
On Approximate Halfspace Range Counting and Relative
Epsilon-Approximations∗

Boris Aronov
Dept. Computer Info Science

Polytechnic University
Brooklyn, NY 11201, USA

http://cis.poly.edu/~aronov

Sariel Har-Peled
Dept. Computer Science

University of Illinois
201 N. Goodwin Avenue
Urbana, IL 61801, USA

http://uiuc.edu/~sariel

Micha Sharir
School of Computer Science

Tel Aviv University
Tel Aviv 69978 Israel

and
Courant Institute of Math. Sci.

New York University
New York, NY 10012, USA
michas@post.tau.ac.il

ABSTRACT
The paper consists of two major parts. In the first part,
we re-examine relative ε-approximations, previously studied
in [12, 13, 18, 25], and their relation to certain geometric
problems, most notably to approximate range counting. We
give a simple constructive proof of their existence in general
range spaces with finite VC dimension, and of a sharp bound
on their size, close to the best known one. We then give
a construction of smaller-size relative ε-approximations for
range spaces that involve points and halfspaces in two and
higher dimensions. The planar construction is based on a
new structure—spanning trees with small relative crossing
number, which we believe to be of independent interest.

In the second part, we consider the approximate half-
space range-counting problem in R

d with relative error ε,
and show that relative ε-approximations, combined with the
shallow partitioning data structures of Matoušek, yields ef-
ficient solutions to this problem. For example, one of our
data structures requires linear storage and O(n1+δ) prepro-
cessing time, for any δ > 0, and answers a query in time
O(ε−γn1−1/bd/2c2b log∗ n), for any γ > 2/bd/2c; the choice
of γ and δ affects b and the implied constants. Several vari-
ants and extensions are also discussed.

Categories and Subject Descriptors: F.2.2 [Theory of

∗Work by BA and MS has been supported by a joint grant
from the U.S.-Israel Binational Science Foundation. Work
by BA has also been partially supported by NSF ITR
Grant CCR-00-81964 and NSA MSP Grant H98230-06-1-
0016. Work on this paper by SH-P was partially supported
by an NSF CAREER award CCR-0132901. Work by MS
was also supported by NSF Grant CCF-05-14079, by Grant
155/05 from the Israel Science Fund, and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv Uni-
versity. A full version of part of the paper is available online
at [15].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’07, June 6–8, 2007, Gyeongju, South Korea.
Copyright 2007 ACM 978-1-59593-705-6/07/0006 ...$5.00.

Computation]: Nonnumerical Algorithms and Problems—
Geometrical problems and computations, computations on
discrete structures.

General Terms: Algorithms, Theory.

Keywords: Epsilon-approximations, range spaces, range
queries, approximate range queries, halfspaces, VC-dimension,
discrepancy, partition trees.

1. INTRODUCTION
The main problem that has motivated the study in this

paper is approximate range counting. In abstract terms, we
are given a range space (X,R), where X is a set of n objects
and R is a collection of subsets of X, called ranges. In
a typical geometric setting, X is a subset of some infinite
ground set U (e.g., R

d), and R = {R∩X | R ∈ RU}, where
RU is a collection of subsets (ranges) of U of some simple
shape (such as halfspaces). (To simplify the notation, we will
use R and RU interchangeably.) The goal is to preprocess
X into a data structure that supports efficient queries of the
form: Given R ∈ RU , compute a number t such that

(1− ε)|X ∩R| ≤ t ≤ (1 + ε)|X ∩ R|.
We refer to such an estimate t as an ε-approximate count of
X ∩ R. (Typically, but not exclusively, ε is a pre-specified
parameter.)

The motivation for seeking approximate range counting
techniques is that exact range counting is expensive. For in-
stance, consider the classical halfspace range counting prob-
lem [20], which is the main specific problem studied in this
paper. Here, for a point set of size n in R

d, for d ≥ 2,
the best known algorithm for exact halfspace range count-
ing with near-linear storage takes O(n1−1/d) time [20]. As
shown in several recent papers, as well as in this paper, faster
solutions exist for the approximate case, in which the query
time is close to O(n1−1/bd/2c) [1, 2, 3, 17, 16].

Notice that the problem becomes more challenging as the
size of X ∩ R decreases. At the extreme, when |X ∩ R| <
1/ε, we must produce the count exactly. In particular, we
need to be able to detect (without any error) empty ranges,
i.e., those satisfying X ∩ R = ∅. Thus approximate range
counting (in the sense defined above) is at least as hard as
range emptiness detection.

We make the standard assumption that the range space
(X,R) (or, in fact, (U,RU)) has finite (i.e., independent

of n) VC dimension δ which is indeed the case in many
geometric applications; see [8, 14, 21, 24] for definitions and
more details.

Epsilon-approximations. A standard and general technique
for tackling the approximate range counting problem is to
use ε-approximations. An (absolute-error) ε-approximation
for (X,R) is a subset A ⊂ X such that, for each R ∈ R,

˛̨
˛̨ |A ∩R|
|A| − |X ∩R|

|X|

˛̨
˛̨ < ε. (1)

As shown by Vapnik and Chervonenkis [26] (see also [8, 21,
24]), there always exist absolute-error ε-approximations of

size
cδ

ε2
log

δ

ε
, where c is an absolute constant. As a matter of

fact, any random sample of these many elements of X is an
ε-approximation with constant probability. Moreover, such

a sample of size
cδ

ε2
log

δ

ε
+

c

ε2
log

1

q
is an ε-approximation

with probability at least 1−q, for a sufficiently large constant
c. Therefore, to guarantee success with high probability, i.e.,
with probability of failure at most 1/nO(1), one needs to
choose a sample of size

cδ

ε2
log

δ

ε
+

c′

ε2
log n = O

„
1

ε2
log n

«
.

Approximations of size O

„
δ

ε2
log

δ

ε

«
can be constructed in

deterministic time O(δ)3δ(ε−2 log δ
ε
)δn [9]. In fact, there

always exist smaller (absolute-error) ε-approximations, of
size

O

„
1

ε2−2/(δ′+1)
logc−1/(δ′+1) 1

ε

«
,

where δ′ is the exponent of either the primal shatter function
(and then c = 2) or the dual shatter function of the range
space (X,R) (and then c = 1); see [8, 9, 23].

In this paper, we consider a variant of this classical struc-
ture, which provides relative-error approximations. Ideally,
we want a subset A ⊂ X such that, for each R ∈ R,

(1− ε)
|X ∩ R|
|X| ≤ |A ∩R|

|A| ≤ (1 + ε)
|X ∩R|
|X| . (2)

This “definition” suffers however from the same syndrome
as the definition of approximate range counting; that is, as
|X ∩R| shrinks, the absolute precision of the approximation
has to increase. At the extreme, when A ∩ R = ∅, X ∩ R
must also be empty; in general, we cannot guarantee this
property, unless we take A = X, which defeats the entire
purpose of using small-size ε-approximations to speed up
approximate counting.

