Models and Issues in Data Stream Systems

Rajeev Motwani
Stanford University
(with Brian Babcock, Shivnath Babu, Mayur Datar, and Jennifer Widom)

STREAM Project Members: Arvind Arasu, Gurmeet Manku, Liadan O’Callaghan, Justin Rosentein, Qi Sun, Rohit Varma

Data Streams

- **Traditional DBMS** – data stored in finite, persistent data sets
- **New Applications** – data input as continuous, ordered data streams
 - Network monitoring and traffic engineering
 - Telecom call records
 - Network security
 - Financial applications
 - Sensor networks
 - Manufacturing processes
 - Web logs and clickstreams
 - Massive data sets

Data Stream Management System

User/Application

Register Query

Stream Query

Processor

Results

Scratch Space
(Memory and/or Disk)

Meta-Questions

- **Killer-apps**
 - Application stream rates exceed DBMS capacity?
 - Can DSMS handle high rates anyway?
- **Motivation**
 - Need for general-purpose DSMS?
 - Not ad-hoc, application-specific systems?
- **Non-Trivial**
 - DSMS = merely DBMS with enhanced support for triggers, temporal constructs, data rate mgmt?

Sample Applications

- **Network security** (e.g., iPolicy, NetForensics/Cisco, Niksun)
 - Network packet streams, user session information
 - Queries: URL filtering, detecting intrusions & DOS attacks & viruses
- **Financial applications** (e.g., Traderbot)
 - Streams of trading data, stock tickers, news feeds
 - Queries: arbitrage opportunities, analytics, patterns
 - SEC requirement on closing trades

Executive Summary

- **Data Stream Management Systems (DSMS)**
 - Highlight issues and motivate research
 - Not a tutorial or comprehensive survey
- **Caveats**
 - Personal view of emerging field
 © Stanford STREAM Project bias
 © Cannot cover all projects in detail
DBMS versus DSMS

- Persistent relations
- One-time queries
- Random access
- “Unbounded” disk store
- Only current state matters
- Passive repository
- Relatively low update rate
- No real-time services
- Assume precise data
- Access plan determined by query processor, physical DB design

Making Things Concrete

Query 1 (self-join)

- Find all outgoing calls longer than 2 minutes

SELECT O1.call_ID, O1.caller
FROM Outgoing O1, Outgoing O2
WHERE (O2.time - O1.time > 2
AND O1.call_ID = O2.call_ID
AND O1.event = start
AND O2.event = end)

Result requires unbounded storage
Can provide result as data stream
Can output after 2 min, without seeing end

Query 2 (join)

- Pair up callers and callees

SELECT O.caller, I.callee
FROM Outgoing O, Incoming I
WHERE O.call_ID = I.call_ID

Can still provide result as data stream
Requires unbounded temporary storage …
… unless streams are near-synchronized

Query 3 (group-by aggregation)

- Total connection time for each caller

SELECT O1.caller, sum(O2.time - O1.time)
FROM Outgoing O1, Outgoing O2
WHERE (O1.call_ID = O2.call_ID
AND O1.event = start
AND O2.event = end)
GROUP BY O1.caller

Cannot provide result in (append-only) stream
– Output updates?
– Provide current value on demand?
– Memory?

Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
- Runtime and Systems Issues
- Algorithms
- Conclusion
Data Model

- Append-only
 - Call records
- Updates
 - Stock tickers
- Deletes
 - Transactional data
- Meta-Data
 - Control signals, punctuations

System Internals – probably need all above

Related Database Technology

- DSMS must use ideas, but none is substitute
 - Triggers, Materialized Views in Conventional DBMS
 - Main-Memory Databases
 - Distributed Databases
 - Active Databases
 - Sequence/Temporal/Timeseries Databases
 - Realtime Databases
 - Adaptive, Online, Partial Results
- Novelty in DSMS
 - Semantics: input ordering, streaming output, …
 - State: cannot store unending streams, yet need history
 - Performance: rate, variability, imprecision, …

Stream Projects

- Amazon/Cougar (Cornell) – sensors
- Aurora (Brown/MIT) – sensor monitoring, dataflow
- Hancock (AT&T) – telecom streams
- Niagara (OGI/Wisconsin) – Internet XML databases
- OpenCQ (Georgia) – triggers, incr. view maintenance
- Stream (Stanford) – general-purpose DSMS
- Tapestry (Xerox) – pub/sub content-based filtering
- Telegraph (Berkeley) – adaptive engine for sensors
- Tribeca (Belcore) – network monitoring

Aurora/STREAM Overview

Adaptivity (Telegraph)

- Runtime Adaptivity
- Multi-query Optimization
- Framework – implements arbitrary schemes
Query-Split Scheme (Niagara)

- Aggregate subscription for efficiency
- Split – evaluate trigger only when file updated
- Triggers – multi-query optimization

Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
- Runtime and Systems Issues
- Algorithms
- Conclusion

