Programming Language Semantics Axiomatic Semantics

The Formal Semantics of Programming Languages

 Chapter 6
Motivation

- What do we need in order to prove that the program does what it supposed to do?
- Specify the required behavior
- Compare the behavior with the one obtained by the denotational/operational semantics
- Develop a proof system for showing that the program satisfies a requirement
- Mechanically use the proof system to show correctness
- The meaning of a program is a set of verification rules

Plan

- The basic idea
- An assertion language
- Semantics of assertions
- Proof rules
- An example
- Soundness
- Completeness
- Verification conditions

Example Program

$$
\begin{aligned}
& \mathrm{S}:=0 \\
& \mathrm{~N}:=1 \\
& \text { while } \neg(\mathrm{N}=101) \text { do } \\
& \qquad \begin{aligned}
\mathrm{S} & :=\mathrm{S}+\mathrm{N} ; \\
\mathrm{N} & :=\mathrm{N}+1 \\
& \mathrm{~N}=101 \\
& \mathrm{~S}=\sum_{1 \leq \mathrm{m} \leq 100} \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Example Program

$$
\begin{aligned}
& \mathrm{S}:=0 \\
& \{\mathrm{~S}=0\} \\
& \mathrm{N}:=1 \\
& \{\mathrm{~S}=0 \wedge \mathrm{~N}=1\} \\
& \text { while } \neg(\mathrm{N}=101) \text { do } \\
& \quad \mathrm{S}:=\mathrm{S}+\mathrm{N} ; \\
& \quad \mathrm{N}:=\mathrm{N}+1 \\
& \left\{\mathrm{~N}=101 \wedge \mathrm{~S}=\sum_{1 \leq \mathrm{m} \leq 100} \mathrm{~m}\right\}
\end{aligned}
$$

Example Program

$$
\begin{aligned}
& S:=0 \\
& \begin{array}{l}
\{S=0\} \\
N
\end{array} \\
& \{S=1 \\
& \text { while }\left\{1 \leq N \leq 101 \wedge S=\sum_{1 \leq \mathrm{m} \leq \mathrm{N}-1} \mathrm{~m}\right\} \neg(\mathrm{N}=101) \text { do } \\
& \qquad \mathrm{S}:=\mathrm{S}+\mathrm{N} ; \\
& \quad\left\{1 \leq \mathrm{N}<101 \wedge \mathrm{~S}=\sum_{1 \leq \mathrm{m} \leq \mathrm{N}} \mathrm{~m}\right\} \\
& \quad \mathrm{N}:=\mathrm{N}+1 \\
& \left\{\mathrm{~N}=101 \wedge \mathrm{~S}=\sum_{1 \leq \mathrm{m} \leq 100} \mathrm{~m}\right\}
\end{aligned}
$$

Partial Correctness

- $\{P\} S\{Q\}$
- P and Q are assertions
(extensions of Boolean expressions)
-S is a statement
- For all states σ which satisfies P, if the execution of S from state σ terminates in state σ^{\prime}, then σ^{\prime} satisfies Q
- \{true\}while true do skip\{false\}

Total Correctness

- [P]S[Q]
$-P$ and Q are assertions
(extensions of Boolean expressions)
$-S$ is a statement
- For all states σ which satisfies P,
- the execution of S from state σ must terminates in a state σ^{\prime}
- σ^{\prime} satisfies Q

Formalizing Partial Correctness

- $\sigma \models \mathrm{A}$
$-A$ is true in σ
- $\{P\} S\{Q\}$

$$
\begin{aligned}
& -\forall \sigma, \sigma^{\prime} \in \sum \cdot\left(\sigma \models \mathrm{P} \&<\mathrm{S}, \sigma>\rightarrow \sigma^{\prime}\right) \Rightarrow \sigma^{\prime} \models \mathrm{Q} \\
& -\forall \sigma \in \sum \cdot(\sigma \models \mathrm{P} \& \mathbf{S} \llbracket \mathrm{~S} \rrbracket \sigma \neq \perp) \Rightarrow \mathbf{S} \llbracket \mathrm{S} \rrbracket \sigma \models \mathrm{Q}
\end{aligned}
$$