For this reason, we refine the definition as follows: a rel-
ative (p, ε)-approximation is a subset A ⊂ X that satisfies
Eq. (2) for each R ∈ R with |R| ≥ pn, where 0 < p < 1 is
another fixed parameter. It is known (see [18]) that there

exist subsets with this property of size
cδ

ε2p
log

1

p
, where

c is an absolute constant. As a matter of fact, any ran-
dom sample of these many elements of X is a relative (p, ε)-
approximation with constant probability. To guarantee suc-
cess with probability at least 1 − q, one needs to sample
c

ε2p

„
δ log

1

p
+ log

1

q

«
elements of X, for a sufficiently large

constant c [18].

To appreciate the above bound on the size of relative (p, ε)-
approximations, it is instructive to observe that, for a given
parameter p, any absolute error (εp)-approximation A will
approximate “large” ranges (of size at least pn) to within
relative error ε, as is easily checked, so it is a relative (p, ε)-
approximation. However, the Vapnik-Chervonenkis bound

on the size of A, namely,
cδ

ε2p2
log

δ

εp
, is larger by roughly a

factor of 1/p than the bound of [18] stated above.
The existence of a relative (p, ε)-approximation A provides

a simple mechanism for approximate range counting: For a
range R, count A ∩ R exactly, say, by brute force in O(|A|)
time, and output |A∩R| · |X|/|A| as an ε-approximate count
of X ∩R. However, this will work only for ranges of size at
least pn. As we will show in the second part of this paper, an
appropriate incorporation of relative (p, ε)-approximations
into standard range searching data structures yields a pro-
cedure for approximate range counting that works, quite
efficiently, for ranges of any size.

Our results. This paper has two main parts. In the first
part, we present several constructions and bounds involv-
ing relative (p, ε)-approximations. We first give an alterna-
tive construction of general relative (p, ε)-approximations,
which follows the standard discrepancy-based construction
of absolute-error (p, ε)-approximations [8], but uses a more
careful analysis that shows that the resulting set is indeed a
relative (p, ε)-approximation. That is, for a given threshold

0 < p < 1, the resulting set A is of size O
“

δ
ε2p

log δ
εp

”
, and,

for any range R of size at least pn, gives an absolute approx-
imation error of ε|R∩X|/|X|. That is, Eq. (2) holds. Thus,

for such ranges R,
|R ∩A|
|A| · |X| is an ε-approximate count

of R ∩ X. The construction is randomized, but can easily
be derandomized using standard techniques, similar to those
used to obtain the deterministic constructions cited above.

Note that the size of our approximation is slightly worse
than the bound of [18], when p � ε. However, our con-
struction is useful because it can be enhanced, in certain
geometric situations, to yield relative (p, ε)-approximations
of smaller size. We study two cases in detail, one involving
points in R

2 and halfplane ranges, and the other involving
points in R

d, d ≥ 3, and halfspace ranges. Given a thresh-
old parameter 0 < p < 1, the size of the approximation set

is O
“

1

ε4/3p
log 1

εp

”
in the plane, and O

“
1

ε3/2p
log 1

εp

”
in 3-

space; the bounds for higher dimensions are spelled out in
Section 4.2.

In the planar case, the construction is based on an inter-
esting generalization of spanning trees with small crossing
number, a result that we believe to be of independent in-
terest. Specifically, we show that any finite point set P
in the plane has a spanning tree with the following prop-
erty: For any k ≤ |P |, any k-shallow line (a line that has at
most k points of P in one of the halfplanes that it bounds)

crosses at most O(
√

k log(n/k)) edges of the tree. (The clas-
sical construction of Welzl [27] guarantees this property only
for k = n; i.e., it guarantees the uniform crossing number
O(
√

n).) We refer to such a tree as a spanning tree with
low relative crossing number, and show how to use it in the
construction of small-size relative (p, ε)-approximations.

Things are more complicated in three (and higher) dimen-
sions. We were unable to extend the planar construction of

spanning trees with low relative crossing number to higher
dimensions, and this remains an interesting open problem.
(We give a counterexample that shows why the planar con-
struction cannot be extended “as is” to 3-space.) Instead,
we base our construction on the shallow partition theorem of

Matoušek [19], and construct a set A of size O
“

1

ε3/2p
log 1

εp

”
,

which yields an absolute approximation error of at most εp
for halfspaces that contain at most pn points. Note that
this is the “wrong” inequality—to guarantee small relative
error we need this to hold for all ranges with at least pn
points. To overcome this difficulty, we construct a sequence
of approximation sets, each capable of producing a rela-
tive ε-approximate count for ranges that have roughly the
same size, where these sizes grow geometrically, starting at
pn and ending at roughly n. The sizes of our approxima-
tion sets decrease geometrically, so that the size of the first
set (that caters to ranges with about pn points), which is

O
“

1

ε3/2p
log 1

εp

”
, dominates asymptotically the overall size

of all of them. We output this sequence of sets, and show
how to use them to obtain an ε-approximate count of any
range with at least pn points.

The situation is somewhat more involved in higher dimen-
sions. The basic approach used in the three-dimensional case
can be extended to higher dimensions, using the appropri-
ate version of the shallow partition theorem. However, the
bounds get somewhat more complicated (see Section 4.2),
and apply only under certain restrictions on the relation-
ships between ε, p, and n.

Approximate range counting: Alternative recent solu-
tions. Consider again the problem of approximate range
counting and focus on the case of halfspace ranges in R

d.
Three recent papers address this problem, and achieve im-
provements similar to ours. The first result is due to Aronov
and Har-Peled [2, 3], who reduce this problem to range
emptiness, by performing binary search on the size |X ∩ R|
for the given range R, until the desired relative error is at-
tained. Each decision step in the search is made by accessing
O
`

1
ε2 log n

´
different range emptiness structures on certain

random samples of X. This technique is a general reduc-
tion from approximate range searching to range emptiness
testing. In the revised version [3], the algorithm answers a
query in time O

`
1
ε2 log n

´
Qempty(n), where Qempty(n) is the

time to answer a range emptiness query. The storage and
preprocessing costs are, respectively, O

`
1
ε2 log n

´
Sempty(n),

and O
`

1
ε2 log n

´
Tempty(n), where Sempty(n), Tempty(n) are

the storage and preprocessing costs for the range emptiness
data structure.

A second approach is presented by Kaplan and Sharir [17],
who exploit a general technique of Cohen [10] for estimat-
ing the number of data objects in a given subset R of a
larger set X (see also [11]). In this approach, one assigns
to each data object of X, independently, a random weight,
drawn from an exponential distribution with density e−x,
sorts the objects by their weights into a random permuta-
tion, and then finds the minimum rank in that permutation
of the objects in the query range R. As in the technique
of Aronov and Har-Peled, one then repeats this experiment
O(1

ε2 log n) times,1 computes the average µ of the weights

1In both techniques, this is a consequence of using Chernoff
bounds to guarantee high probability of success.

of the minimum elements, and approximates |R| by 1/µ.
To apply this machinery to approximate halfspace range

counting, one needs a data structure that preprocesses the
given set X of points, and a given random permutation
thereof, into a data structure that can answer halfspace-
minimum range queries efficiently: Given a query halfspace
h, find the point of X of minimum rank among those con-
tained in h. Kaplan and Sharir present such structures for
halfspaces in R

3 (a revised version [16] extends it to any di-
mension). The performance of their algorithm is comparable
to that of Aronov and Har-Peled’s algorithm.

