Early Program Optimizations

Part I
Chapter 12

Class Notes by Roy Bar-Haim

Outline

In this lecture we discuss three optimizations: constant folding, scalar replacement of aggregates, and algebraic simplification and reassociation.

These optimizations are all performed early in the optimization process, and they are all flow-insensitive

Constant Folding

Constant folding refers to evaluation at compile time of expressions whose operands are known to be constant. It is a relatively simple transformation to perform, in most cases. In its simplest form, constant folding involves determining that all the operands in an expression are constant-valued, performing the evaluation of the expression at compile time, and replacing the expression by its value.

For Boolean values, this optimization is always applicable. For integers, run-time exceptions like division by zero and overflow must be handled. If the compiler detects that such exceptions may occur, it should replace the expression with code that produces the appropriate error message, or produce a compile-time warning (or both). For addressing arithmetic, constant folding is always safe – overflows do not matter. For floating point constants, it is more complicated, because we have to ensure that the floating-point model of the compiler matches the target machine arithmetic. Floating point standard ANSI/IEEE-754 specifies many more types of exceptions and exceptional values than for any implemented model of integer arithmetic.

Constant-folding can be more effective if combined with data-flow-dependent optimizations, especially constant propagation. It is best structured as a subroutine that can be invoked whenever needed in the optimizer.

Scalar Replacement of Aggregates

Scalar replacement of aggregates makes other optimizations applicable to components of aggregates, such as C structures and Pascal records. It is a simple and effective optimization. It checks which components of the aggregate are simple scalars, and if they are not aliased (neither the components nor the whole aggregate), they are assigned to temporaries of the appropriate type. These temporaries become available to many optimizations.

The following example demonstrates how scalar replacement of Aggregates help other optimizations:

typedef enum { APPLE, BANANA, ORANGE } VARIETY;

typedef enum { LONG, ROUND } SHAPE;

typedef struct fruit {

VARIETY variety;

SHAPE shape; } FRUIT;

char* Red = "red" ;

char* Yellow = "yellow";

char* Orange = "orange";

char* color (CurrentFruit)

 FRUIT *CurrentFruit;

{ switch (CurrentFruit->variety) {

 case APPLE: return Red;

 break;

 case BANANA: return Yellow;

 break;

 case ORANGE: return Orange;

 break;

 }

}

main()

{ Fruit snack;

 snack.variety = APPLE;

 snack.shape = ROUND;

 printf(“%s\n”,color(&snack));

}

Main procedure resulting from procedure integration and scalar replacement of aggregates (applied for the components of structure snack):

char* Red = "red" ;

char* Yellow = "yellow";

char* Orange = "orange";

main()

{ FRUIT snack

 VARIETY t1;

 SHAPE t2;

 COLOR t3;

 t1=APPLE;

 t2=ROUND;

 switch (t1) {

 case APPLE: t3= Red;

 break;

 case BANANA: t3= Yellow;

 break;

 case ORANGE: t3= Orange;

 break;

 }

 printf(“%s\n”,t3);

}

And after constant propagation and dead-code elimination:

main()

{ printf(“%s\n” ,”red”);

}

Algebraic Simplification and Reassociations

Algebraic simplifications use algebraic properties of operators or particular operator-operand combinations to simplify expressions. Reassocation refers to using specific algebraic properties- associativity, commutativity and distributivity, to divide expression to a constant or loop-invariant part and a variable part. Like constant folding, algebraic simplification and reassociations are best implemented as a subroutine, accessible to all phases of the optimizer.

Simplifications for integers:

i + 0 = 0 + i = i – 0 = i
0 - i= -i

i * 1 = 1 * i = i / 1 = i

i * 0 = 0 * i = 0

-(-i) = i

i + (-j) = i – j

For boolean we have:

b true = true b = true

b false = false b = b

And corresponding rules for &.

Simplifications for shifts:

f shl 0 = f shr 0 = f shra 0 = f

f shl w = f shr w = f shra w = 0

Where w is the word length of the machine.

Some simplifications can be viewed as strength reductions, i.e., replacing an operator by one that is faster to compute, such as

i (2 = i * i

2 * i = i + i

(where i is an integer value).