- Convention for all A
$\perp \models A$
- $\forall \sigma, \sigma^{\prime} \in \Sigma . \sigma \models \mathrm{P} \Rightarrow \mathbf{S} \llbracket \mathrm{S} \rrbracket \sigma \models \mathrm{Q}$

An Assertion Language

- Extend Bexp
- Allow quantifications
$-\forall \mathrm{i}: . .$.
$-\exists \mathrm{i}: .$.
- $\exists \mathrm{i} . \mathrm{k}=\mathrm{ixl}$
- Import well known mathematical concepts
$-n!\stackrel{\circ}{=} \times(n-1) \times \cdots 2 \times 1$

Assertion Language

$$
\begin{gathered}
\text { Aexpv } \\
\mathrm{a}:=\mathrm{n}|\mathrm{X}| \mathrm{i}\left|\mathrm{a}_{0}+\mathrm{a}_{1}\right| \mathrm{a}_{0}-\mathrm{a}_{1} \mid \mathrm{a}_{0} \times \mathrm{a}_{1}
\end{gathered}
$$

Assn

$$
\begin{gathered}
\mathrm{A}:=\text { true } \mid \text { false }\left|\mathrm{a}_{0}=\mathrm{a}_{1}\right| \mathrm{a}_{0} \leq \mathrm{a}_{1}\left|\mathrm{~A}_{0} \wedge \mathrm{~A}_{1}\right| \mathrm{A}_{0} \vee \mathrm{~A}_{1}|\neg \mathrm{~A}| \\
\mathrm{A}_{0} \Rightarrow \mathrm{~A}_{1} \mid \forall \text { i. } \mathrm{A} \mid \exists \mathrm{i} . \mathrm{A}
\end{gathered}
$$

Example

while $\neg(\mathrm{M}=\mathrm{N})$ do if $\mathrm{M} \leq \mathrm{N}$

$$
\begin{aligned}
& \text { then } N:=N-M \\
& \text { else } M:=M-N
\end{aligned}
$$

Free and Bound Variables

- An integer variable is bound when it occurs in the scope of a quantifier
- Otherwise it is free
- Examples $\exists \mathrm{i} . \mathrm{k}=\mathrm{i} \times \mathrm{L} \quad(\mathrm{i}+100 \leq 77) \wedge \forall \mathrm{i} . j+1=\mathrm{i}+3)$
$\mathrm{FV}(\mathrm{n})=\mathrm{FV}(\mathrm{X})=\varnothing$
$\mathrm{FV}(\mathrm{i})=\{\mathrm{i}\}$
$F V\left(a_{0}+a_{1}\right)=F V\left(a_{0}-a_{1}\right)=F V\left(a_{0} \times a_{1}\right)=F V\left(a_{0}\right) \cup F V\left(a_{1}\right)$
$\mathrm{FV}($ true $)=\mathrm{FV}($ false $)=\varnothing \mathrm{FV}\left(\mathrm{a}_{0}=\mathrm{a}_{1}\right)=\mathrm{FV}\left(\mathrm{a}_{0} \leq \mathrm{a}_{1}\right)=\mathrm{FV}\left(\mathrm{a}_{0}\right) \cup \mathrm{FV}\left(\mathrm{a}_{1}\right)$
$\operatorname{FV}\left(\mathrm{A}_{0} \wedge \mathrm{~A}_{1}\right)=\mathrm{FV}\left(\mathrm{A}_{0} \vee \mathrm{~A}_{1}\right)=\mathrm{FV}\left(\mathrm{A}_{0} \Rightarrow \mathrm{~A}_{1}\right)=\mathrm{FV}\left(\mathrm{A}_{0}\right) \cup \mathrm{FV}\left(\mathrm{A}_{1}\right)$
$\mathrm{FV}(\neg \mathrm{A})=\mathrm{FV}(\mathrm{A})$
$\mathrm{FV}(\forall \mathrm{i} . \mathrm{A})=\mathrm{FV}(\exists \mathrm{i} . \mathrm{A})=\mathrm{FV}(\mathrm{A}) \backslash\{\mathrm{i}\}$