A third paper, by Afshani and Chan [1] has just appeared.
It caters to the 3D version of the problem, and improves the
performance of the preceding algorithms. In particular, it
achieves optimal (expected) query time in R

3, with a data
structure of expected linear size.

Our results (continued). In the second part of the paper
we present an efficient solution for the approximate halfspace
range counting problem, in which relative ε-approximations
are heavily used. We focus mainly on halfspace ranges in R

d,
d ≥ 4. The performance of our algorithms is comparable
with (and somewhat improves) the previous work of [2, 16].

Whereas the algorithm of Aronov and Har-Peled uses a
range emptiness procedure as a black box, we examine the
inner workings of such a procedure (or of a shallow range re-
porting procedure, which has comparable performance), and
turn it into an approximate counting procedure. Informally,
the range emptiness or reporting data structures of Ma-
toušek [19] consist of a partition tree, whose nodes store
certain canonical subsets of X, and which has the property
that a query with a range that is shallow at a node v (i.e.,
one that contains only a few points of the subset stored
at v; see below for a more precise definition) visits only a
small number of children of v. When the procedure realizes
that the query visits too many children, it stops and reports
that the range cannot be shallow. For emptiness queries,
this immediately implies that the range is not empty. For
reporting queries, one can then afford to perform the report-
ing by brute force, knowing that the output size is large
enough and thus commensurable with the size of the entire
set stored at v.

In contrast, our solution exploits the fact that the range is
deep (that is, not shallow), to invoke an auxiliary mechanism
that approximates its size. Our main auxiliary mechanism
is to use relative approximations, as discussed above. In this
manner, we derive two variants of our general approach. The
first algorithm uses O(n) storage, O(n1+δ) preprocessing
time, for any δ > 0 (which reduces to O(n log n) for certain
choices of parameters), and answers approximate halfspace

range counting queries in R
d in O

“
ε−γn1−1/bd/2c polylog n

”

time, where γ can be chosen arbitrarily from the interval
(2/bd/2c, 2); the choice of γ and δ affects the implied con-
stants and the power of the logarithm in the query time.
Note that the storage and preprocessing costs are indepen-
dent of ε, and the dependence of the query time on ε is
considerably lower than in the previous approaches.

A slight weakness of this solution is that the query time
bound, ignoring its dependence on ε, is comparable with the
overhead term in the bound for halfspace range reporting
[19], whereas the query time in the solution of Aronov and
Har-Peled [2, 3] is expressed in terms of the cost of halfspace

range emptiness queries, which is O
“
n1−1/bd/2c · 2O(log∗ n)

”

[19]. On one hand, this replaces the polylogarithmic factor
in our time bound by a smaller factor, but, on the other
hand, one has to multiply this bound by O

`
1
ε2 log n

´
in the

algorithm of [3], making the dependence on ε slightly worse.
Our second implementation demonstrates that the fine-

tuning done in [19] to achieve the improved bound for empti-
ness queries can also be carried out in our context, leading
to an algorithm that uses linear storage and O(n1+δ) pre-
processing time, for any δ > 0, and answers a query in time

O
“
ε−γn1−1/bd/2c · 2O(log∗ n)

”
, where γ can be chosen any-

where in the same interval as above. This bound compares
favorably with the one in [2], both in terms of the depen-
dence on ε and the factors that depend on log n. Moreover,
the storage used by both solutions is O(n), independent of ε,
which is a significant improvement over the previous results.

The general technique that we propose is sufficiently mod-
ular, so as to support various extensions and variants. One
interesting variant is a data structure that answers efficiently
halfspace range minimum queries, with respect to a random
permutation of the input set, of the sort that is needed for
the technique of [10, 16, 17] described above. Another vari-
ant is a data structure where ε need not be pre-specified, and
can be part of the query; in contrast, the “competing” struc-
tures described above have to be built with the knowledge
of the value of ε.

In closing, we note that in some recent work by Arya and
others [5, 6], approximate range counting is interpreted dif-
ferently, in that one seeks an exact count in a range that
closely approximates the input range, according to some ge-
ometric error measure.

Due to lack of space, many details are omitted in this
version. They can be found in the two full versions [3, 4].

2. RELATIVE APPROXIMATIONS IN
GENERAL RANGE SPACES

Our construction is based on the following well known
result, which works by pairing up the points into a per-
fect matching, and randomly coloring the endpoints of each
matching edge.

Theorem 2.1 ([8]) Let (X,R) be a set system defined over
n = |X| elements, where R = {R1, . . . , Rm}. One can con-
struct, in O(nm) deterministic time, a coloring χ : X →
{−1, 1}, where each color class has exactly n/2 elements,
such that, for any j = 1, . . . , m, the discrepancy of Rj is

|χ(Rj)| ≤
p

2 |Rj | ln(2m), where χ(Rj) =
P

x∈Rj
χ(x).

Remarks: (1) A more precise statement is that χ(Rj) ≤p
2ξ(Rj) ln(2m), for each j, where ξ(R) is the number of

pairs of the matching that the range R separates (or “crosses”).
Later, we use special matchings with small values of the
quantities ξ(·), and consequently obtain improved discrep-
ancy bounds, which in turn leads to improved bounds on
the size of the relative approximation sets.
(2) We refer to the process of extracting a subset of X of half
the size, by using low-discrepancy coloring, as halving. Note
that if the range space (X,R) has VC dimension δ, then, by

Theorem 2.1, we can compute such a halving in O(|X|δ+1)

deterministic time, since |R| = O(|X|δ) by Sauer’s lemma
[8].

Setting W = χ−1(1) and B = χ−1(−1), Theorem 2.1

states that, for each Rj ,
˛̨
|W ∩Rj |−|B ∩ Rj |

˛̨
≤
p

2 |Rj | ln(2m).
Since |W ∩Rj | = |X ∩Rj |− |B ∩Rj |, we have, for each Rj ,

˛̨
|X ∩Rj | − 2 |B ∩Rj |

˛̨
≤
p

2 |Rj | ln(2m). (3)

Assume now that the set system (X,R) has finite VC

dimension δ. This implies (by Sauer’s lemma [24]) that
|R| ≤ (ne/δ)δ. To simplify the exposition, we will assume
that δ > 2, so that m = |R| ≤ nδ . Moreover, for any
subset X ′ ⊆ X of size n′, the number of distinct ranges in
R′ = {Rj ∩X ′ | j = 1, . . . , m} is m′ ≤ (n′)δ.

We construct a sequence of subsets Pk ⊆ Pk−1 ⊆ . . . ⊆
P0 = X, with k to be determined shortly, so that, for each
i > 0, Pi is obtained by halving from Pi−1 via Theorem 2.1.
Put ni = |Pi| = n/2i, for i = 1, . . . , k.

Lemma 2.2 Let 0 < p < 1 be a given parameter, and as-
sume that k satisfies nk ≥ 4δ

p
ln 4δ

p
. Then, for any range

R in R that contains at least pn points of X, and for each
i = 0, . . . , k, we have, for some absolute constant c.

|Pi ∩R| ≤ c |P0 ∩ R| /2i.