 Multiplications by small constants can frequently be done faster by sequence of shifts and adds. For example, i*7 can be computed by:

t (i shl 3

t (t - i

Another class of simplifications involves the use of commutativity and associativity. For example:

(i – j) + (i – j) + (i – j) + (i – j) = 4 * i – 4 * j

The problem here is that the simplified form (on the right) may cause an overflow, which would not occur for the original form (on the left).

Algebraic simplifications generally do not have a large payoff in performance improvement by themselves, but they often make other optimizations possible.

Algebraic Simplifications of Addressing Expressions

Since overflow never makes a difference in addressing arithmetic, it is always safe to perform algebraic simplifications on addressing expressions. However, for addressing expressions the most useful transformation is reassociation. We use canonicalization , namely transforming the expression to sum of products, and then use commutativity to collect the constant-valued and loop-invariant parts together. For example, consider the following Pascal Fragment:

var a: array[lo1..hi1,lo2..hi2] of eltype;

 i, j : integer;

. . .

for j:=lo2 to hi2 do begin

 a[i,j] := b + a[i,j]

end;

The address of a[i,j] is:

base_a + ((i – lo1) * (hi2 – lo2 + 1) + j – lo2) * w

Where base_a is the address of the base of the array and w is the size in bytes of objects of type eltype. This complicated computation should be perform each time the loop is performed!

After simplification and reassociation we get:

-(lo1*(hi2 – lo2 + 1) – lo2) * w + base_a + (hi2 – lo2+1)*i*w + j*w

Where -(lo1*(hi2 – lo2 + 1) – lo2) * w is a constant, that can be calculated in compile time, base_a + (hi2 – lo2+1)*i*w is loop-invariant, and so can be computed once before entering the loop, leaving only j*w to be computed and added in each iteration. This multiplication can also be strength reduced into addition.

This simplification can be done by representing the expression in a tree, and applying a series of transformations recursively, until a canonical form is reached.

Listed below are the simplification transformations:

[image: image1.png]CCCCC

=/ N
VANVANVAN

w/\ = N
FANVANWAN

w /N N
ANANYAN

w/\— 7\

JAANAN

m/\ -—>/\

ANANAY

w/\ — N\

WANVANVAY

/N = N
TANANVAN

=\ N
FANVANVAN

Tree simplification transformations (continued)

[image: image2.png]hi2 1lo2

In these transformations, c1,c2, etc. represent constants, and t1, t2 etc. represent expression subtrees.

The next figures show how the addressing expression for the array subscript in the Pascal example discussed above can be represented as a tree, and how can it be simplified into a canonical form.

[image: image3.png]

[image: image4.png]A N
ANV
N /N T T
AN AN

N
A
NAYA

2N AN
VANVANETERVAN
AN

The symbols c1 through c7 represent [image: image5.png]

constant values as follows:

c1= hi2 – lo2 + 1

c2 = -lo1 * c1

c3 = c2 - lo2

c4= c3 * w

c5 = c1 * w

c6 = base_a + c4

c7 = c6 + c5 * i

Application of Algebraic Simplification to Floating-Point Expressions

Algebraic simplifications rarely can be applied to floating-point computations. The following examples illustrate why:

 Let MF denote the maximal finite floating-point value representable in a give precision. Then:

1.0+(MF-MF)=1.0

While

(1.0+MF)-MF=0.0

 Consider the following code fragment:

eps := 1.0

while eps+1.0 > 1.0 do

 oldeps := eps

 eps := 0.5 * eps

od

As written, the code fragment computes in oldeps the smallest number x such as 1+x>1. If it is “optimized” by replacing the test eps+1.0>1.0 with eps>0.0 , it instead computes the maximal x such that x/2 rounds to 0, and these numbers are different!

The only optimizations applicable for floating-point computations are removal of unnecessary type coercions and replacement of division by constant with multiplication (if c and 1/c are represented exactly – where c is the constant we divide by).

An example of unnecessary coerction is:

Real s

Double t

t := (double)s * double(s)

when performed on a machine that has a single precision multiply that produces a double-precision result.

Summary

In this lecture we discussed three optimizations. Constant folding and algebraic simplifications are best implemented as subroutines that can be invoked by the optimizer whenever needed. Scalar replacement of aggregates is best performed early in the optimization process to expose components of structures to other optimizations. Algebraic simplifications, together with related optimizations like loop-invariant code motion are among the most important optimizations in many programs.

