- Any set P with the order $\mathrm{x} \sqsubseteq \mathrm{y}$ if and only if $\mathrm{x}=\mathrm{y}$ is a cpo
It is discrete or flat
- If we add \perp so that $\perp \subseteq \mathrm{x}$ for all $\mathrm{x} \in \mathrm{P}$, we get a flat pointed сро
- The set N with \leq is a poset with a bottom, but not a complete one
- The set $\mathrm{N} \cup\{\infty\}$ with $\mathrm{n} \leq \infty$ is a pointed cpo
- The set N with \geq is a cpo without bottom
- Let S be a set and $P(S)$ denotes the set of all subsets of S ordered by set inclusion
- $\mathrm{P}(\mathrm{S})$ is a pointed cpo

Constructing cpos

- If D and E are pointed cpos, then so is D $\times \mathrm{E}$ $(\mathrm{x}, \mathrm{y}) \sqsubseteq_{\mathrm{D} \times \mathrm{E}}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ iff $\mathrm{x} \sqsubseteq_{\mathrm{D}} \mathrm{x}^{\prime}$ and $\mathrm{y} \sqsubseteq_{\mathrm{E}} \mathrm{y}^{\prime}$ $\perp_{\mathrm{D} \times \mathrm{E}}=\left(\perp_{\mathrm{D}}, \perp_{\mathrm{E}}\right)$
$\sqcup\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\left(\mathrm{U}_{\mathrm{D}} \mathrm{x}_{\mathrm{i}}, \mathrm{L}_{\mathrm{E}} \mathrm{y}_{\mathrm{i}}\right)$

Constructing cpos (2)

- If S is a set of E is a pcpos, then so is $\mathrm{S} \rightarrow \mathrm{E}$ $\mathrm{m} \subseteq \mathrm{m}^{\prime}$ iff $\forall \mathrm{s} \in \mathrm{S}: \mathrm{m}(\mathrm{s}) \sqsubseteq_{\mathrm{E}} \mathrm{m}^{\prime}(\mathrm{s})$
$\perp_{S \rightarrow E}=\lambda s . \perp_{E}$
$\sqcup\left(\mathrm{m}, \mathrm{m}^{\prime}\right)=\lambda \mathrm{s} . \mathrm{m}(\mathrm{s}) \sqcup_{\mathrm{E}} \mathrm{m}^{\prime}(\mathrm{s})$

Continuity

- A monotonic function maps a chain of inputs into a chain of outputs:
$\mathrm{x}_{0} \sqsubseteq \mathrm{x}_{1} \sqsubseteq \ldots \Rightarrow \mathrm{f}\left(\mathrm{x}_{0}\right) \sqsubseteq \mathrm{f}\left(\mathrm{x}_{1}\right) \sqsubseteq \ldots$
- It is always true that:
$\sqcup_{\mathrm{i}}\left\langle\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right\rangle \sqsubseteq \mathrm{f}\left(\sqcup_{\mathrm{i}}\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle\right)$
- But
$\mathrm{f}\left(\sqcup_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}}>\right) \sqsubseteq \bigsqcup_{\mathrm{i}}<\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)>$
is not always true

A Discontinuity Example

$$
\mathrm{f}\left(\sqcup_{\mathrm{i}}\left\langle\mathrm{x}_{\mathrm{i}}>\right) \neq \bigsqcup \mathrm{i}\left\langle\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right\rangle\right.
$$

Continuity

- Each $f\left(x_{i}\right)$ uses a "finite" view of the input
- $f\left(\sqcup<x_{i}>\right)$ uses an "infinite" view of the input
- A function is continuous when $\mathrm{f}(\sqcup\langle\mathrm{xi}\rangle)=\sqcup_{\mathrm{i}}\left\langle\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right\rangle$
- The output generated using an infinite view of the input does not contain more information than all of the outputs based on finite inputs
- Scott's thesis: The semantics of programs can be described by a continuous functions