Remarks: (1) The proof of Lemma 2.2, given in the full
version [15], is somewhat similar to the standard argument
showing the existence of ε-approximations using discrepancy
[8].
(2) In what follows, we need several variants of Lemma 2.2,
in which the starting points are refined versions of Eq. (3).
The proofs are easy modifications of the initial proof, and
some of them are given in the full version [15].

Lemma 2.3 There exists an index k such that |Pk| = nk =

Θ
“

δ
ε2p

ln δ
εp

”
, and such that, for any range R ∈ R that con-

tains at least pn points, we have
˛̨
|R ∩ P | − 2k|R ∩ Pk|

˛̨
≤

ε|R ∩ P |.
Proof. Fix a range R, and use the following notation:

Denote by bλ the size of P0 ∩ R, and put λi = |Pi ∩R|, for

i = 0, . . . , k (so λ0 = bλ). Lemma 2.2 implies that

˛̨
˛bλ− 2kλk

˛̨
˛ ≤

kX

i=1

2i−1
p

2δλi−1 ln(2ni)

≤
kX

i=1

2i−1

vuut2δ

c
bλ

2i−1

!
ln(2ni) ≤ c12

k/2

q
bλ ln nk,

which follows, for some constant c1 proportional to
√

δ, since
this summation behaves like an increasing geometric series
and is therefore dominated by the last term. We want the

right-hand side to be smaller than εbλ, which is equivalent

to c
2
12

k ln nk ≤ ε2bλ. Since we assume bλ ≥ pn, this will
hold if we require that c

2
12

k ln nk ≤ ε2pn. Since nk =

n/2k, this amounts to requiring
c
2
1

ε2p
≤ nk

ln nk
, which holds

for nk ≥ 2
c
2

1

ε2p
ln

c
2

1

ε2p
. This bound meets the lower bound

requirement on nk, given in Lemma 2.2, provided that c1 is
a sufficiently large multiple of

√
δ. This completes the proof

of the lemma.

Theorem 2.4 Let (X,R) be a range space with finite VC

dimension δ, where |X| = n, and let 0 < ε < 1 and 0 <
p < 1 be given parameters. One can construct a relative

(p, ε)-approximation for (X,R), of size O
“

δ
ε2p

log δ
εp

”
, in

min


O(δ)3δ

“
1

p2ε2 log δ
ε

”δ

n, O(nδ+1)

ff
deterministic time.

The desired approximation set is simply the set Pk from
Lemma 2.3. See [15] for details.

3. RELATIVE APPROXIMATIONS IN THE
PLANE

In this section we present a construction of smaller-size
relative (p, ε)-approximations for the range space involving
a set of points in the plane and the set of halfplanes as ranges.
The key ingredient of the construction is the result of the
following subsection.

3.1 Spanning trees with small relative cross-
ing number

We derive a refined “weight-sensitive” version of the clas-
sical construct of spanning trees with small crossing number,
as obtained by Chazelle and Welzl [7, 27]. We believe that
this refined version is of independent interest, and expect it
to have additional applications in the future.

In accordance with standard notation used in the litera-
ture, we denote from now on the underlying point set by P .
We first recall the standard result:

Theorem 3.1 ([27]) Let P be a set of n points in R
d. One

can compute a spanning tree T of P such that each hyper-
plane in R

d crosses at most O(n1−1/d) edges of T.

Definition 3.2 Let P be a set of n points in the plane. For
a non-vertical line `, let w+

` (resp., w−
`) be the number of

points of P lying above (resp., below or on) `, and define
the weight of `, denoted by w`, to be min(w+

` , w−
`).

Let Qk = Qk(P) be the intersection of all closed half-
spaces that contain at least n − k points of P . By the cen-
terpoint theorem (see [22]), the set Qk is a nonempty convex
polygon, for k < n/3.

Lemma 3.3 Let P be a set of n points in the plane. (i)
Any line ` that avoids the interior of Qk has weight w` ≤ 2k.
(ii) Any line ` that intersects the interior of Qk has weight
w` > k.

Proof. Translate ` parallel to itself until it supports Qk.
The new line `′ must pass through a vertex v of Qk which
is defined by the intersection of two closed halfplanes, each
having k points in its complement. Thus, the union of the
complements of these two halfplanes contains at most 2k
points, and it contains `′ and `. Thus, ` has at most 2k
points on one of its sides.

The second claim is easy: If the weight of ` were at most
k then, by definition, the interior of Qk would be completely
contained on one side of `.

Lemma 3.4 The set P \ Qk can be covered by pairwise
openly disjoint (possibly unbounded) triangles C1, . . . , Cu, each
containing at most 2k points of P , such that any line inter-
sects at most O(log(n/k)) of these triangles, Furthermore,
Ci ∩ ∂Qk 6= ∅, for i = 1, . . . , u.

≤ 2k

≤ n′/2

≤ n′/2

p

Ci

≤ 2k

λL λR

≤ 2k

Qk

Proof. We construct triangles bCi iteratively, as follows.
Let λL and λR be the two vertical lines supporting Qk on

its left and on its right, respectively. bC1 (resp., bC2) is the
halfplane to the left (resp., right) of λL (resp., λR). The
construction maintains the invariant that the complement

of the union of the triangles bC1, . . . , bCi constructed so far is
a convex polygon Ki that contains Qk and the boundary of
Ki passes through some of the vertices of Qk, so that Ki\Qk

consists of pairwise disjoint connected “pockets”. (Initially,

after constructing bC1 and bC2, we have two pockets—the
regions lying respectively above and below Qk, between λL

and λR.)
Each step of the construction picks a pocket that contains

more than 2k points of P , and finds a line ` that supports Qk

at a vertex of the pocket, and subdivides the pocket into two
sub-pockets and a third piece that lies on the other side of
`. The line ` is chosen so that the two resulting sub-pockets
contain an equal number of points of P . The third piece,
which contains at most 2k points of P by Lemma 3.3(i), is

taken to be the next triangle bCi+1, and the construction
continues in this manner until each pocket has at most 2k
points. We then terminate the construction, adding the (tri-
angular) convex hulls of all the remaining pockets to the
output collection.

One can verify that each line ` intersects at most O(log(n/k))
triangles, and that all other properties also hold. See [15]
for details.

Lemma 3.5 Let 1 ≤ k ≤ n be a pre-specified parameter.
One can construct a spanning tree T for P ′ := P \Qk, such

that each line intersects at most O(
√

k log(n/k)) edges of T.

Proof. Construct the decomposition of P \ Qk into u
covering polygons C1, . . . , Cu, using Lemma 3.4.

For each i = 1, . . . , u, construct a spanning tree Ti of
P ∩Ci with crossing number O(k1/2), using Theorem 3.1. In
addition, connect one point of P ∩Ci to an arbitrary vertex
of ∂Ci∩∂Qk. It is easily checked that the trees T1, . . . , Tu are
vertex-disjoint, and collectively use all the points of P \Qk.

Let G be the planar straight-line graph formed by the
union of ∂Qk, T1, . . . , Tu, plus the connecting segments just
introduced, and let T

∗ be a spanning tree of G that contains
all the points of P \Qk.