Substitution

- Visualization of an assertion A

- Consider a "pure" arithmetic expression
A[a/i] ---a---a---

$$
\begin{array}{lc}
n[a / i]=n & X[a / i]=X \\
i[a / i]=a & j[a / i]=j \\
\left(a_{0}+a_{1}\right)[a / i]=a_{0}[a / i]+a_{1} /[a / i] & \left(a_{0}-a_{1}\right)[a / i]=a_{0}[a / i]-a_{1}[a / i] \\
& \\
& \left(a_{0} \times a_{1}\right)[a / i]=a_{0}[a / i] \times a_{1}[a / i]
\end{array}
$$

Substitution

- Visualization of an assertion A

- Consider a "pure" arithmetic expression
A[a/i] ---a---a---
true $[\mathrm{a} / \mathrm{i}]=$ true
false[a/i]=false

$$
\begin{array}{cc}
\left(\mathrm{a}_{0}=\mathrm{a}_{1}\right)[\mathrm{a} / \mathrm{i}]=\left(\mathrm{a}_{0} /[\mathrm{a} / \mathrm{i}]=\mathrm{a}_{1}[\mathrm{a} / \mathrm{i}]\right) & \left(\mathrm{a}_{0} \leq \mathrm{a}_{1}\right)[\mathrm{a} / \mathrm{i}]=\left(\mathrm{a}_{0} /[\mathrm{a} / \mathrm{i}] \leq \mathrm{a}_{1}[\mathrm{a} / \mathrm{i}]\right) \\
\left(\mathrm{A}_{0} \wedge \mathrm{~A}_{1}\right)[\mathrm{a} / \mathrm{i}]=\left(\mathrm{A}_{0}[\mathrm{a} / \mathrm{i}] \wedge \mathrm{A}_{1}[\mathrm{a} / \mathrm{i}]\right) & \left(\mathrm{A}_{0} \vee \mathrm{~A}_{1}\right)[\mathrm{a} / \mathrm{i}]=\left(\mathrm{A}_{0}[\mathrm{a} / \mathrm{i}] \vee \mathrm{A}_{1}[\mathrm{a} / \mathrm{i}]\right) \\
\left(\mathrm{A}_{0} \Rightarrow \mathrm{~A}_{1}\right)[\mathrm{a} / \mathrm{i}]=\left(\mathrm{A}_{0}[\mathrm{a} / \mathrm{i}] \Rightarrow \mathrm{A}_{1}[\mathrm{a} / \mathrm{i}]\right)[\mathrm{a} / \mathrm{i}] \\
(\neg \mathrm{A})[\mathrm{a} / \mathrm{i}]=\neg(\mathrm{A}[\mathrm{a} / \mathrm{i}])
\end{array}
$$

Location Substitution

- Visualization of an assertion A
---X---X----
- Consider a "pure" arithmetic expression
A[a/X] ---a---a---

Example Assertions

- i is a prime number
- i is the least common multiple of j and k

Semantics of Assertions

－An interpretation I：intvar $\rightarrow \mathrm{N}$
－The meaning of Aexpv

$$
\begin{aligned}
& \text { - Av【n】lo=n } \\
& \text { - } \mathrm{Av} \llbracket \mathrm{X} \rrbracket 1 \sigma=\sigma(\mathrm{X}) \\
& \text { - Av【i } \rrbracket \mid \sigma=1(i) \\
& \text { - } \mathrm{Av} \llbracket \mathrm{aO}+\mathrm{a} 1 \rrbracket \mathrm{I} \sigma=\mathrm{Av} \llbracket \mathrm{aO} \rrbracket \mid \sigma+\mathrm{Av} \llbracket \mathrm{a} 1 \rrbracket \mathrm{I} \sigma \\
& \text { - ... }
\end{aligned}
$$

－For all a \in Aexp states σ and Interpretations I
－A【a】 $\=A v \llbracket a \rrbracket 1 \sigma$

Semantics of Assertions (II)