Examples of Continuous Functions

- For the partial order ($\mathrm{N} \cup\{\infty\}, \leq$)
- The identity function is continuous $\mathrm{id}\left(\sqcup \mathrm{n}_{\mathrm{i}}\right)=\sqcup \mathrm{id}\left(\mathrm{n}_{\mathrm{i}}\right)$
- The constant function "five $(\mathrm{n})=5$ " is continuous five $\left(\sqcup \mathrm{n}_{\mathrm{i}}\right)=\sqcup$ five $\left(\mathrm{n}_{\mathrm{i}}\right)$
- If isone $\left(0^{\infty}\right)=\varepsilon$ then isone is continuos
- For a flat cpo A , any monotonic function $\mathrm{f}: \mathrm{A}_{\perp} \rightarrow \mathrm{A}_{+}$
such that f is strict is continuous
- Chapter 8 of the Wynskel textbook includes many more continuous functions

Fixed Points

- Solve the equation:

$$
\mathrm{W}(\sigma)= \begin{cases}\mathrm{W}(\mathrm{~S} \llbracket \mathrm{~s} \rrbracket \sigma) & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { true } \\ \sigma & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { false } \\ \perp & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\perp\end{cases}
$$

where W: $\sum_{\perp} \rightarrow \sum_{\perp}$
$\mathrm{W}=\mathrm{S} \llbracket$ while be do $\mathrm{s} \rrbracket$

- This equation can be written as $W=F(W)$ with: $\quad \quad \mathrm{W}(\mathrm{S} \llbracket \mathrm{s} \rrbracket \sigma)$ if $\mathrm{B} \llbracket \mathrm{b} \rrbracket(\sigma)=$ true
- $\mathrm{F}(\mathrm{W})=\lambda \sigma .\left\{\begin{array}{cl}\sigma & \text { if } \mathrm{B} \llbracket \mathrm{b} \rrbracket(\sigma)=\text { false } \\ \perp & \text { if } \mathrm{B} \llbracket \mathrm{b} \rrbracket(\sigma)=\perp\end{array}\right.$

Fixed Point (cont)

- Thus we are looking for a solution for $\mathrm{W}=\mathrm{F}(\mathrm{W})$
- a fixed point of F
- Typically there are many fixed points
- We may argue that W ought to be continuous $\mathrm{W} \in\left[\sum_{\perp} \rightarrow \sum_{\perp}\right]$
- Cut the number of solutions
- We will see how to find the least fixed point for such an equation provided that F itself is continuous

Fixed Point Theorem

- Define $F^{k}=\lambda x . F(F(\ldots F(x) \ldots))(F$ composed k times $)$
- If D is a pointed cpo and $\mathrm{F}: \mathrm{D} \rightarrow \mathrm{D}$ is continuous, then
- for any fixed-point x of F and $\mathrm{k} \in \mathrm{N}$
$\mathrm{F}^{\mathrm{k}}(\perp) \subseteq \mathrm{x}$
- The least of all fixed points is
$\sqcup_{\mathrm{k}} \mathrm{F}^{\mathrm{k}}(\perp)$
- Proof:
i. By induction on k .
- Base: $\mathrm{F}^{0}(\perp)=\perp \sqsubseteq \mathrm{x}$
- Induction step: $\mathrm{F}^{\mathrm{k}+1}(\perp)=\mathrm{F}\left(\mathrm{F}^{\mathrm{k}}(\perp)\right) \sqsubseteq \mathrm{F}(\mathrm{x})=\mathrm{x}$
ii. It suffices to show that $\sqcup_{k} \mathrm{~F}^{\mathrm{k}}(\perp)$ is a fixed-point
- $\mathrm{F}\left(\sqcup_{\mathrm{k}} \mathrm{F}^{\mathrm{k}}(\perp)\right)=\sqcup_{\mathrm{k}} \mathrm{F}^{\mathrm{k}+1}(\perp)=\sqcup_{\mathrm{k}} \mathrm{F}^{\mathrm{k}}(\perp)$

