
Denotational Semantics

Based on a lecture by

Martin Abadi

Introduction

• Denotational semantics is supposed to be

mathematical:

– The meaning of an expression is a mathematical object

– A fair amount of mathematics is involved

• Denotational semantics is compositional

• Denotational semantics is more abstract and

canonical than operational semantics

– No small step vs. big step

• Denotational semantics is also called

– Fixed point semantics

– Mathematical semantics

– Scott-Strachey semantics

Plan

• Definition of the denotational semantics of

While (first attempt)

• Complete partial orders and related

properties

– Montonicity

– Continuity

• Definition of denotational semantics of

While

Denotational semantics

• A: Aexp (N)

• B: Bexp (T)

• S: Stm ()

• Defined by structural induction

Denotational semantics of Aexp
• A: Aexp (N)

• A n = {(, n) | }

• A X = {(, X) | }

• A a0+a1 = {(, n0+n1) | (, n0)Aa0, (,n1)Aa1}

• A a0-a1 = {(, n0-n1) | (, n0)Aa0, (,n1)Aa1}

• A a0a1 = {(, n0 n1) | (, n0)Aa0, (,n1)Aa1}

Lemma: A a is a function

Denotational semantics of

Aexp with
• A: Aexp (N)

• A n = .n

• A X = .(X)

• A a0+a1 = .(A a0+Aa1)

• A a0-a1 = .(A a0-Aa1)

• A a0a1 = .(A a0 Aa1)

Denotational semantics of Bexp
• B: Bexp (T)

• B true = {(, true) | }

• B false = {(, false) | }

• B a0=a1 = {(, true) | & Aa0=Aa1 }
 {(, false) | & Aa0Aa1 }

• B a0a1 = {(, true) | & Aa0 Aa1 }
 {(, false) | & Aa0Aa1 }

• B b = {(, T t) | , (, t) Bb}

• B b0b1 = {(, t0 Tt1) | , (, t0) Bb0, (, t1) Bb1 }

• B b0b1 = {(, t0 Tt1) | , (, t0) Bb0, (, t1) Bb1 }

Lemma: Bb is a function

Denotational semantics of statements?

• Running a statement s starting from a

state yields another state ’

• So, we may try to define S s as a

function that maps to ’:

– S .: Stm ()

Denotational semantics of commands?

• Problem: running a statement might not yield anything

if the statement does not terminate

• We introduce the special element to denote a special

outcome that stands for non-termination

• For any set X, we write X for X {}

• Convention:

– whenever f X X we extend f to X X

“strictly” so that f() =

Denotational semantics of statements?

• We try:

– S . : Stm ()

• S skip=

• S s0 ; s1 = S s1 (S s0)

• S if b then s0 else s1 =

 if Bb then S s0 else S s1

Examples

• S X:= 2; X:=1= [X1]

• S if true then X:=2; X:=1 else … = [X1]

• The semantics does not care about intermediate

states

• So far, we did not explicitly need

Denotational semantics of loops?

• S while b do s = ?

Denotational semantics of statements?

• Abbreviation W=S while b do s
• Idea: we rely on the equivalence

 while b do s if b then (s; while b do s) else skip

• We may try using unwinding equation

W() = if Bb then W(Ss) else

• Unacceptable solution

– Defines W in terms of itself

– It not evident that a suitable W exists

– It may not describe W uniquely

(e.g., for while true do skip)

Introduction to Domain Theory

• We will solve the unwinding equation through a

general theory of recursive equations

• Think of programs as processors of streams of bits

(streams of 0’s and 1’s, possibly terminated by $)

What properties can we expect?

input output

Motivation

• Let “isone” be a function that must return “1$”
when the input string has at least a 1 and “0$”
otherwise

– isone(00…0$) = 0$

– isone(xx…1…$) =1$

– isone(0…0) =?

• Monotonicity : Output is never retracted

– More information about the input is reflected in
more information about the output

• How do we express monotonicity precisely?

Montonicity

• Define a partial order

x y

– A partial order is reflexive, transitive, and

antisymmetric

– y is a refinement of x

• For streams of bits x y when x is a prefix of y

• For programs, a typical order is:

– No output (yet) some output

Montonicity

• A set equipped with a partial order is a
poset

• Definition:

– D and E are postes

– A function f: D E is monotonic if
x, y D: x D y f(x) E f(y)

– The semantics of the program ought to be a
monotonic function

• More information about the input leads to more
information about the output

Montonicity Example
• Consider our “isone” function with the prefix

ordering

• Notation:

– 0k is the stream with k consecutive 0’s

– 0 is the infinite stream with only 0’s

• Question (revisited): what is isone(0k)?

