
Programming Language Semantics
Axiomatic Semantics

The Formal Semantics of
Programming Languages

Chapter 6

Motivation
• What do we need in order to prove that the program

does what it supposed to do?

• Specify the required behavior

• Compare the behavior with the one obtained by the

denotational/operational semantics

• Develop a proof system for showing that the program

satisfies a requirement

• Mechanically use the proof system to show

correctness

• The meaning of a program is a set of verification rules

Plan

• The basic idea

• An assertion language

• Semantics of assertions

• Proof rules

• An example

• Soundness

• Completeness

• Verification conditions

Example Program

S:=0

N := 1

while (N=101) do

 S := S + N ;

 N :=N+1

N=101

S=∑1m100
 m

Example Program

S:=0

{S=0}

N := 1

{S=0 N=1}

while (N=101) do

 S := S + N ;

 N :=N+1

{N=101 S=∑1m100 m}

Example Program

S:=0

{S=0}

N := 1

{S=0 N=1}

while {1 N  101 S=∑1mN-1 m}(N=101) do

 S := S + N ;

 {1 N < 101 S=∑1mN m}

 N :=N+1

{N=101 S=∑1m100 m}

Partial Correctness

• {P}S{Q}

– P and Q are assertions
(extensions of Boolean expressions)

– S is a statement

– For all states  which satisfies P, if the execution of
S from state  terminates in state ’, then ’
satisfies Q

• {true}while true do skip{false}

Total Correctness

• [P]S[Q]

– P and Q are assertions
(extensions of Boolean expressions)

– S is a statement

– For all states  which satisfies P,

• the execution of S from state  must terminates in a
state ’

• ’ satisfies Q

Formalizing Partial Correctness

• A

– A is true in 

• {P} S {Q}

– , ’∑. (P & <S, > ’)  ’  Q
– ∑. (P & S S)  S S Q

• Convention for all A
 A

• , ’∑. P  S S  Q

An Assertion Language

• Extend Bexp

• Allow quantifications

– i: …

– i: …

• i. k=il

• Import well known mathematical concepts

– n!  n (n-1)   2 1

An Assertion Language

Aexpv

a:= n | X | i | a0 + a1 | a0 - a1 | a0  a1

Assn

A:= true | false | a0 = a1 | a0  a1 | A0  A1 | A0  A1 | A |

A0  A1 | i. A | i. A

Example

while (M=N) do

 if M  N

 then N := N – M

 else M := M - N

Free and Bound Variables

• An integer variable is bound when it occurs in the
scope of a quantifier

• Otherwise it is free

• Examples i. k=iL (i+10077)i.j+1=i+3)

FV(n) = FV(X) =  FV(i) = {i}

FV(a0 + a1)=FV(a0-a1)=FV(a0a1) = FV(a0) FV(a1)

FV(true)=FV(false)=  FV(a0 = a1)=FV(a0  a1)= FV(a0) FV(a1)

FV(A0A1)=FV(A0A1) =FV(A0A1)= FV(A0) FV(A1)

FV(A)=FV(A)

FV(i. A)=FV(i. A)= FV(A) {i}

Substitution

• Visualization of an assertion A
 ---i---i----

• Consider a “pure” arithmetic expression
 A[a/i] ---a---a---

n[a/i] = n X[a/i]=X

i[a/i] = a j[a/i] = j

(a0 + a1)[a/i] = a0[a/i] + a1/[a/i] (a0 - a1)[a/i] = a0[a/i] – a1[a/i]

 (a0  a1)[a/i]= a0[a/i]  a1[a/i]

Substitution

• Visualization of an assertion A
 ---i---i----

• Consider a “pure” arithmetic expression
 A[a/i] ---a---a---

true[a/i] = true false[a/i]=false

(a0 = a1)[a/i] = (a0/[a/i] = a1[a/i]) (a0 a1)[a/i] = (a0/[a/i]  a1[a/i])

(A0  A1)[a/i] = (A0[a/i]  A1[a/i]) (A0  A1)[a/i]= (A0[a/i]A1[a/i])