Fixed-Points (notes)

- If F is continuous on a pointed cpo, we know how to find the least fixed point
- All other fixed points can be regarded as refinements of the least one
- They contain more information, they are more precise
- In general, they are also more arbitrary
- They also make less sense for our purposes

Denotational Semantics of While

- \sum_{\perp} is a flat pointed cpo
- A state has more information on non-termination
- Otherwise, the states must be equal to be comparable (information-wise)
- We want strict functions $\sum_{\perp} \rightarrow \sum_{\perp}$ (therefore, continuous functions)
- The partial order on $\sum_{\perp} \rightarrow \sum$ $\mathrm{f} \sqsubseteq \mathrm{g}$ iff $\mathrm{f}(\mathrm{x})=\perp$ or $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for all $\mathrm{x} \in \sum_{\perp}$
- g terminates with the same state whenever f terminates
- g might terminate for more inputs

Denotational Semantics of While

- Recall that W is a fixed point of $\mathrm{F}:\left[\left[\sum_{\perp} \rightarrow \sum_{\perp}\right] \rightarrow\left[\sum_{\perp} \rightarrow \sum_{\perp}\right]\right]$

$$
\mathrm{F}(\mathrm{w})=\lambda \sigma \cdot \begin{cases}\mathrm{w}(\mathrm{~S} \llbracket \mathrm{~s} \rrbracket(\sigma)) & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { true } \\ \sigma & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { false } \\ \perp & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\perp\end{cases}
$$

- F is continuous
- Thus, we set

$$
\mathrm{S} \llbracket \text { while } \mathrm{b} \text { do } \mathrm{c} \rrbracket=\sqcup \mathrm{F}^{\mathrm{k}}(\perp)
$$

- Least fixed point
- Terminates least often of all fixed points
- Agrees on terminating states with all fixed point

Denotational Semantics of While

- $\mathrm{S} \llbracket$ skip $\rrbracket=\lambda \sigma . \sigma$
- $S \llbracket X:=\exp \rrbracket=\lambda \sigma \cdot \sigma[X \mapsto A \llbracket \exp \rrbracket \sigma]$
- $\mathrm{S} \llbracket \mathrm{s}_{0} ; \mathrm{s}_{1} \rrbracket=\lambda \sigma . \mathrm{S} \llbracket \mathrm{s}_{1} \rrbracket\left(\mathrm{~S} \llbracket \mathrm{~s}_{0} \rrbracket \sigma\right)$
- $S \llbracket$ if b then s_{0} else $s_{1} \rrbracket=$
$\lambda \sigma$. if $\mathrm{B} \llbracket \mathrm{b} \rrbracket \sigma$ then $\mathrm{S} \llbracket \mathrm{s}_{0} \rrbracket \sigma$ else $\mathrm{S} \llbracket \mathrm{s}_{1} \rrbracket \sigma$
- $S \llbracket$ while b do $\mathrm{s} \rrbracket=\sqcup \mathrm{F}^{\mathrm{k}}(\perp) \mathrm{k}=0,1, \ldots$ where $\mathrm{F}=\lambda \mathrm{w} . \lambda_{\sigma}$. if $\mathrm{B} \llbracket \mathrm{b} \rrbracket(\sigma)=\operatorname{true} \mathrm{w}(\mathrm{S} \llbracket \mathrm{s} \rrbracket(\sigma))$ else σ

Example (1)

- while true do skip
- $\mathrm{F}:\left[\left[\sum_{\perp} \rightarrow \sum_{\perp}\right] \rightarrow\left[\sum_{\perp} \rightarrow \sum_{\perp}\right]\right]$

$$
\mathrm{F}=\lambda \mathrm{w} \cdot \lambda \sigma \cdot \begin{cases}\mathrm{w}(\mathrm{~S} \llbracket \mathrm{~s} \rrbracket(\sigma)) & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { true } \\ \sigma & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { false } \\ \perp & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\perp\end{cases}
$$