– By definition, isone(0k$) = 0$ and isone(0k1$) = 1$

– But 0k 0k$ and 0k 0 k1$

– “isone” must be monotone, so:

• isone(0k) isone(0k$) = 0$

• isone(0k) isone(0k1$) = 1$

– Therefore, monotonicity requires that isone(0k) is a
common prefix of 0$ and 1$, namely

Motivation

• Are there other constraints on “isone”?

• Define “isone” to satisfy the equations

– isone()=

– isone(1s)=1$

– isone(0s)=isone(s)

– isone($)=0$

• What about 0?

• Continuity: finite output depends only on finite
input (no infinite lookahead)

Chains

• A chain is a countable increasing sequence

<xi> = {xi X | x0 x1 … }

• An upper bound of a set if an element “bigger”

than all elements in the set

• The least upper bound is the “smallest” among

upper bounds:

– xi <xi> for all i N

– <xi> y for all upper bounds y of <xi>

and it is unique if it exists

Complete Partial Orders

• Not every poset has an upper bound

– with n and nn for all n N

– {1, 2} does not have an upper bound

• Sometimes chains have no upper bound

0 1 2 …

2

1

0

The chain

0 12…

does not have an upper bound

Complete Partial Orders

• It is convenient to work with posets where every

chain (not necessarily every set) has a least upper

bound

• A partial order P is complete if every chain in P

has a least upper bound also in P

• We say that P is a complete partial order (cpo)

• A cpo with a least (“bottom”) element is a

pointed cpo (pcpo)

Examples of cpo’s

• Any set P with the order
x y if and only if x = y is a cpo
It is discrete or flat

• If we add so that x for all x P, we get a flat pointed
cpo

• The set N with is a poset with a bottom, but not a
complete one

• The set N { } with n is a pointed cpo

• The set N with is a cpo without bottom

• Let S be a set and P(S) denotes the set of all subsets of S
ordered by set inclusion
– P(S) is a pointed cpo

Constructing cpos

• If D and E are pointed cpos, then so is

D × E

(x, y) D×E (x’, y’) iff x D x’ and yE y’

D×E = (D , E)

 (x i , y i) = (D x i , E y i)

Constructing cpos (2)

• If S is a set of E is a pcpos, then so is

S E

m m’ iff s S: m(s) E m’(s)

SE = s. E

 (m , m’) = s.m(s) E m’(s)

Continuity

• A monotonic function maps a chain of
inputs into a chain of outputs:
x0 x1 … f(x0) f(x1) …

• It is always true that:
i <f(xi)> f(i <xi>)

• But
f(i <xi>) i <f(xi)>
is not always true

A Discontinuity Example

3

2

1

0

1

f(i <xi>) i <f(xi)>

Continuity

• Each f(xi) uses a “finite” view of the input

• f(<xi>) uses an “infinite” view of the input

• A function is continuous when

f(<xi>) = i <f(xi)>

• The output generated using an infinite view of the

input does not contain more information than all

of the outputs based on finite inputs

• Scott’s thesis: The semantics of programs can be

described by a continuous functions

Examples of Continuous Functions

• For the partial order (N { },)
– The identity function is continuous

id(ni) = id(ni)

– The constant function “five(n)=5” is continuous
five(ni) = five(ni)

– If isone(0) = then isone is continuos

• For a flat cpo A, any monotonic function
f: A A
such that f is strict is continuous

• Chapter 8 of the Wynskel textbook includes many
more continuous functions

• Solve the equation:

where W:∑ ∑

W= Swhile be do s
• This equation can be written as W = F(W)

with: W(Ss) if Bb()=true

• F(W)= . if Bb()=false

 if Bb()=

 W(Ss) if Bb()=true

 W() = if Bb()=false

 if Bb()=

Fixed Points

Fixed Point (cont)

• Thus we are looking for a solution for W = F(W)

– a fixed point of F

• Typically there are many fixed points

• We may argue that W ought to be continuous
W [∑ ∑]

• Cut the number of solutions

• We will see how to find the least fixed point for
such an equation provided that F itself is
continuous

Fixed Point Theorem

• Define Fk = x. F(F(… F(x)…)) (F composed k times)

• If D is a pointed cpo and F : D D is continuous,
 then
– for any fixed-point x of F and k N

 Fk () x

– The least of all fixed points is
k F

k ()

• Proof:
i. By induction on k.

