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Motivation 
• What do we need in order to prove that the program 

does what it supposed to do? 

• Specify the required behavior  

• Compare the behavior with the one obtained by the 

denotational/operational semantics 

• Develop a proof system for showing that the program 

satisfies a requirement 

• Mechanically use the proof system to show 

correctness 

• The meaning of a program is a set of verification rules  



Plan 

• The basic idea 

• An assertion language 

• Semantics of assertions 

• Proof rules 

• An example 

• Soundness 

• Completeness 

• Verification conditions 



Example Program 

S:=0 

N := 1 

while (N=101) do 

 S := S + N ; 

            N :=N+1 

N=101 

S=∑1m100
 m 



Example Program 

S:=0 

{S=0} 

N := 1 

{S=0 N=1} 

while (N=101) do 

 S := S + N ; 

            N :=N+1 

{N=101 S=∑1m100 m} 



Example Program 

S:=0 

{S=0} 

N := 1 

{S=0 N=1} 

while {1 N  101 S=∑1mN-1 m}(N=101) do 

 S := S + N ; 

          {1 N < 101 S=∑1mN m} 

            N :=N+1 

{N=101 S=∑1m100 m} 



Partial Correctness 

• {P}S{Q} 

– P and Q are assertions 
(extensions of Boolean expressions) 

– S is a statement 

– For all states  which satisfies P, if the execution of 
S from state  terminates in state ’, then ’ 
satisfies Q 

• {true}while true do skip{false} 



Total Correctness 

• [P]S[Q] 

– P and Q are assertions 
(extensions of Boolean expressions) 

– S is a statement 

– For all states  which satisfies P,  

• the execution of S from state  must terminates in a 
state ’ 

• ’ satisfies Q 



Formalizing Partial Correctness 

• A 

– A is true in   

• {P} S {Q} 

– , ’∑. (P & <S, > ’ )  ’  Q   
– ∑. (P & S S)  S S Q 

• Convention for all A 
 A 

• , ’∑. P   S S  Q 



An Assertion Language 

• Extend Bexp 

• Allow quantifications 

– i: …  

– i: …  

• i. k=il 

• Import well known mathematical concepts 

– n!  n (n-1)   2 1 



An Assertion Language 

Aexpv 

a:= n | X | i | a0 + a1 | a0 - a1 | a0  a1 

Assn 

A:= true | false |  a0 = a1 | a0  a1 | A0  A1 | A0  A1 | A | 

A0  A1 |  i. A | i. A  



Example 

while (M=N) do  

           if M  N  

                  then N := N – M 

                  else  M := M - N 



Free and Bound Variables 

• An integer variable is bound when it occurs in the 
scope of a quantifier 

• Otherwise it is free 

• Examples i. k=iL   (i+10077)i.j+1=i+3) 

FV(n) = FV(X) =                                     FV(i) = {i} 

FV(a0 + a1)=FV(a0-a1)=FV(a0a1 ) = FV(a0) FV(a1) 

FV(true)=FV(false)=   FV(a0 = a1)=FV(a0  a1)= FV(a0) FV(a1) 

FV(A0A1)=FV(A0A1) =FV(A0A1)= FV(A0) FV(A1) 

FV(A)=FV(A) 

FV(i. A)=FV(i. A)= FV(A) {i}  



Substitution 

• Visualization of an assertion A 
                    ---i---i---- 

• Consider a “pure” arithmetic expression 
         A[a/i] ---a---a--- 

n[a/i] = n                                                                X[a/i]=X  

i[a/i] = a                                                                  j[a/i] = j            

(a0 + a1)[a/i] = a0[a/i] + a1/[a/i]              (a0 - a1)[a/i] = a0[a/i]  –  a1[a/i]   

                        (a0  a1 )[a/i]= a0[a/i]    a1[a/i]  



Substitution 

• Visualization of an assertion A 
                    ---i---i---- 

• Consider a “pure” arithmetic expression 
         A[a/i] ---a---a--- 

true[a/i] = true                                                              false[a/i]=false  

(a0 = a1)[a/i] = (a0/[a/i] = a1[a/i])          (a0 a1)[a/i] = (a0/[a/i]  a1[a/i]) 

(A0  A1)[a/i] = (A0[a/i]   A1[a/i])   (A0  A1)[a/i]= (A0[a/i]A1[a/i]) 