Let ` be any line in the plane. The proof of the preceding
lemma implies that ` intersects at most O(log(n/k)) of the
polygons Ci. Hence, ` crosses at most two edges of ∂Qk,

at most O(log(n/k)) of the connecting segments, and it can
cross edges of at most O(log(n/k)) trees Ti, for i = 1, . . . , u.

Since ` crosses at most O(k1/2) edges of each such tree, we

conclude that ` crosses at most O(
√

k log(n/k)) edges of T
∗.

Finally, we get rid of the extra “Steiner vertices” of T
∗

(those not belonging to P \Qk) in a straightforward manner,
by rooting T

∗ at some point of P \Qk, and by replacing each
path connecting a point u ∈ P \Qk to an ancestor v ∈ P \Qk,
where all inner vertices of the path are Steiner points, by
the straight segment uv. This produces a spanning tree T

of P \Qk, whose crossing number is at most that of T
∗.

Theorem 3.6 Given a point set P of n points in the plane,
one can construct a spanning tree T for P such that any line
` crosses at most O(

√
w` log(n/w`)) edges of T. The tree T

can be constructed in O(n1+ε) deterministic time, for any
fixed ε > 0.

Proof. We construct a sequence of subsets of P , as fol-
lows. Put P0 = P . At the ith step, i ≥ 1, consider the
polygon Ki = Q2i(Pi−1), and let Pi = Pi−1 ∩Ki. We stop
when Pi becomes empty.

For each i ≥ 1, construct a spanning tree Ti for Pi−1 \Ki,
using Lemma 3.5 (with k = 2i). Connect the resulting trees
by straight segments into a single spanning tree T of P .

We claim that T is the desired spanning tree. Indeed,
consider an arbitrary line ` of weight k. Observe that, by
Lemma 3.3(ii), ` cannot cross any of the polygons Ki, for
i > U = dlog2 ke. Thus ` crosses only the first O(log k)
layers of our construction and at most

UX

i=1

O
“√

2i log(n/2i)
”

= O(
√

k log(n/k))

edges of T, as asserted.

Remark: For any n ≥ 1, there exists a set Sn of n points
in convex position in 3-space, such that any partition of Sn

into sets of size (roughly) k will have a plane that crosses

at least Ω(
p

n/k) sets of the partition. Without the convex
position assumption, there exist sets for which this crossing
number is at least Ω((n/k)2/3). See [15] for details.

3.2 Relative approximations for halfplanes
We can turn the above construction of a spanning tree

with small relative crossing number into a construction of a
relative (p, ε)-approximation for a set of points in the plane
and halfplane ranges, as follows.

Let P be a set of n points in the plane, and let T be a
spanning tree of P as in Theorem 3.6. By converting T to
a spanning path, and then by picking every other edge of
the path, we obtain a perfect matching M of P , with the
same relative crossing number, i.e., the number of pairs of
M that are separated by a halfplane of weight k is at most
O(
√

k log(n/k)).
We now construct a coloring of P with low discrepancy, by

randomly coloring the points in each pair of M , as in Theo-
rem 2.1. The analysis in the standard proof of that theorem
(see the remark following the theorem) yields the following
variant, which may be a result of independent interest in
Discrepancy Theory.

Lemma 3.7 Given a set P of n points in the plane, one
can construct a coloring χ : P 7→ {−1, 1}, such that, for

any halfplane h that contains k points of P , we have

χ(h ∩ P) = O(k1/4 log n).

We now continue with the analysis of Section 2, using the
improved discrepancy bound of the preceding lemma. This
can be shown to lead to the following improved bound.

Theorem 3.8 Given a set P of points in the plane, and pa-
rameters 0 < ε < 1 and 0 < p < 1, one can construct a rela-

tive (p, ε)-approximation subset of size O
“

1

ε4/3p
log4/3 1

εp

”
.

4. RELATIVE APPROXIMATIONS IN
HIGHER DIMENSIONS

4.1 Relative Approximations in 3-Space
The construction in higher dimensions is different from the

planar one, due to our present inability to extend the con-
struction of spanning trees with low relative crossing number
to three or higher dimension.

A hyperplane h separates a set Q ⊆ R
d if h intersects the

interior of CH(Q); namely, each open halfspace bounded by
h contains a nonempty subset of Q.

Theorem 4.1 Let P be a set of n points in R
3, and let

0 < ε < 1, 0 < p < 1 be given parameters. Then there exists

a set A ⊂ P , of size O
“

1

ε3/2p
log 1

εp

”
, such that, for any

halfspace h of weight at most pn, we have
˛̨
˛̨ |h ∩ A|
|A| −

|h ∩ P |
|P |

˛̨
˛̨ ≤ εp. (4)

Remark: Notice the difference between Eq. (4) and the
situation in the preceding sections: Up to now we have han-
dled ranges of size at least pn, whereas Eq. (4) applies to
ranges of size at most pn. This issue requires a somewhat
less standard construction, that will culminate in a sequence
of approximation sets, each catering to a different range of
halfspace weights. Nevertheless, the overall size of these sets
will satisfy the above bound, and the cost of accessing them
will be small. See below for details.

Proof. Put k = pn. We apply the shallow partition
theorem of Matoušek [19], to obtain a partition of P into
s ≤ n/k subsets P1, . . . , Ps, each of size between k + 1 and
2k, such that any k-shallow halfspace h (namely, a halfs-
pace that contains at most k points of P) separates at most
c log s = c log(1/p) subsets, for some absolute constant c.
(Note that if h meets any Pi, it has to separate it, because
h is too shallow to fully contain Pi.) Without loss of gener-
ality, we can carry out the construction so that the size of
each Pi is even.

We then construct, for each subset Pi, a spanning tree of
Pi with crossing number O(k2/3) [7, 27], and convert it to
a perfect matching of Pi, with the same asymptotic bound
on its crossing number, i.e., the maximum number of pairs
in the matching that a halfspace separates.

We then color the endpoints of each matched pair indepen-
dently with opposite colors, with equal probability. Let R1

be the set of points colored −1; we have |R1| = n/2. With
high probability, the discrepancy of any halfspace h is at
most

p
6ξ(h) ln(2n), where ξ(h) is the crossing number of h.

Since h is assumed to be k-shallow, it follows by construction

that ξ(h) = O
“P

i u
2/3
i

”
, where ui = |h∩Pi|, and where the

sum extends over those O(log r) subsets for which ui > 0.

Using Hölder’s inequality, this yields ξ(h) = O(k2/3 log1/3 r),

so the discrepancy of h is O(k1/3 log2/3 n).
We continue recursively in this manner for j steps, pro-

ducing a sequence of subsets R0 = P, R1, . . . , Rj , where
Ri is obtained from Ri−1 using the above coloring proce-
dure, in which we use, instead of k, the parameter ki−1 =
pn · min{c/2i−1, 1}, where c is the constant derived in the
following lemma, which is a variant of Lemma 2.2 (see [15]).

Lemma 4.2 For any halfspace h with at most k = pn points
of P , we have, for any i ≤ j,

|h ∩ Ri| ≤ ck

2i
=

cpn

2i
,

for an appropriate absolute constant c, provided that nj ≥
2
p

ln 1
p
, where nj = |Pj | = n/2j .