 (A0  A1)[a/i] = (A0[a/i]  A1[a/i])[a/i]

 (A)[a/i] = (A[a/i])

 (i.A)[a/i] =i. A (j.A)[a/i] = (j. A[a/i])

 (i.A)[a/i] =i. A (j.A)[a/i] =(j. A[a/i])

Location Substitution

• Visualization of an assertion A
 ---X---X----

• Consider a “pure” arithmetic expression
 A[a/X] ---a---a---

Example Assertions

• i is a prime number

• i is the least common multiple of j and k

Semantics of Assertions

• An interpretation I:intvar N

• The meaning of Aexpv
– AvnI=n

– AvXI= (X)

– AviI= I(i)

– Ava0+a1 I = Ava0I +Av a1 I

– …

• For all a  Aexp states  and Interpretations I
– Aa=AvaI

Semantics of Assertions (II)

• I[n/i] change i in I to n
• For I and  , define  I A by

structural induction
–  I true
–  I (a0 = a1) if Ava0 I= Ava1 I
–  I (A B) if  I A and  I B
–  I A if not  I A
–  I AB if (not  I A) or  I B)
–  I i.A if  I[n/i] A for all nN
–   A

Proposition 6.4

For all b  Bexp states  and Interpretations I

 Bb= true iff  I b

 Bb= false iff not  I b

Partial Correctness Assertions

• {P}c{Q}
– P, Q Assn and c Com

• For a state   and interpretation I
–  I {P}c{Q} if ( I P  C c I Q)

• Validity
– When  ,  I {P}c{Q} we write

• I {P}c{Q}

– When  , and I  I {P}c{Q} we write
•  {P}c{Q}

• {P}c{Q} is valid

The extension of an assertion

AI  {  |  I A }

The extension of assertions

Suppose that  (PQ)

Then for any interpretation I

 .  I P   I Q

PIQI



QI

PI

The extension of assertions

Suppose that {P}c{Q}

Then for any interpretation I

 .  I P  C c I Q

C cPIQI



QI

PI

C c

Hoare Proof Rules for Partial Correctness

{A} skip {A}

{B[a/X]} X:=a {B}

{P} S0 {C} {C} S1 {Q}

{P} S0;S1{Q}

{Pb} S0 {Q} {P b} S1 {Q}

{P} if b then S0 else S1{Q}

{Ib} S {I}

{I} while b do S{Ib}

P  P’ {P’} S {Q’}  Q’  Q

{P} S {Q}

Example

Y := 1;

while X > 0 do

 Y := X Y;

 X := X – 1

{X = n  n 0}

{Y = n! }

{X = n  Y=1  n  0}

Example

Y := 1;

while X > 0 do

 Y := X Y;

 X := X – 1

{X = n  n  0}

{Y = n! }

{X 0  n 0  Y=n!/X!}

{X = n  Y=1  n  0}

{X > 0  n 0  Y=n!/X!}

{X > 0  n 0  Y=n!/(X-1)!}

{X > 0  n 0  Y=n!/X!}

Example Formal
{X = n  n  0} Y :=1 {X = n  Y=1  n  0}

{X > 0  n 0  Y=n!/X!} Y := X Y; {X > 0  n 0  Y=n!/(X-1)!}

{X = n  n  0} Y :=1 {X 0  n  0  Y=n!/X!}

{X > 0  n 0  Y=n!/(X-1)!} X := X-1; {X  0  n 0  Y=n!/X!}

{X > 0  n 0  Y=n!/X!} Y := X Y; X := X-1 {X  0  n 0  Y=n!/X!}

{ X  0  n 0  Y=n!/X!  X>0} Y := X Y; X := X-1 {X  0  n 0  Y=n!/X!}

{ X  0  n 0  Y=n!/X!} while X > 0 do Y := X Y; X := X-1

 {X  0  n 0  Y=n!/X! X > 0 }

{ X  0  n 0  Y=n!/X!} while X > 0 do Y := X Y; X := X-1 {Y=n! }

{ X=n  n 0} Y :=1; while X > 0 do Y := X Y; X := X-1 {Y=n! }

Soundness

• Every theorem obtained by the rule system is
valid
– {P} c {Q}  {P} c {Q}

• The system can be implemented (HOL, LCF,
Coq)
– Requires user assistance

• Proof of soundness
– Every rule preserves validity (Theorem 6.1)