• Base: F0 () = x

• Induction step: Fk+1 () = F(Fk ()) F(x) = x

ii. It suffices to show that k F
k () is a fixed-point

• F(k F
k ()) = k F

k+1 () = k F
k ()

Fixed-Points (notes)

• If F is continuous on a pointed cpo, we
know how to find the least fixed point

• All other fixed points can be regarded as
refinements of the least one

• They contain more information, they are
more precise

• In general, they are also more arbitrary

• They also make less sense for our purposes

Denotational Semantics of While

• ∑ is a flat pointed cpo
– A state has more information on non-termination

– Otherwise, the states must be equal to be comparable
(information-wise)

• We want strict functions ∑ ∑
(therefore, continuous functions)

• The partial order on ∑ ∑
f g iff f(x) = or f(x) = g(x) for all x ∑

– g terminates with the same state whenever f terminates

– g might terminate for more inputs

Denotational Semantics of While

• Recall that W is a fixed point of
F:[[∑ ∑][∑ ∑]]

• F is continuous

• Thus, we set
 Swhile b do c = Fk()

• Least fixed point
– Terminates least often of all fixed points

• Agrees on terminating states with all fixed point

 w(Ss()) if Bb()=true

 F(w) = . if Bb()=false

 if Bb()=

Denotational Semantics of While

• S skip = .

• S X := exp = .[X Aexp]

• S s0 ; s1 = . S s1 (S s0)

• S if b then s0 else s1 =

 . if Bb then S s0 else S s1

• S while b do s = Fk() k=0, 1, … where
 F = w. . if Bb()=true w(Ss()) else

Example(1)

• while true do skip

• F:[[∑ ∑][∑ ∑]]

 w(Ss()) if Bb()=true

 F = w.. if Bb()=false

 if Bb()=

Btrue=.true Sskip=.

F = w..w()

F0()= F1() = F2() =

Example(2)

• while false do s

• F:[[∑ ∑][∑ ∑]]

 w(Ss()) if Bb()=true

 F = w.. if Bb()=false

 if Bb()=

Bfalse=.false

F = w..

F0()= F1() = . F2() = . .

Example(3)

 while x3 do x = x -1 = Fk() k=0, 1, …

where
F = w. . if (x)3 w([x (x) -1]) else

F0()

F1() if (x)3 ([x (x) -1]) else

if (x)3 then else

F2() if (x)3 then F1([x (x) -1]) else

if (x)3 then (if [x (x) -1] x 3 then else [x (x) -1]) else

if (x)3 (if (x) 4 then else [x (x) -1]) else

if (x) {3, 4} then [x 3] else

Fk()

lfp(F)

if (x) {3, 4, …k} then [x 3] else

if (x) 3 then [x 3] else

Example 4 Nested Loops

S ==

Z := 0 ;

while X > 0 do (

 Y := X;

 while (Y>0) do

 Z := Z + Y ;

 Y: = Y- 1;)

 X = X – 1

)

sinner-loop=

[Y0][Z (Z)+(Y) * ((Y)+1)/2] if (Y)0

if (Y)<0

souter-loop=

[Y0]
[X0]
[Z (Z)+(X) ((X) + 1) (1 + (2(X) + 1)/3)/4]

if (X)0

if (X)<0 sS=

[Y0]
[X0]
[Z (X) ((X) + 1) (1 + (2(X) + 1)/3)/4]

if (X)0

if (X)<0

Equivalence of Semantics

• , ’:

 ’=Ss<s, > ’ <s, >* ’

Complete Partial Orders

• Let (D,) be a partial order

– D is a complete lattice if every subset has both

greatest lower bounds and least upper bounds

Knaster-Tarski Theorem

• Let f: L L be a monotonic function on a

complete lattice L

• The least fixed point lfp(f) exists

– lfp(f) = {x L: f(x)x}

Fixed Points

 A monotone function f: L L where
(L, , , , ,) is a complete lattice

 Fix(f) = { l: l L, f(l) = l}

 Red(f) = {l: l L, f(l) l}

 Ext(f) = {l: l L, l f(l)}

– l1 l2 f(l1) f(l2)

 Tarski’s Theorem 1955: if f is monotone
then:

– lfp(f) = Fix(f) = Red(f) Fix(f)

– gfp(f) = Fix(f) = Ext(f) Fix(f)

f()

f()

f2()

f2()

Fix(f)

Ext(f)

Red(f)

gfp(f)

lfp(f)

Summary

• Denotational definitions are not necessarily better than
operational semantics, and they usually require more
mathematical work

• The mathematics may be done once and for all

• The mathematics may pay off:

• Some of its techniques are being transferred to operational
semantics.

• It is trivial to prove that
“If Bb1 = Bb2 and C c1 = Cc2
then
Cwhile b1 do c1 = Cwhile b2 do c2”
(compare with the operational semantics)

Summary

• Denotational semantics provides a way to declare
the meaning of programs in an abstract way
– Can handle

• side-effects

• loops

• Recursion

• Gotos

• non-determinism

– But not low level concurrency

• Fixed point theory provides a declarative way to
specify computations
– Many usages