                 (A0  A1)[a/i] = (A0[a/i]  A1[a/i])[a/i] 

                             (A)[a/i] = (A[a/i])  

 (i.A)[a/i] =i. A                           (j.A)[a/i] = (j. A[a/i]) 

 (i.A)[a/i] =i. A                           (j.A)[a/i] =(j. A[a/i]) 



Location Substitution 

• Visualization of an assertion A 
                    ---X---X---- 

• Consider a “pure” arithmetic expression 
         A[a/X] ---a---a--- 



Example Assertions 

• i is a prime number 

• i is the least common multiple of j and k  



Semantics of Assertions 

• An interpretation I:intvar N 

• The meaning of Aexpv 
– AvnI=n 

– AvXI= (X) 

– AviI= I(i) 

– Ava0+a1 I = Ava0I +Av a1 I 

– … 

• For all a  Aexp states  and Interpretations I 
– Aa=AvaI 



Semantics of Assertions (II) 

• I[n/i] change i in I to n 
• For I and  , define  I A by  

structural induction 
–  I true 
–  I (a0 = a1) if Ava0 I= Ava1 I 
–  I (A B) if  I A and  I B 
–  I A  if not  I A 
–  I AB if (not  I A) or  I B) 
–   I i.A  if  I[n/i] A  for all nN 
–    A 



Proposition 6.4 

For all b  Bexp states  and Interpretations I 

            Bb= true  iff   I b 

            Bb= false  iff not  I b 

 

 



Partial Correctness Assertions 

• {P}c{Q}  
– P, Q Assn and c Com 

• For a state   and interpretation I 
–   I {P}c{Q} if ( I  P  C c I Q) 

• Validity 
– When  ,   I {P}c{Q} we write 

• I {P}c{Q} 

– When  , and I   I {P}c{Q} we write 
•  {P}c{Q} 

• {P}c{Q} is valid  



The extension of an assertion 

AI    {     |    I A } 

 



The extension of assertions 

Suppose that  (PQ) 

Then for any interpretation  I 

 .  I P   I Q 

PIQI 

 

QI 

PI 



The extension of assertions 

Suppose that {P}c{Q} 

Then for any interpretation  I 

 .  I P  C c I Q 

C cPIQI 

 

QI 

PI 

C c 



Hoare Proof Rules for Partial Correctness 

{A} skip {A} 

{B[a/X]} X:=a  {B} 

{P} S0 {C} {C} S1 {Q} 

{P} S0;S1{Q} 

{Pb} S0 {Q} {P b} S1 {Q} 

{P} if b then S0 else S1{Q} 

{Ib} S {I} 

{I} while b do S{Ib} 

P  P’  {P’} S {Q’}  Q’  Q 

{P} S {Q} 



Example 

Y := 1; 

 

while X > 0 do 

 Y := X Y; 

            X := X – 1 

{X = n  n 0} 

{Y = n! } 

{X = n  Y=1  n  0} 



Example 

Y := 1; 

 

while X > 0 do 

  

             Y := X Y; 

 

            X := X – 1 

 

{X = n  n  0} 

{Y = n! } 

{X 0  n 0  Y=n!/X!} 

{X = n  Y=1  n  0} 

{X > 0  n 0  Y=n!/X!} 

{X > 0  n 0  Y=n!/(X-1)!} 

{X > 0  n 0  Y=n!/X!} 



Example Formal 
{X = n  n  0} Y :=1 {X = n  Y=1  n  0}  

{X > 0  n 0  Y=n!/X!} Y := X Y; {X > 0  n 0  Y=n!/(X-1)!}  

{X = n  n  0} Y :=1 {X 0   n  0  Y=n!/X!}   

{X > 0  n 0  Y=n!/(X-1)!} X := X-1; {X  0  n 0  Y=n!/X!}  

{X > 0  n 0  Y=n!/X!} Y := X Y; X := X-1 {X  0  n 0  Y=n!/X!}  

{ X  0  n 0  Y=n!/X!  X>0} Y := X Y; X := X-1 {X  0  n 0  Y=n!/X!}  

{ X  0  n 0  Y=n!/X!} while X > 0 do Y := X Y; X := X-1 

 {X  0  n 0  Y=n!/X! X > 0 }  

{ X  0  n 0  Y=n!/X!} while X > 0 do Y := X Y; X := X-1 {Y=n! }  

{ X=n  n 0} Y :=1; while X > 0 do Y := X Y; X := X-1 {Y=n! }  



Soundness 

• Every theorem obtained by the rule system is 
valid 
– {P} c {Q}   {P} c {Q}  

• The system can be implemented (HOL, LCF, 
Coq) 
– Requires user assistance 

• Proof of soundness 
– Every rule preserves validity (Theorem 6.1) 