- $\mathrm{I}[\mathrm{n} / \mathrm{i}]$ change i in I to n
- For I and $\sigma \in \Sigma_{\perp}$, define $\sigma \models$ ́a by structural induction

$$
\begin{aligned}
& -\sigma \models^{\prime} \text { true } \\
& -\sigma \models^{\prime}\left(a_{0}=a_{1}\right) \text { if } A v \llbracket a_{0} \rrbracket \operatorname{lo} \sigma=A v \llbracket a_{1} \rrbracket \text { I } \sigma \\
& -\sigma \models^{\prime}(A \wedge B) \text { if } \sigma \models^{\prime} A \text { and } \sigma \models^{\prime} B \\
& -\sigma \models^{\prime} \neg A \text { if not } \sigma \models^{\prime} A \\
& \left.\left.-\sigma \models^{\prime} A \Rightarrow B \text { if (not } \sigma \models^{\prime} A\right) \text { or } \sigma \models^{\prime} B\right) \\
& -\sigma \models^{\prime} \forall i . A \text { if } \sigma \models^{I[n / i]} A \text { for all } n \in N \\
& -\perp \models A
\end{aligned}
$$

Proposition 6.4

For all $b \in \operatorname{Bexp}$ states σ and Interpretations I $\mathrm{B} \llbracket \mathrm{b} \rrbracket \sigma=$ true iff $\sigma \models^{\mathrm{I}} \mathrm{b}$ $B \llbracket b \rrbracket \sigma=$ false iff not $\sigma \models^{I} b$

Partial Correctness Assertions

- $\{P\} c\{Q\}$
$-P, Q \in$ Assn and $c \in C o m$
- For a state $\sigma \in \Sigma_{\perp}$ and interpretation I
$-\sigma \models^{\prime}\{P\} c\{Q\}$ if $\left(\sigma \models^{\prime} P \Rightarrow C \llbracket c \rrbracket \sigma \models^{\prime} Q\right)$
- Validity
- When $\forall \sigma \in \Sigma_{\perp}, \sigma \models^{\prime}\{P\} c\{Q\}$ we write
- $\models^{\prime}\{\mathrm{P}\} c\{\mathrm{Q}\}$
- When $\forall \sigma \in \Sigma_{\perp}$, and I $\sigma \models^{I}\{P\} c\{Q\}$ we write
- $\models\{P\} \subset\{Q\}$
- $\{P\} \subset\{Q\}$ is valid

The extension of an assertion

$$
\mathrm{A}^{\mathrm{I}} \doteq\left\{\sigma \in \Sigma_{\perp} \mid \sigma \models{ }^{\mathrm{I}} \mathrm{~A}\right\}
$$

The extension of assertions

Suppose that $\models(\mathrm{P} \Rightarrow \mathrm{Q})$

Then for any interpretation I
$\forall \sigma \in \Sigma_{\perp} . \sigma \models^{\mathrm{I}} \mathrm{P} \Rightarrow \sigma \models^{\mathrm{I}} \mathrm{Q}$
$\mathrm{P}^{\mathrm{I}} \subseteq \mathrm{Q}^{\mathrm{I}}$

The extension of assertions

Suppose that $\models\{\mathrm{P}\} c\{\mathrm{Q}\}$

Then for any interpretation I
$\forall \sigma \in \Sigma_{\perp} . \sigma \models^{\mathrm{I}} \mathrm{P} \Rightarrow \mathrm{C} \llbracket c \rrbracket \sigma \models^{\mathrm{I}} \mathrm{Q}$
$\mathrm{C} \llbracket \mathrm{c} \rrbracket \mathrm{P}^{\mathrm{I}} \subseteq \mathrm{Q}^{\mathrm{I}}$