Blocking Operators

- Blocking
 - No output until entire input seen
 - Streams – input never ends
- Simple Aggregates – output “update” stream
- Set Output (sort, group-by)
 - Root – could maintain output data structure
 - Intermediate nodes – try non-blocking analogs
 - Example – juggie for sort [Raman,R,Hellerstein]
 - Punctuations and constraints
- Join
 - non-blocking, but intermediate state?
 - sliding-window restrictions

Punctuations [Tucker, Maier, Sheard, Fegaras]

- Assertion about future stream contents
- Unblock operators, reduces state

Constraints

- Schema-level: ordering, referential integrity, many-one joins
- Instance-level: punctuations
- Query-level: windowed join (nearby tuples only)

- [Babu-Widom]
 - Input – multi-stream SPJ query, schema-level constraints
 - Output – plan with low intermediate state for joins

- Future Work
 - Query-level constraints? Combining constraints?
 - Relaxed constraints (near-sorted, near-clustered)
 - Exploiting constraints in intra-operator signaling
Impact of Limited Memory

- Continuous streams grow unboundedly
- Queries may require unbounded memory
- [ABBMW 02]
 - a priori memory bounds for query
 - Conjunctive queries with arithmetic comparisons
 - Queries with join need domain restrictions
 - Impact of duplication elimination
- Open – general queries

Approximate Query Evaluation

- Why?
 - Handling load – streams coming too fast
 - Avoid unbounded storage and computation
 - Ad hoc queries need approximate history
- How? Sliding windows, synopsis, samples, load-shed
- Major Issues?
 - Metric for set-valued queries
 - Composition of approximate operators
 - How is it understood/controlled by user?
 - Integrate into query language
 - Query planning and interaction with resource allocation
 - Accuracy-efficiency-storage tradeoff and global metric

Sliding Window Approximation

- Why?
 - Approximation technique for bounded memory
 - Natural in applications (emphasizes recent data)
 - Well-specified and deterministic semantics
- Issues
 - Extend relational algebra, SQL, query optimization
 - Algorithmic work
 - Timestamps?

Timestamps

- Explicit
 - Injected by data source
 - Models real-world event represented by tuple
 - Tuples may be out-of-order, but if near-ordered can reorder with small buffers
- Implicit
 - Introduced as special field by DSMS
 - Arrival time in system
 - Enables order-based querying and sliding windows
- Issues
 - Distributed streams?
 - Composite tuples created by DSMS?

Timestamps in JOIN Output

Approach 1
- User-specified, with defaults
- Compute output timestamp
- Must output in order of timestamps
- Better for Explicit Timestamp
- Need more buffering
- Get precise semantics and user-understanding

Approach 2
- Best-effort, no guarantee
- Output timestamp is exit-time
- Tuples arriving earlier more likely to exit earlier
- Better for Implicit Timestamp
- Maximum flexibility to system
- Difficult to impose precise semantics

Approximate via Load-Shedding

Handles scan and processing rate mismatch

Input Load-Shedding
- Sample incoming tuples
- Use when scan rate is bottleneck
- Positive – online aggregation
- Negative – join sampling

Output Load-Shedding
- Buffer input infrequent output
- Use when query processing is bottleneck
- Example – XJoin
- Exploit synopses
Distributed Query Evaluation

- Logical stream = many physical streams
 - maintain top 100 Yahoo pages
- Correlate streams at distributed servers
 - network monitoring
- Many streams controlled by few servers
 - sensor networks
- Issues
 - Move processing to streams, not streams to processors
 - Approximation-bandwidth tradeoff

Example: Distributed Streams

- Maintain top 100 Yahoo pages
 - Pages served by geographically distributed servers
 - Must aggregate server logs
 - Minimize communication
- Pushing processing to streams
 - Most pages not in top 100
 - Avoid communicating about such pages
 - Send updates about relevant pages only
 - Requires server coordination

Stream Query Language?

- SQL extension
- Sliding windows as first-class construct
 - Awkward in SQL, needs reference to timestamps
 - SQL-99 allows aggregations over sliding windows
- Sampling/approximation/load-shedding/QoS support?
- Stream relational algebra and rewrite rules
 - Aurora and STREAM
 - Sequence/Temporal Databases

Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
- Runtime and Systems Issues
- Algorithms
- Conclusion

Aurora Run-time Architecture

- Query plans: operators, synopses, queues
- Memory management
 - Dynamic Allocation – queries, operators, queues, synopses
 - Graceful adaptation to reallocation
 - Impact on throughput and precision
- Operator scheduling
 - Variable-rate streams, varying operator/query requirements
 - Response time and QoS
 - Load-shedding
 - Interaction with queue/memory management

DSMS Internals
Queue Memory and Scheduling
[Babcock, Babu, Datar, Motwani]

- Goal
 - Given: query plan and selectivity estimates
 - Schedule: tuples through operator chains
- Minimize total queue memory
 - Best-slope scheduling is near-optimal
 - Danger of starvation for some tuples
- Minimize tuple response time
 - Schedule tuple completely through operator chain
 - Danger of exceeding memory bound
- Open: graceful combination and adaptivity

Precision-Resource Tradeoff

- Resources: memory, computation, I/O
- Global Optimization Problem
 - Input: queries with alternate plans, importance weights
 - Precision: function of resource allocation to queries/operators
 - Goal: select plans, allocate resources, maximize precision
- Memory Allocation Algorithm [Varma, Widom]
 - Model: single query plan, simple precision model
 - Rules for precision of composed operators
 - Non-linear numerical optimization formulation
- Open: Combinatorial algorithm? General case?