$B \llbracket$ true $\rrbracket=\lambda \sigma$. true

$$
\mathrm{S} \llbracket \text { skip } \rrbracket=\lambda \sigma . \sigma
$$

$$
\mathrm{F}=\lambda \mathrm{w} \cdot \lambda \sigma \cdot \mathrm{w}(\sigma)
$$

$$
\mathrm{F}^{0}(\perp)=\perp \quad \sqcup \mathrm{F}^{1}(\perp)=\perp \quad \mathrm{F}^{2}(\perp)=\perp
$$

Example(2)

- while false do s
- $\mathrm{F}:\left[\left[\sum_{\perp} \rightarrow \sum_{\perp}\right] \rightarrow\left[\sum_{\perp} \rightarrow \sum_{\perp}\right]\right]$

$$
\mathrm{F}=\lambda \mathrm{w} \cdot \lambda \sigma \cdot \begin{cases}\mathrm{w}(\mathrm{~S} \llbracket \mathrm{~s} \rrbracket(\sigma)) & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { true } \\ \sigma & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\text { false } \\ \perp & \text { if } \mathrm{B} \llbracket \mathrm{~b} \rrbracket(\sigma)=\perp\end{cases}
$$

$B \llbracket$ false $\rrbracket=\lambda \sigma$. false

$$
\mathrm{F}=\lambda \mathrm{w} \cdot \lambda \sigma . \sigma
$$

$$
\mathrm{F}^{0}(\perp)=\perp \sqcup \mathrm{F}^{1}(\perp)=\lambda \sigma . \sigma \sqcup \quad \mathrm{F}^{2}(\perp)=\lambda \sigma . \sigma \quad \lambda \sigma . \sigma
$$

Example(3)

\llbracket while $\mathrm{x} \neq 3$ do $\mathrm{x}=\mathrm{x}-1 \rrbracket=\sqcup \mathrm{F}^{\mathrm{k}}(\perp) \mathrm{k}=0,1, \ldots$ where

$$
\mathrm{F}=\lambda \mathrm{w} . \lambda \sigma . \text { if } \sigma(\mathrm{x}) \neq 3 \mathrm{w}(\sigma[\mathrm{x} \mapsto \sigma(\mathrm{x})-1]) \text { else } \sigma
$$

$\mathrm{F}^{0}(\perp) \quad \perp$
$\mathrm{F}^{1}(\perp) \quad$ if $\sigma(\mathrm{x}) \neq 3 \perp(\sigma[\mathrm{x} \mapsto \sigma(\mathrm{x})-1])$ else σ if $\sigma(x) \neq 3$ then \perp else σ
$\mathrm{F}^{2}(\perp) \quad$ if $\sigma(\mathrm{x}) \neq 3$ then $\mathrm{F}^{1}(\sigma[\mathrm{x} \mapsto \sigma(\mathrm{x})-1])$ else σ
if $\sigma(x) \neq 3$ then (if $\sigma[\mathrm{x} \mapsto \sigma(\mathrm{x})-1] \mathrm{x} \neq 3$ then \perp else $\sigma[\mathrm{x} \mapsto \sigma(\mathrm{x})-1]$) else σ if $\sigma(\mathrm{x}) \neq 3$ (if $\sigma(\mathrm{x}) \neq 4$ then \perp else $\sigma[\mathrm{x} \mapsto \sigma(\mathrm{x})-1]$) else σ if $\sigma(x) \in\{3,4\}$ then $\sigma[x \mapsto 3]$ else \perp
$\mathrm{F}^{\mathrm{k}}(\perp) \quad$ if $\sigma(\mathrm{x}) \in\{3,4, \ldots \mathrm{k}\}$ then $\sigma[\mathrm{x} \mapsto 3]$ else \perp $\operatorname{lfp}(\mathrm{F}) \quad$ if $\sigma(\mathrm{x}) \geq 3$ then $\sigma[\mathrm{x} \mapsto 3]$ else \perp