Hoare Proof Rules for Partial Correctness

$$
\left.\begin{array}{c}
\{\mathrm{A}\} \text { skip }\{\mathrm{A}\} \\
\{\mathrm{B}[\mathrm{a} / \mathrm{X}]\} \mathrm{X}:=\mathrm{a}\{\mathrm{~B}\} \\
\{\mathrm{P}\} \mathrm{S}_{0}\{\mathrm{C}\}\{\mathrm{C}\} \mathrm{S}_{1}\{\mathrm{Q}\} \\
\{\mathrm{P}\} \mathrm{S}_{0} ; \mathrm{S}_{1}\{\mathrm{Q}\}
\end{array}\right] \begin{aligned}
& \{\mathrm{P} \wedge \mathrm{~b}\} \mathrm{S}_{0}\{\mathrm{Q}\}\{\mathrm{P} \wedge \neg \mathrm{~b}\} \mathrm{S}_{1}\{\mathrm{Q}\} \\
& \{\mathrm{P}\} \text { if } \mathrm{b} \text { then } \mathrm{S}_{0} \text { else } \mathrm{S}_{1}\{\mathrm{Q}\} \\
& \{\mathrm{II} \wedge \mathrm{~b}\} \mathrm{S}\{\mathrm{I}\} \\
& \{\mathrm{I}\} \text { while } \mathrm{b} \text { do } \mathrm{S}\{\mathrm{I} \wedge \neg \mathrm{~b}\} \\
& \models \mathrm{P} \Rightarrow \mathrm{P}^{\prime}\{\mathrm{P}\} \mathrm{S}\left\{\mathrm{Q}^{\prime}\right\} \models \mathrm{Q}^{\prime} \Rightarrow \mathrm{Q} \\
& \{\mathrm{P}\} \mathrm{S}\{\mathrm{Q}\}
\end{aligned}
$$

Example

$$
\{\mathrm{X}=\mathrm{n} \wedge \mathrm{n} \geq 0\}
$$

$$
\begin{aligned}
Y:= & 1 ; \\
& \{X=n \wedge Y=1 \wedge n \geq 0\}
\end{aligned}
$$

while $\mathrm{X}>0$ do

$$
\begin{aligned}
& Y:=X \times Y \\
& X:=X-1 \\
&\{Y=n!\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{\mathrm{X}=\mathrm{n} \wedge \mathrm{n} \geq 0\} \\
& \mathrm{Y}:=1 \text {; } \\
& \{\mathrm{X}=\mathrm{n} \wedge \mathrm{Y}=1 \wedge \mathrm{n} \geq 0\} \\
& \text { while } \mathrm{X}>0 \text { do } \quad\{\mathrm{X} \geq 0 \wedge \mathrm{n} \geq 0 \wedge \mathrm{Y}=\mathrm{n}!/ \mathrm{X}!\} \\
& \{X>0 \wedge n \geq 0 \wedge Y=n!/ X!\} \\
& \mathrm{Y}:=\mathrm{X} \times \mathrm{Y} ; \\
& \{\mathrm{X}>0 \wedge \mathrm{n} \geq 0 \wedge \mathrm{Y}=\mathrm{n}!/(\mathrm{X}-1)!\} \\
& \mathrm{X}:=\mathrm{X}-1 \\
& \{X>0 \wedge n \geq 0 \wedge Y=n!/ X!\} \\
& \{Y=n!\}
\end{aligned}
$$

Example Formal

$$
\{\mathrm{X}=\mathrm{n} \wedge \mathrm{n} \geq 0\} \mathrm{Y}:=1\{\mathrm{X}=\mathrm{n} \wedge \mathrm{Y}=1 \wedge \mathrm{n} \geq 0\}
$$

$$
\{X=n \wedge n \geq 0\} Y:=1\{X \geq 0 \wedge n \geq 0 \wedge Y=n!/ X!\}
$$

$$
\{X>0 \wedge n \geq 0 \wedge Y=n!/ X!\} Y:=X \times Y ;\{X>0 \wedge n \geq 0 \wedge Y=n!/(X-1)!\}
$$

$$
\{X>0 \wedge n \geq 0 \wedge Y=n!/(X-1)!\} X:=X-1 ;\{X \geq 0 \wedge n \geq 0 \wedge Y=n!/ X!\}
$$

$$
\{X>0 \wedge n \geq 0 \wedge Y=n!/ X!\} Y:=X \times Y ; X:=X-1\{X \geq 0 \wedge n \geq 0 \wedge Y=n!/ X!\}
$$

$$
\{\mathrm{X} \geq 0 \wedge \mathrm{n} \geq 0 \wedge \mathrm{Y}=\mathrm{n}!/ \mathrm{X}!\wedge \mathrm{X}>0\} \mathrm{Y}:=\mathrm{X} \times \mathrm{Y} ; \mathrm{X}:=\mathrm{X}-1\{\mathrm{X} \geq 0 \wedge \mathrm{n} \geq 0 \wedge \mathrm{Y}=\mathrm{n}!/ \mathrm{X}!\}
$$

