$w(F) \leq w(G) \iff F \subseteq G$

$v(W \cup \epsilon, \mathcal{P}) = v(W, \mathcal{P}) \leq w(F)$

$w(E \cup \epsilon, \mathcal{P}) \geq w(G)$

$w(F) \leq w(G), F \subseteq G$

$w(E \cup \epsilon, \mathcal{P}) > w(F)$

$w(G) = w(F)$

$w(b) \geq w(\epsilon)$

$2 \leq w(b) \leq d + 1$

$0 \leq w(e) \leq d + 1$

$0(d) \rightarrow \text{violat.-test}$

$O(d^2) \rightarrow \text{basis}(b, p)$

$O(d^3n + 4d)$

$(\epsilon, \mathcal{P}) = (\epsilon, \mathcal{P})$
...
\[(x-a)^2 + (y-b)^2 \leq r^2 \]

\[(x-a)^2 + (y-b)^2 = r^2 \]

\[y = a + \frac{b}{a} x \]

\[y = x \]

\[y = x - \frac{b}{a} x \]

\[y = a - \frac{b}{a} x \]

\[y = x + \frac{b}{a} x \]

\[y = a + \frac{b}{a} x \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]

\[x = a + \frac{b}{a} y \]

\[x = a - \frac{b}{a} y \]
\[x = \frac{y^2 + z^2}{2} \]

\[W(3s^2 3p^6) = W(3p^6) = \ldots \]

Advent 61:05 : 61:05 : 61:05

\[\text{Red to Green with visible light \ldots} \]

\[\text{Blue to Red with visible light \ldots} \]

\[x = \frac{(y^2 + z^2)}{2} \]
\[s_i(x) = s_i(x') \quad \text{if and only if} \quad x = x'\]
$S_e(\theta) = \begin{cases} \theta & \text{if } \theta \leq \theta_1 \\
\theta_2 & \text{if } \theta > \theta_1 \end{cases}$

$\theta_1 \leq \theta_2$

$S_e(\theta_1) \geq S_e(\theta_2)$

ลอง חשב אם זה נכון, אם לא זה לא נכון.

איך אפשר לחשב את זה בرابطות בין הנקודות?

ולא, הוא מראות של שביל שקע.

(噒噒噒) "אני מצחיק啮ש?"

No more than z - center (v)

 słabיל הנקודות ב valley, ו- z - center.
\[F = \{A, B, C, D\} \quad \text{and} \quad g = \{E\} \quad \text{such that} \quad w(F) = w(G) = \frac{\sqrt{2}}{2} \]

\[\text{Closest Pair} \]

\[A \quad B \quad C \quad D \]

\[\text{If } x \text{ is very small, then} \quad w(F \cup \{x\}) = w(F) \quad \text{and} \quad w(G \cup \{x\}) > w(G) \]

\[\text{The closest pair is} \quad \{A, B\} \]

\[\{F = ABCD, \quad w(F) = w(G) = 1 \} \quad \text{and} \quad \{G = ABCD, \quad w(F \cup \{E\}) = 1 \} \quad \text{and} \quad \{G = ABCD, \quad w(G \cup \{E\}) < 1 \} \]

\[\text{Analogous to} \quad \text{the previous case,} \quad \text{if} \quad x \text{is very small,} \quad \text{then} \quad w(F \cup \{x\}) = w(F) \quad \text{and} \quad w(G \cup \{x\}) > w(G) \]

\[\text{LP-Type is} \quad \text{not relevant in this case.} \]

\[\text{Since} \quad w(F) = w(G) \quad \text{and} \quad \text{no pair is closer,} \quad \text{the minimum is} \quad 2 \]

\[\text{If} \quad w(F) \leq w(G) \quad \text{and} \quad \text{no pair is closer,} \quad \text{the minimum is} \quad 1 \]

\[\ldots \text{and, in general, the convex hull is notable.} \]
Facility Location

"k-center" is a well-known algorithm.

\[\text{Minimize } \max_{e \in E} \min_{i \in G} d(e, G_i) \text{ subject to } |G|=k \]

In the above, the objective is to minimize the maximum distance from any demand point to its nearest facility.