This implies, similar to the planar case,
˛̨
˛̨ |h ∩ P |
|P | −

|h ∩Rj |
|Rj |

˛̨
˛̨ = O

„
22j/3k1/3 log2/3(n/2j−1)

n

«

(see [15] for details). We choose j so that this bound is at

most εp = εk/n. That is, 2j = O
“

ε3/2pn
log(n/2j)

”
. Hence, the

size of Rj is

|Rj | = n

2j
= O

„
log(n/2j)

ε3/2p

«
= O

„
1

ε3/2p
log

1

εp

«
.

Taking A = Rj completes the proof of the theorem.

Theorem 4.1 implies the following [15].

Theorem 4.3 Given a set P of n points in R
3, and two pa-

rameters 0 < ε < 1, 0 < p < 1, we can construct O
“
log 1

p

”

subsets of P , A1, . . . , Ak, of total size O
“

1

ε3/2p
log 1

εp

”
, so

that, given any halfspace h containing qn points of P , for
q ≥ p, we can find a set At that satisfies

˛̨
˛̨ |h ∩At|
|At|

− |h ∩ P |
|P |

˛̨
˛̨ ≤ ε

|h ∩ P |
|P | .

The time it takes to search for At and obtain the count |h ∩
At| by brute force is O

“
1

ε3/2q
log 1

εq

”
.

4.2 Higher dimensions
The preceding construction can be generalized to higher

dimensions, with some complications. We first introduce the
following parameters:

γ = 1 +
1− 1

d∗

d + 1
, where d∗ = bd/2c, and µ =

2d

d + 1
.

Note that, for d ≥ 4, γ > 1 and tends to 1 as d increases,
and µ < 2 and tends to 2 as d increases.

The analogue of Theorem 4.1 is the following theorem [15].

Theorem 4.4 Let P be a set of n points in R
d, d ≥ 4, and

let 0 < ε < 1, 0 < p < 1, be as above. Then there exists a

set A ⊂ P , of size O

„
dµ/2

εµpγ
log

d

εp

«
, such that, for any halfs-

pace h of weight at most pn, we have

˛̨
˛̨ |h ∩A|
|A| −

|h ∩ P |
|P |

˛̨
˛̨ ≤ εp,

provided that n = Ω
“

dµ/2

pγ logµ/2 d
p

”
.

As in three dimensions, this implies [15]:

Theorem 4.5 Given a set P of n points in R
d, and two pa-

rameters 0 < ε < 1, 0 < p < 1, we can construct O
“
log 1

p

”

subsets of P , A1, . . . , Ak, of total size O
“

dµ/2

εγpµ logµ/2 1
εp

”
,

so that, given any halfspace h containing qn points of P , for
q ≥ p, we can find a set At that satisfies

˛̨
˛̨ |h ∩At|
|At|

− |h ∩ P |
|P |

˛̨
˛̨ ≤ ε

|h ∩ P |
|P | .

The time it takes to search for At and obtain the count |h∩
At| is O

“
dµ/2

εγqµ logµ/2 1
εq

”
.

For further discussion of this theorem, see [15].

5. APPROXIMATE HALFSPACE RANGE
COUNTING: GENERAL APPROACH

In this section we return to the problem of approximate
halfspace range counting, and describe, in somewhat more
detailed but still high-level terms, our general technique.
Concrete implementations As already mentioned, hereafter
we focus on the case of halfspace ranges in R

d, for d ≥ 4,
rather than more general range spaces.

We use Matoušek’s shallow partition theorem [19], which
yields, for any positive integer parameter r < n, a partition
of P into r/2 ≤ s ≤ r subsets P1, P2, . . . , Ps, where, for
each i, n/r ≤ |Pi| ≤ 2n/r, and Pi is enclosed in a simplex
∆i, such that any hyperplane that bounds an (n/r)-shallow

halfspace crosses at most µ(r) = O(r1−1/bd/2c) simplices ∆i.
Such a partition can be constructed in time O(n1+δ), for
any δ > 0. For r ≤ nξ, for a suitable constant ξ = ξ(d) > 0,
it can be computed in O(n log r) time.

For a fixed set P and a choice of parameter r at every
interior node, the shallow partition theorem induces, in a
natural way, a tree T = T (P), called a shallow partition tree
of P , whose root stores the entire P , and some bounding sim-
plex ∆ of P . The root has s ≤ r children, each storing one
of the sets Pi and its bounding simplex ∆i. The tree is ex-
panded further in the same manner, possibly with different
values of r at different nodes, stopping when we reach nodes
whose associated sets have size smaller than some specific
threshold.

Denote by Pv the subset of P stored at a node v of T ,
and by rv the parameter r used when constructing the par-
tition of Pv. Our proposed approximate range counting data
structure is, effectively, an augmented shallow partition tree,
where we store some additional information at each node v;
in the main implementations that we present, this is a rel-
ative (1/rv , ε/2)-approximation Av of Pv. Querying with a
halfspace h proceeds as follows: When visiting a node v, if
the boundary of h meets many (more than µ(rv)) simplices
of the set Sv := {∆i} of the partition at v, or if h fully con-
tains one of these simplices, it cannot be (|Pv |/rv)-shallow

with respect to Pv , so |h ∩ Pv| > |Pv|/rv . Then we answer
the approximate range counting query for Pv by counting
h ∩ Av. Otherwise, we recursively obtain an ε-approximate
count at all the children of v whose simplex is crossed by ∂h,
and return the sum of the answers, which is easily seen to
be an ε-approximate count of |h ∩ Pv|. See Algorithm 1 for
the pseudocode.

Algorithm 1 Pseudocode of our main algorithm

1: function ApproxCount(halfspace h, node v of an aug-
mented shallow partition tree, ε)

2: if v is a leaf node then return LeafNodeApx-

Count(h,v,ε).

. S = Sv is the set of simplices associated with children
of v.
. r = rv is the partition parameter at v.

3: if ∂h crosses at most µ(r) simplices of S and no
simplex is fully contained in h

4: then . Shallow halfspace, recurse.
5: answer ← 0.
6: for all children ξ of v whose bounding simplex is

crossed by ∂h do
7: answer← answer + ApproxCount(h,ξ,ε).

8: return answer.
9: else . Deep halfspace, answer locally.

10: return DeepApproxCount(h,v,ε).

It remains to specify, for each node v, the parameter rv

used at v, the threshold n0(ε) for the size of Pv, below which
v becomes a leaf, and three subroutines:
The implicit subroutine (that we call SearchSim(h, v)) used
in lines 3 and 6 of the algorithm to determine how many, and
which, of the simplices of Sv are met by the hyperplane ∂h
and whether any of them is contained in h.
A procedure LeafNodeApxCount(h, v, ε) that directly es-
timates the count for h at a leaf v of the tree.
A procedure DeepApproxCount(h, v, ε) that estimates the
count of a deep range h at a node v, using the relative approx-
imation set (or any other appropriate auxiliary structure).