Outline of Remaining Talk

- Stream Models and DSMS Architectures
- Query Processing
- Runtime and Systems Issues
- Algorithms
- Conclusion

Rate-Based & QoS Optimization

- [Viglas, Naughton]
 - Optimizer goal is to increase throughput
 - Model for output-rates as function of input-rates
 - Designing optimizers?
- Aurora – QoS approach to load-shedding

Synopses

- Queries may access or aggregate past data
- Need bounded-memory history-approximation
- Synopsis?
 - Succinct summary of past stream tuples
 - Like indexes/materialized views, but base data is unavailable
- Examples
 - Sliding Windows
 - Samples
 - Sketches
 - Histograms
 - Wavelet representation
Model of Computation

- **Memory:** poly(1/ε log N)
- **Query/Update Time:** poly(1/ε log N)

Self-Join Size Estimation

- AMS Technique (randomized sketches)
 - Given (f₁, f₂, ..., f_N)
 - Z_i = random([-1, 1])
 - X = Σ i Z_i (X incrementally computable)
- Theorem \(\text{Exp}[X] = \Sigma f_i^2 \)
 - Cross-terms \(f_i Z_i Z_j \) have 0 expectation
 - Square-terms \(f_i^2 Z_i^2 = f_i^2 \)
- Space = \(\log (N + \Sigma f_i) \)
- Independent samples \(X_k \) reduce variance

Sliding Window Computations

- **Goal:** statistics/queries
- **Memory:** \(o(N) \), preferably \(\text{poly}(1/\epsilon, \log N) \)
- **Problem:** count/sum/variance, histogram, clustering, ...
- **Sample Results:** \((1+\epsilon)\)-approximation
 - Counting: Space \(O(1/\epsilon \log N) \) bits, Time \(O(1) \) amortized
 - Sum over \([0,R]\): Space \(O(1/\epsilon \log N + \log R) \) bits, Time \(O(\log R \log N) \) amortized
 - Lp sketches: maintain \(\text{poly}(\epsilon R, \log N) \) space overhead
 - Matching space lower bounds

Sliding Window Histograms

- **Key Subproblem – Counting 1’s in bit-stream**
- **Goal:** Space \(O(\log N) \) for window size \(N \)
- **Problem – Accounting for expiring bits**
- **Idea**
 - Partition-track buckets of known count
 - Error in oldest bucket only
 - Future 0’s?

Exponential Histograms

- **Buckets of exponentially increasing size**
- **Between \(K/2 \) and \(K/2+1 \) buckets of each size**
 - \(K = 1/\epsilon \) and \(\epsilon \) = relative error
Exponential Histograms

- Buckets of exponentially increasing size
- Between $K/2$ and $K/2+1$ buckets of each size
- $K = \lceil 1/\varepsilon \rceil$ and ε = relative error

Bucket sizes = $4, 8, 16, 32, 64, 128, \ldots$

$C_{i+1} + C_{i+2} + \ldots + C_j + 1 >\geq (K/2)C_i$

Many other results …

- Histograms
 - V-Opt Histograms
 - [Gilbert, Guha, Indyk, Kotidis, Muthukrishnan, Strauss], [Indyk]
 - End-Biased Histograms (Iceberg Queries)
 - [Manku, Motwani], [Fang, Shiva, Garcia-Molina, Motwani, Ullman]
 - Equi-Width Histograms (Quantiles)
 - [Manku, Rajagopalan, Lindsay], [Khanna, Greenwald]
 - Wavelets
 - Seminal work [Vitter, Wang, Iyer] + many others!

- Data Mining
 - Stream Clustering
 - [Guha, Mishra, Motwani, O’Callaghan]
 - [O’Callaghan, Meyerson, Mishra, Guha, Motwani]
 - Decision Trees
 - [Domingos, Hulten], [Domingos, Hulten, Spencer]

Conclusion: Future Work

- Query Processing
 - Stream Algebra and Query Languages
 - Approximations
 - Blocking, Constraints, Punctuations

- Runtime Management
 - Scheduling, Memory Management, Rate Management
 - Query Optimization (Adaptive, Multi-Query, Ad-hoc)
 - Distributed processing

- Synopses and Algorithmic Problems

- Systems
 - UI, statistics, crash recovery and transaction management
 - System development and deployment

Thank You!