Example 4 Nested Loops

 s [inner-loop $\rrbracket=$$\mathrm{S}==$
$\mathrm{Z}:=0 ;$
while $\mathrm{X}>0$ do (

Equivalence of Semantics

- $\forall \sigma, \sigma^{\prime} \in \Sigma$:

$$
\sigma^{\prime}=\mathrm{S} \llbracket \mathrm{~s} \rrbracket \sigma \Leftrightarrow\left\langle\mathrm{~s}, \sigma>\rightarrow \sigma^{\prime} \Leftrightarrow\left\langle\mathrm{s}, \sigma>\Rightarrow^{*} \sigma^{\prime}\right.\right.
$$

Complete Partial Orders

- Let $(\mathrm{D}, \sqsubseteq)$ be a partial order
- D is a complete lattice if every subset has both greatest lower bounds and least upper bounds

Knaster-Tarski Theorem

- Let $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{L}$ be a monotonic function on a complete lattice L
- The least fixed point $\operatorname{lfp}(f)$ exists

$$
-\operatorname{lfp}(\mathrm{f})=\sqcap\{\mathrm{x} \in \mathrm{~L}: \mathrm{f}(\mathrm{x}) \sqsubseteq \mathrm{x}\}
$$

Fixed Points

A monotone function $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{L}$ where $(\mathrm{L}, \sqsubseteq, \sqcup, \sqcap, \perp, \mathrm{T})$ is a complete lattice
$-\operatorname{Fix}(\mathrm{f})=\{1: 1 \in \mathrm{~L}, \mathrm{f}(\mathrm{l})=1\}$

- $\operatorname{Red}(\mathrm{f})=\{1: 1 \in \mathrm{~L}, \mathrm{f}(\mathrm{l}) \subseteq 1\}$
$-\operatorname{Ext}(\mathrm{f})=\{1: 1 \in \mathrm{~L}, 1 \sqsubseteq \mathrm{f}(\mathrm{l})\}$
$-\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Rightarrow \mathrm{f}\left(\mathrm{l}_{1}\right) \subseteq \mathrm{f}\left(\mathrm{l}_{2}\right)$
- Tarski's Theorem 1955: if f is monotone then:
$-\operatorname{lfp}(\mathrm{f})=\sqcap \operatorname{Fix}(\mathrm{f})=\sqcap \operatorname{Red}(\mathrm{f}) \in \operatorname{Fix}(\mathrm{f})$
$-\operatorname{gfp}(\mathrm{f})=\sqcup \operatorname{Fix}(\mathrm{f})=\sqcup \operatorname{Ext}(\mathrm{f}) \in \operatorname{Fix}(\mathrm{f})$

Summary

- Denotational definitions are not necessarily better than operational semantics, and they usually require more mathematical work
- The mathematics may be done once and for all
- The mathematics may pay off:
- Some of its techniques are being transferred to operational semantics.
- It is trivial to prove that
"If $\mathrm{B} \llbracket \mathrm{b}_{1} \rrbracket=\mathrm{B} \llbracket \mathrm{b}_{2} \rrbracket$ and $\mathrm{C} \llbracket \mathrm{c}_{1} \rrbracket=\mathrm{C} \llbracket \mathrm{c}_{2} \rrbracket$ then
$\mathrm{C}\left\lfloor\right.$ while b_{1} do $\mathrm{c}_{1} \rrbracket=\mathrm{C} \llbracket$ while b_{2} do $\mathrm{c}_{2} \rrbracket$ "
(compare with the operational semantics)

Summary

- Denotational semantics provides a way to declare the meaning of programs in an abstract way
- Can handle
- side-effects
- loops
- Recursion
- Gotos
- non-determinism
- But not low level concurrency
- Fixed point theory provides a declarative way to specify computations
- Many usages