$\{\mathrm{X} \geq 0 \wedge \mathrm{n} \geq 0 \wedge \mathrm{Y}=\mathrm{n}!/ \mathrm{X}!\}$ while $\mathrm{X}>0$ do $\mathrm{Y}:=\mathrm{X} \times \mathrm{Y} ; \mathrm{X}:=\mathrm{X}-1$

$$
\{X \geq 0 \wedge n \geq 0 \wedge Y=n!/ X!\wedge \neg X>0\}
$$

$\{\mathrm{X} \geq 0 \wedge \mathrm{n} \geq 0 \wedge \mathrm{Y}=\mathrm{n}!/ \mathrm{X}!\}$ while $\mathrm{X}>0$ do $\mathrm{Y}:=\mathrm{X} \times \mathrm{Y} ; \mathrm{X}:=\mathrm{X}-1\{\mathrm{Y}=\mathrm{n}!\}$
$\{\mathrm{X}=\mathrm{n} \wedge \mathrm{n} \geq 0\} \mathrm{Y}:=1 ;$ while $\mathrm{X}>0$ do $\mathrm{Y}:=\mathrm{X} \times \mathrm{Y} ; \mathrm{X}:=\mathrm{X}-1\{\mathrm{Y}=\mathrm{n}!\}$

Soundness

- Every theorem obtained by the rule system is valid

$$
-\vdash\{P\} c\{Q\} \Rightarrow \models\{P\} c\{Q\}
$$

- The system can be implemented (HOL, LCF, Coq)
- Requires user assistance
- Proof of soundness
- Every rule preserves validity (Theorem 6.1)

Soundness of skip axiom

$\models\{\mathrm{A}\}$ skip $\{\mathrm{A}\}$

Soundness of the assignment axiom

$$
\vDash\{\mathrm{B}[\mathrm{a} / \mathrm{X}]\} \mathrm{X}:=\mathrm{a} \quad\{\mathrm{~B}\}
$$

Soundness of the sequential composition rule

- Assume that
$\models\{P\} S_{0}\{C\}$
and
$\vDash\{\mathrm{C}\} \mathrm{S}_{1}\{\mathrm{Q}\}$
- Show that $\models\{P\} \mathrm{S}_{0} ; \mathrm{S}_{1}\{\mathrm{Q}\}$

Soundness of the conditional rule

- Assume that
$\vDash\{P \wedge b\} S_{0}\{Q\}$
and
$\vDash\{\mathrm{P} \wedge \neg \mathrm{b}\} \mathrm{S}_{1}\{\mathrm{Q}\}$
- Show that $\models\{P\}$ if b then S_{0} else $S_{1}\{Q\}$

Soundness of the while rule

- Assume that $\models\{I \wedge b\} S\{I\}$
- Show that $\vDash\{1\}$ while b do S $\{\mid \wedge \neg$ b $\}$

Soundness of the consequence rule

- Assume that
$\vDash\left\{P^{\prime}\right\} S\left\{Q^{\prime}\right\}$
and
$\vDash P \Rightarrow P^{\prime}$
and
$\vDash \mathrm{Q}^{\prime} \Rightarrow \mathrm{Q}$
- Show that
$\vDash\{P\} S$ Q $\}$

(Ideal) Completeness

- Every valid theorem can be proved by the rule system
- For every P and Q such that $\models\{P\} S\{Q\}$ there exists a proof such $\vdash\{P\} S\{Q\}$
- But what about Gödel's incompleteness? $\vDash\{$ true $\}$ skip $\{\mathrm{Q}\}$
- What does $\vDash\{$ true $\}$ c \{false $\}$ mean?