Soundness of skip axiom 

{A} skip {A} 



Soundness of the assignment axiom 

{B[a/X]} X:=a  {B} 



Soundness of the sequential composition rule 

• Assume that 
  {P} S0 {C} 
and  
{C} S1 {Q} 

• Show that 
 {P} S0;S1{Q}  
 



Soundness of the conditional rule 

• Assume that 
  {P  b} S0 {Q} 
and  
{P  b} S1 {Q} 

• Show that 
 {P} if b then S0 else S1{Q}  
 



Soundness of the while rule 

• Assume that 
  {I   b} S {I} 

• Show that 
 {I} while b do S {I  b}  
 



Soundness of the consequence rule 

• Assume that 
  {P’} S {Q’} 
and 
  P  P’  
and 
 Q’  Q 

• Show that 
 {P} S {Q}  
 



(Ideal) Completeness 

• Every valid theorem can be proved by the rule 
system 

• For every P and Q such that {P} S {Q}  
there exists a proof such  {P} S {Q} 

• But what about Gödel’s incompleteness? 
{true} skip {Q} 

• What does {true} c {false} mean? 



Relative Completeness (Chapter 7) 

• Assume that every math theorem can be 
proved 
{P} S {Q}  implies  {P} S {Q} 

 

 



Relative completeness of composition rule 

• Prove that {P} S0;S1{Q} 

• Does there exist an assertion I such that 
 {P} S0 {C} 
and  
{I} S1 {Q} 

 



Weakest (Liberal) Precondition 

• wp(S, Q) – the weakest condition such that every 
terminating computation of S results in a state 
satisfying Q 

•   wpI(S, Q)   ={ | SS I Q} 
• [Can employ predicate transformer semantics to 

formally define the meaning (Chapter 7.5)] 
• Prove that {P} S0;S1{Q} by proving 
{P} S0 {I} 
and  
{I} S1 {Q} where I=wp(S1, Q) 

• {P} S {Q} iff for all I  P   wpI(S, Q) 
• {P} S {Q} iff for  P  wp(S, Q) 



Some WP rules 

• wp(skip, Q) = Q 

• wp(X := a, Q) = Q[a/X] 

• wp(S0; S1, Q) = wp(S0, wp(S1, Q)) 

• wp(if b then S0 else S1, Q) =  
b wp(S0, Q)   b wp(S1, Q)  

• wp(S, false) = 



Relative Completeness 

• For every command S and assertion B 

– there exists an assertion A, such that  
A=wp(S, B) (Theorem 7.5) 

– {wp(S, B)} S {B}(Lemma 7.6) 

• Theorem 7.7: The proof system is relatively 
complete 

– {P} S {Q}  implies  {P} S {Q} 



Verification Conditions 

• Generate assertions that describe the partial 
correctness of the program 

• Use automatic theorem provers to show 
partial correctness 

• Existing tools ESC/Java, Spec#  



Verification condition for annotated commands 

S ::=  skip | X := a | S; (X:=a) | 

         S0 ; {D} S1 | if b then S0 else S1  |   

         while b {D} do S 

vc({P} skip {Q}) = {PQ} 

vc({P} X:= a {Q}) = {P Q[a/X]} 

vc({P} S ;  X:=a {Q}) = vc({P} S {Q[a/X]}) 

vc({P} S0; {D} S1 {Q}) = vc({P} S0 {D})  vc({D} S1 {Q}) 

vc({P} if b then S0 else S1 {Q}) = vc({Pb} S0 {Q})   

         vc({P  b} S1 {Q}) 

vc({P} while b {D} do c {Q}) = vc({Db} c {D})  {PD}   

                                                    {D b Q} 



Summary 

• Axiomatic semantics provides an abstract semantics 

• Can be used to explain programming 

• Extensions 
– Procedures 

– Concurrency 

– Events 

– Rely/Guarantee 

– Heaps 

• Can be automated 

• More effort is required to make it practical  