Let Qsim(s), Qleaf(n, ε), and Qdeep(n, ε) be upper bounds
on the running times of these three respective operations,
where r/2 ≤ s ≤ r is the number of simplices to test against,
n is the size of the point set associated with the current
node, and ε is the approximation parameter. We obtain
the following recurrences for the preprocessing time T (n, ε),
storage S(n, ε), and query time Q(n, ε) of our data struc-
ture. The parameter r = rv is the one used at the cur-
rent node of the tree; in our implementations it is a func-
tion of n (and possibly ε). For simplicity, we use s = r in
the recurrences, for the maximum possible number of chil-
dren of a node. We use Ssim, Tsim (Sleaf, Tleaf and Sdeep,
Tdeep) to denote the storage and preprocessing time required
by SearchSim (LeafNodeApxCount and DeepApprox-

Count, respectively). Tpart is the time needed to construct

the partition at v.

Q(n, ε) ≤
(

Qsim(r) + max{Qdeep(n, ε), µ(r)Q(n/r, ε)}
Qleaf(n, ε),

S(n, ε) ≤
(

Ssim(r) + Sdeep(n, ε) +
Pr

i=1 S(ni, ε)

Sleaf(n, ε),

T (n, ε) ≤
(

Tpart(n, r) + Tsim(r) + Tdeep(n, ε) +
Pr

i=1 T (ni, ε),

Tleaf(n, ε),

where each ni ≤ 2n/r and
Pr

i=1 ni = n, and where the first
alternative is taken whenever n > n0(ε) and the second one
otherwise.

6. CONCRETE IMPLEMENTATIONS
There are many ways to choose the parameters rv, n0(ε),

and to implement the above three procedures. We present
two variants; the first is simpler and more naive (and has
slightly poorer performance), and the second is more sophis-
ticated with a slightly better performance. (Roughly speak-
ing, the first implementation has performance comparable
with that of the halfspace range reporting procedure of [19],
whereas the second implementation has performance compa-
rable with that of the halfspace range emptiness procedure
of [19].)

First implementation. For each node v, put nv := |Pv |.
Here we choose rv := nα′

v , for some 0 < α′ < α := 1 −
1/bd/2c, whose concrete choice will be discussed below. We
store at v a relative (1/rv, ε/2)-approximation Av for Pv, of

size
crv

ε2
log

rv

ε
(for some absolute constant c > 0), which

we obtain by taking a random sample of these many points
from Pv. As shown above (see also [12]), such a sample is a
relative (1/rv , ε/2)-approximation of the desired kind with
probability at least 1 − 1/rb

v , where b = b(c) is linear in c.
Later, we boost up the overall success probability, making
the failure probability polynomially small in n itself. For
now, we simply assume that Av is indeed an approximation
of the required type and size.

In this implementation, we use brute force for two of the
three subroutines. We implement SearchSim by simply it-
erating over all simplices, and selecting those that ∂h crosses,
stopping after collecting more than µ(rv) of them, or after
encountering a simplex that is fully contained in h. The cost

is O(rv) = O(nα′

v). We implement LeafNodeApxCount

by iterating over Pv and counting h ∩ Pv explicitly at the
cost of O(nv).

We implement DeepApproxCount recursively, by call-
ing ApproxCount itself, on an auxiliary data structure
constructed for Av as the input set, with error parameter
ε/3, which makes the combined relative error at most ε (for
ε < 1).

In order for this implementation to work efficiently, we
need to impose some restrictions on the choice of parameters.
We require that |Av| = crv

ε2 log rv
ε
≤ nv

k log3 log nv
, for some

constant k. Intuitively, this requires that the size of Av be
small enough compared to that of Pv. By the choice of rv,
one can verify that this holds when

n > n0(ε) :=

„
c′

ε2
log

1

ε
log3 log

1

ε

«1/(1−α′)

, (5)

for an appropriate multiple c′ of c. Our goal is to make the
query time satisfy

Q(n, ε) ≤ F (ε)nα logβ n, (6)

for some parameter β and function F (ε) whose specific choices
will be discussed shortly. In particular, we want Qdeep(n, ε)
and Qleaf(n, ε) to satisfy this bound. For Qleaf this requires

n0(ε) ≤ c′′F (ε)n0(ε)
α logβ n0(ε),

where c′′ is some constant, which we strengthen slightly by
ignoring c′′ and the polylogarithmic factor, and by replacing
the inequality by an equality. We thus put

F (ε) := n0(ε)
1−α =

„
c′

ε2
log

1

ε
log3 log

1

ε

« 1−α
1−α′

. (7)

Hence F (ε) is approximately of the form 1/εγ , where γ :=
2(1 − α)/(1 − α′) satisfies 2/bd/2c < γ < 2. Note that γ
approaches its upper (resp., lower) bound as α′ approaches
α (resp., 0).

We can plug the various concrete bounds on Qsim, Qdeep,
Qleaf, etc., into the recurrences at the end of Section 5, and
then show [4] that Q(n, ε) satisfies Eq. (6). Similarly, the
storage bound S(n, ε) is shown to be O(n), with a constant
that is independent of ε. Finally, the preprocessing time
T (n, ε) is shown to be O(n1+δ), for any δ > 0, which im-
proves to O(n log n) if α′ is chosen sufficiently small.

We thus have our first main result, with all the ingredients
in place, except for the high probability assertion, for which
see below.

Theorem 6.1 We can preprocess a set P of n points in R
d,

with a pre-specified error parameter 0 < ε < 1, into a data
structure of size O(n) (independent of ε), so that, with high
probability, for any query halfspace h, we can obtain a rel-
ative ε-approximate count of h∩P , in time O

`
ε−γnα logβ n

´
,

where α = 1−1/bd/2c, γ can be chosen anywhere in (2/bd/2c, 2),
and β depends on γ.

The data structure can be constructed deterministically,
except for the random samplings that produce the various
relative approximations. The (worst-case) preprocessing cost
is O(n1+δ), for any δ > 0. It reduces to O(n log n) when γ
is chosen sufficiently small.

Second implementation. A somewhat more careful (and
involved) implementation yields the following variant (see [4]).

Theorem 6.2 We can preprocess a set P of n points in
R

d, with a pre-specified error parameter 0 < ε < 1, into
a data structure of size O(n), independent of ε, so that,
with high probability, for any query halfspace h, we can ob-
tain an ε-approximate count of h ∩ P , in time O(ε−γnα ·
2b log∗ n), where α = 1− 1/bd/2c, γ can be chosen anywhere
in (2/bd/2c, 2), and b depends on the choice of γ. The pre-
processing cost of the algorithm is O(n1+δ), for any δ > 0.

Ensuring high probability. So far we have presented the
data structures under the assumption that at each node v
we have, or can efficiently construct, a relative (1/rv , ε/2)-
approximation of the required size. We can achieve this
either by an expensive preprocessing that constructs these

sets deterministically (see Theorem 2.4), or draws them at
random and verifies that they are indeed relative approxima-
tions with the appropriate parameters. (Just drawing these
sets at random, with the sizes specified above, will not work
when analyzed naively, since it only guarantees constant fail-
ure probability at each node, and there are too many nodes
to make sure that all draws are relative ε-approximations
with high probability.) Alternatively, increasing the sam-
ple size by a factor of log n, would guarantee low failure
probability, but this might (slightly) affect the algorithm
performance.