Soundness of skip axiom

{A} skip {A}

Soundness of the assignment axiom

{B[a/X]} X:=a {B}

Soundness of the sequential composition rule

• Assume that
 {P} S0 {C}
and
{C} S1 {Q}

• Show that
 {P} S0;S1{Q}

Soundness of the conditional rule

• Assume that
 {P  b} S0 {Q}
and
{P  b} S1 {Q}

• Show that
 {P} if b then S0 else S1{Q}

Soundness of the while rule

• Assume that
 {I  b} S {I}

• Show that
 {I} while b do S {I  b}

Soundness of the consequence rule

• Assume that
 {P’} S {Q’}
and
  P  P’
and
 Q’  Q

• Show that
 {P} S {Q}

(Ideal) Completeness

• Every valid theorem can be proved by the rule
system

• For every P and Q such that {P} S {Q}
there exists a proof such  {P} S {Q}

• But what about Gödel’s incompleteness?
{true} skip {Q}

• What does {true} c {false} mean?

Relative Completeness (Chapter 7)

• Assume that every math theorem can be
proved
{P} S {Q} implies  {P} S {Q}

Relative completeness of composition rule

• Prove that {P} S0;S1{Q}

• Does there exist an assertion I such that
 {P} S0 {C}
and
{I} S1 {Q}

Weakest (Liberal) Precondition

• wp(S, Q) – the weakest condition such that every
terminating computation of S results in a state
satisfying Q

• wpI(S, Q) ={ | SS I Q}
• [Can employ predicate transformer semantics to

formally define the meaning (Chapter 7.5)]
• Prove that {P} S0;S1{Q} by proving
{P} S0 {I}
and
{I} S1 {Q} where I=wp(S1, Q)

• {P} S {Q} iff for all I  P   wpI(S, Q)
• {P} S {Q} iff for P  wp(S, Q)

Some WP rules

• wp(skip, Q) = Q

• wp(X := a, Q) = Q[a/X]

• wp(S0; S1, Q) = wp(S0, wp(S1, Q))

• wp(if b then S0 else S1, Q) =
b wp(S0, Q)   b wp(S1, Q)

• wp(S, false) =

Relative Completeness

• For every command S and assertion B

– there exists an assertion A, such that
A=wp(S, B) (Theorem 7.5)

– {wp(S, B)} S {B}(Lemma 7.6)

• Theorem 7.7: The proof system is relatively
complete

– {P} S {Q} implies  {P} S {Q}

Verification Conditions

• Generate assertions that describe the partial
correctness of the program

• Use automatic theorem provers to show
partial correctness

• Existing tools ESC/Java, Spec#

Verification condition for annotated commands

S ::= skip | X := a | S; (X:=a) |

 S0 ; {D} S1 | if b then S0 else S1 |

 while b {D} do S

vc({P} skip {Q}) = {PQ}

vc({P} X:= a {Q}) = {P Q[a/X]}

vc({P} S ; X:=a {Q}) = vc({P} S {Q[a/X]})

vc({P} S0; {D} S1 {Q}) = vc({P} S0 {D})  vc({D} S1 {Q})

vc({P} if b then S0 else S1 {Q}) = vc({Pb} S0 {Q}) 

 vc({P  b} S1 {Q})

vc({P} while b {D} do c {Q}) = vc({Db} c {D})  {PD} 

 {D b Q}

Summary

• Axiomatic semantics provides an abstract semantics

• Can be used to explain programming

• Extensions
– Procedures

– Concurrency

– Events

– Rely/Guarantee

– Heaps

• Can be automated

• More effort is required to make it practical