Relative Completeness (Chapter 7)

- Assume that every math theorem can be proved
$\models\{P\} S\{Q\}$ implies $\vdash\{P\} S\{Q\}$

Relative completeness of composition rule

- Prove that $\{P\} \mathrm{S}_{0} ; \mathrm{S}_{1}\{\mathrm{Q}\}$
- Does there exist an assertion I such that $\models\{P\} \mathrm{S}_{0}\{\mathrm{C}\}$
and $\models\{1\} S_{1}\{Q\}$

Weakest (Liberal) Precondition

- wp(S, Q) - the weakest condition such that every terminating computation of S results in a state satisfying Q
- $\llbracket w p^{\prime}(S, Q) \rrbracket=\left\{\sigma \in \Sigma^{\perp} \mid S \llbracket S \rrbracket \sigma \vDash^{\prime} Q\right\}$
- [Can employ predicate transformer semantics to formally define the meaning (Chapter 7.5)]
- Prove that $\{P\} S_{0} ; S_{1}\{Q\}$ by proving $\models\{P\} \mathrm{S}_{0}\{1\}$
and
$\vDash\{1\} S_{1}\{Q\}$ where $\mathrm{I}=\mathrm{wp}\left(\mathrm{S}_{1}, \mathrm{Q}\right)$
- $\models\{P\} S\{Q\}$ iff for all I $\llbracket P \rrbracket \subseteq \llbracket w p^{\prime}(S, Q) \rrbracket$
- $\models\{P\} S\{Q\}$ iff for $P \Rightarrow w p(S, Q)$

Some WP rules

- wp(skip, Q) $=$ Q
- $w p(X:=a, Q)=Q[a / X]$
- $w p\left(S_{0} ; S_{1}, Q\right)=w p\left(S_{0}, w p\left(S_{1}, Q\right)\right)$
- $w p\left(i f b\right.$ then S_{0} else $\left.S_{1}, Q\right)=$ $b \wedge w p\left(S_{0}, Q\right) \vee \neg b \wedge w p\left(S_{1}, Q\right)$
- $w p(S$, false $)=$
- For every command S and assertion B
- there exists an assertion A, such that

A=wp(S, B) (Theorem 7.5)
$-\vdash\{w p(S, B)\} S\{B\}($ Lemma 7.6)

- Theorem 7.7: The proof system is relatively complete
$-\vDash\{P\} S\{Q\}$ implies $\vdash\{P\} S\{Q\}$

Verification Conditions

- Generate assertions that describe the partial correctness of the program
- Use automatic theorem provers to show partial correctness
- Existing tools ESC/Java, Spec\#

Verification condition for annotated commands

$$
\begin{aligned}
S::= & \text { skip } \mid X:=\text { a }|S ;(X:=a)| \\
& S_{0} ;\{D\} S_{1} \mid \text { if b then } S_{0} \text { else } S_{1} \mid \\
& \text { while } b\{D\} \text { do } S
\end{aligned}
$$

$\operatorname{vc}(\{P\}$ skip $\{Q\})=\{P \Rightarrow Q\}$
$\operatorname{vc}(\{P\} X:=a\{Q\})=\{P \Rightarrow Q[a / X]\}$
$\operatorname{vc}(\{P\} S ; X:=a\{Q\})=\operatorname{vc}(\{P\} S\{Q[a / X]\})$
$\operatorname{vc}\left(\{P\} S_{0} ;\{D\} S_{1}\{Q\}\right)=\operatorname{vc}\left(\{P\} S_{0}\{D\}\right) \cup \operatorname{vc}\left(\{D\} S_{1}\{Q\}\right)$
$\operatorname{vc}\left(\{\mathrm{P}\}\right.$ if b then S_{0} else $\left.\mathrm{S}_{1}\{\mathrm{Q}\}\right)=\operatorname{vc}\left(\{\mathrm{P} \wedge \mathrm{b}\} \mathrm{S}_{0}\{\mathrm{Q}\}\right) \cup$ $\operatorname{vc}\left(\{P \wedge \neg b\} S_{1}\{Q\}\right)$
$\operatorname{vc}(\{P\}$ while $b\{D\}$ do $c\{Q\})=\operatorname{vc}(\{D \wedge b\} c\{D\}) \cup\{P \Rightarrow D\} \cup$

$$
\{\mathrm{D} \wedge \neg \mathrm{~b} \Rightarrow \mathrm{Q}\}
$$

Summary

- Axiomatic semantics provides an abstract semantics
- Can be used to explain programming
- Extensions
- Procedures
- Concurrency
- Events
- Rely/Guarantee
- Heaps
- Can be automated
- More effort is required to make it practical