We argue that, nevertheless, using such a random sam-
pling approach, with some additional mechanisms, does guar-
antee high success probability. The intuition is that we can
think of the elements of all the relative approximation sets
that a query halfspace reaches, as a sequence of independent
Bernoulli trials, so that an appropriate weighted sum of their
corresponding indicator variables is the approximate count
that the algorithm produces. This implies that the errors
that the individual relative approximation sets incur tend
to cancel each other out, leading to an overall error that is
much smaller than the sum of the individual errors. The
precise and detailed analysis is given in the full version [4].

With this analysis, the proofs of Theorems 6.1 and 6.2 are
now complete.

Discussion. We conclude the presentation of the basic tech-
nique with a few comments.
(1) Notice that there is a sharp discontinuity in the perfor-
mance of a query in the first implementation, as we reach
the leaves of the partition tree. At internal nodes, we effec-
tively ensure that the cost of the approximate counting via
the (1/rv , ε/2)-approximation stored at a node v is roughly
nα

v . In contrast, when we reach a leaf, the cost goes up to
Θ(nv). Quite likely, smoothly interpolating between these
two scenarios should refine the dependence of the perfor-
mance bounds on ε. We leave this as an open problem for
further research.
(2) Our technique can be modified to produce a data struc-
ture where ε is not known in advance. The idea is to main-
tain, at each node v of the tree, many relative approxima-
tions, and use the one that fits the query; see [4].

Range-minimum queries. We can apply our technique to
design an efficient algorithm for answering range-minimum
queries for halfspaces, with respect to a given random per-
mutation of the input points, of the type needed in the ap-
proach of Cohen [10] and Kaplan et al. [16, 17], as described
above. The only difference is that at each node v of the par-
tition tree, we store the prefix of the first crv log n elements
of the random permutation, restricted to Pv. Omitting all
further details (see [4]), we obtain (the theorem parallels our
first implementation; extending the second implementation
can also be done):

Theorem 6.3 One can preprocess a set P of n points in
R

d, and a random permutation π of P , into a linear-size
data structure, such that the element of P with minimum
rank in π in a query halfspace can be computed in time
O(n1−1/bd/2c logβ n), for an appropriate constant β = β(d).
The preprocessing cost is O(n1+δ), for any δ > 0, and it
improves to O(n log n) if β is chosen sufficiently large.

7. REFERENCES
[1] P. Afshani and T. M. Chan, On approximate range

counting and depth, These Proceedings.

[2] B. Aronov and S. Har-Peled, On approximating the
depth and related problems, Proc. 16th Annu.
ACM-SIAM Sympos. Discrete Algo., 2005, 886–894.

[3] B. Aronov and S. Har-Peled, On approximating the
depth and related problems, manuscript, 2006. Full
version of [2], available from
http://www.uiuc.edu/∼sariel/papers/04/depth.

[4] B. Aronov and M. Sharir, Approximate halfspace range
counting, in preparation.

[5] S. Arya, T. Malamatos, and D. Mount, Space-time
tradeoffs for approximate spherical range counting, Proc.
16th Annu. ACM-SIAM Sympos. Discrete Algo., 2005,
535–544.

[6] S. Arya, T. Malamatos, and D. Mount, The effect of
corners on the complexity of approximate range
searching, Proc. 22th Annu. ACM Sympos. Comput.
Geom., 2006, 11–20.

[7] B. Chazelle and E. Welzl, Quasi-optimal range
searching in spaces with finite VC dimension, Discrete
Comput. Geom. 4 (1989), 467–490.

[8] B. Chazelle, The Discrepancy Method: Randomness
and Complexity, Cambridge University Press, New York,
2001.

[9] B. Chazelle, The discrepancy method in computational
geometry, chapter 44, in Handbook of Discrete and
Computational Geometry, 2nd Edition, J.E. Goodman
and J. O’Rourke, Eds., CRC Press, Boca Raton, 2004,
983–996.

[10] E. Cohen, Size-estimation framework with
applications to transitive closure and reachability, J.
Comput. Syst. Sci. 55 (1997), 441–453.

[11] E. Cohen and H. Kaplan, Spatially-decaying
aggregation over a network: model and algorithms,
SIGMOD ’04: Proc. 2004 ACM SIGMOD Internat.
Conf. on Management of Data, 2004, 707–718.

[12] E. Cohen, H. Kaplan, Y. Mansour and M. Sharir,
Approximations with relative errors in range spaces of
finite VC dimension, manuscript, 2006.

[13] D. Haussler, Decision theoretic generalizations of the
PAC model for neural nets and other learning
applications, Inf. Comput. 100 (1992), 78–150.

[14] D. Haussler and E. Welzl, Epsilon nets and simplex
range queries, Discrete Comput. Geom. 2 (1987),

127–151.

[15] S. Har-Peled and M. Sharir, Relative ε-approximations
in geometry, Manuscript, 2006. Available from
http://www.uiuc.edu/∼sariel/papers/06/relative.

[16] H. Kaplan, E. Ramos and M. Sharir, Randomized
incremental construction of convex hulls and Voronoi
diagrams, and approximate range counting, in
preparation.

[17] H. Kaplan and M. Sharir, Randomized incremental
construction of three-dimensional convex hulls and
planar Voronoi diagrams, and approximate range
counting, Proc. 17th ACM-SIAM Sympos. Discrete
Algorithms (2006), 484–493.

[18] Y. Li, P.M. Long, and A. Srinivasan, Improved
bounds on the sample complexity of learning, J. Comput.
Syst. Sci. 62 (2001), 516–527.

[19] J. Matoušek, Reporting points in halfspaces, Comput.
Geom. Theory Appl. 2 (1991), 169–186.

[20] J. Matoušek, Efficient partition trees, Discrete
Comput. Geom. 8 (1992), 315–334.

[21] J. Matoušek, Geometric Discrepancy, Algorithms and
Combinatorics, Vol. 18, Springer Verlag, Heidelberg,
1999.

[22] J. Matoušek, Using the Borsuk-Ulam Theorem,
Universitext, Springer-Verlag, Berlin, 2003, Lectures on
topological methods in combinatorics and geometry,
Written in cooperation with Anders Björner and Günter
M. Ziegler.

[23] J. Matoušek, E. Welzl and L. Wernisch, Discrepancy
and approximations for bounded VC-dimension,
Combinatorica 13 (1993), 455–466.

[24] J. Pach and P.K. Agarwal, Combinatorial Geometry,
Wiley Interscience, New York, 1995.

[25] D. Pollard, Rates of uniform almost-sure convergence
for empirical processes indexed by unbounded classes of
functions, Manuscript, 1986.

[26] V.N. Vapnik and A. Ya. Chervonenkis, On the
uniform convergence of relative frequencies of events to
their probabilities, Theory of Probability and its
Applications 16 (1971), 264–280.

[27] E. Welzl, On spanning trees with low crossing
numbers, In Data Structures and Efficient Algorithms,
Final Report on the DFG Special Joint Initiative, volume
594 of Lect. Notes in Comp. Sci., pages 233–249,
Springer-Verlag, 1992.

