
Visualization of Combinatorial Models and Test Plans

Rachel Tzoref-Brill
School of Computer Science,

Tel Aviv University
and IBM Research, Israel

Paul Wojciak
IBM Systems, USA

Shahar Maoz
School of Computer Science,

Tel Aviv University, Israel

ABSTRACT
Combinatorial test design (CTD) is an effective and widely
used test design technique. CTD provides automatic test
plan generation, but it requires a manual definition of the
test space in the form of a combinatorial model. One chal-
lenge for successful application of CTD in practice relates
to this manual model definition and maintenance process.
Another challenge relates to the comprehension and use of
the test plan generated by CTD for prioritization purposes.

In this work we introduce the use of visualizations as a
means to address these challenges. We apply three different
forms of visualization, matrices, graphs, and treemaps, to
visualize the relationships between the different elements of
the model, and to visualize the strength of each test in the
test plan and the relationships between the different tests
in terms of combinatorial coverage. We evaluate our visu-
alizations via a user survey with 19 CTD practitioners, as
well as via two industrial projects in which our visualization
was used and allowed test designers to get vital insight into
their models and into the coverage provided through CTD
generated test plans.

CCS Concepts
•Software and its engineering → Software testing
and debugging; •Human-centered computing → Vi-
sualization;

Keywords
Combinatorial Testing, Software Visualization

1. INTRODUCTION
Combinatorial Test Design (CTD), a.k.a. combinatorial

testing, see, e.g., [2, 4, 6, 7, 12, 24, 25], is a widely used test
design methodology and is supported by many academic and
commercial tools, e.g., [3,5,10,15,18]. Close to 40 CTD tools
are listed in [17]. CTD is based on a combinatorial model,
consisting of a set of parameters, their respective values,

and constraints on the value combinations. A valid test in
the test space is defined to be an assignment of one value
to each parameter that satisfies the constraints. A CTD
algorithm automatically constructs a test plan, consisting
of a (small) subset of the set of valid tests that covers all
valid value combinations of every t parameters, where t is
usually a user input. The effectiveness of CTD is based on
empirical data that shows that in most cases, the occurrence
of a bug depends on the interaction between a small number
of features of the system under test [6, 13,21].

Successful application of CTD in practice is, however,
challenging. One challenge relates to the manual process of
defining combinatorial models and maintaining them, i.e., as
the system under test evolves, since it requires both domain
knowledge of the system under test and testing expertise.
Another challenge relates to the comprehension and use of
the test plan. Although a test plan is in many cases auto-
matically generated from the model, understanding its tests,
the relations between them, and their relation to the model
in terms of its t-way coverage requirements, e.g., in order to
identify the more important tests and prioritize them or in
order to gain higher confidence in using them, is difficult.

In this work we introduce the use of visualizations as a
means to address these challenges. Specifically, we apply
three different forms of visualization – matrices, graphs, and
treemaps – to visualize the relationships between the differ-
ent elements of the model, such as parameters, constraints,
and parameter combinations, and to visualize the strength
of each test in the test plan in terms of t-way coverage, both
globally and with respect to every other test in the test plan.

Our work follows the classic overview first, zoom and fil-
ter, details-on-demand paradigm [20] in a number of ways.
The parameter matrix and the treemap allow the engineer
to drill-down from the parameter combinations level to the
value combinations level. The graphs allow the engineer to
focus on a selected node and explore its relations with the
other nodes in the graph. The treemap for the test plan
enables filtering by parameters, to allow the engineer to fo-
cus on parameters of higher importance. These features of
interactive exploration are an important aspect of our work.

We have implemented all the proposed visualizations as
part of IBM Functional Coverage Unified Solution (IBM FO-
CUS), an industry-strength CTD tool [9, 18], developed by
IBM Research. All screenshots in the paper are taken from
IBM FOCUS. As color plays an important role in our visu-
alizations, we directly refer to colors in some of the views
and related screenshots.

We further report on an evaluation consisting of two parts:

Table 1: Example online shopping model
Parameter Values

ItemStatus (IS) InStock, OutOfStock,
NoSuchProduct

ExportControl (EC) Yes, No
ShippingDestination (SD) Domestic, Foreign
PricingScheme (PS) Scheme1, Scheme2, Scheme3
DeliveryTimeframe (DT) Immediate, OneWeek,

OneMonth
OrderShipping (OS) Ground, Sea, Air

Constraints
DT = Immediate → OS = Air

OS = Sea → DT = OneMonth

DT = OneMonth → OS 6= Air

SD = Foreign → PS 6= Scheme3

SD = Domestic → OS 6= Sea

a user survey with 19 CTD practitioners, and two real-
world industrial projects in which our visualizations were
used. The evaluation shows that the visualizations were
well-received by IBM FOCUS users who participated in the
survey, and allowed the test designers in the studied projects
to get vital insight into their models and into the coverage
provided through the CTD generated test plans. Thus the
visualizations helped them better tune, trust, and ultimately
improve their test design and execution approach.

The next section presents a running example of a combina-
torial model and two test plans that we will use throughout
the paper. Section 3 presents the visualizations. Section 4
presents the data structures and algorithms we use as well as
an overview of our implementation. Section 5 presents the
evaluation. Section 6 discusses related work and Section 7
concludes.

2. RUNNING EXAMPLE
We use a running example shown in Table 1, both to

demonstrate the basic concepts of CTD, and to demonstrate
our various views in Section 3. The table depicts the param-
eters, values, and constraints of a combinatorial model for
an online shopping system.

The constraints define which value combinations are in-
valid in the test space. For example, the first constraint
in the online shopping model defines the following invalid
combinations: (DT = Immediate, OS = Ground) and (DT =
Immediate, OS = Sea). A valid test is an assignment of one
value to each parameter in the model that does not violate
any of the constraints. For example, (IS = OutOfStock, EC =
Yes, SD = Domestic, PS = Scheme1, DT = OneWeek, OS = Air)
is a valid test.

All tests produced by a CTD algorithm must be valid
tests. To generate a test plan from a combinatorial model,
the CTD algorithm automatically constructs a subset of the
test space so that it covers all valid value combinations of
every t parameters, where t is usually a user input. For
example, the test plan in Table 2 containing 4 valid tests
is a 1-way test plan, since every single value of the model
appears in at least one test of the test plan. However it
is not a 2-way test plan, since it does not cover all valid
pairs of values from the model. For example, the valid pair
(DT = OneWeek, OS = Ground) does not appear in any of the
4 tests. In contrast, the test plan in Table 3 containing 12
valid tests is a 2-way (a.k.a. pairwise) test plan, since every
valid pair of values of the test space appears in at least one
of its tests.

Table 2: A 1-way test plan for the online shopping
model, consisting of 4 tests

1 (IS = OutOfStock, EC = Yes, SD = Domestic,
PS = Scheme1, DT = OneWeek, OS = Air)

2 (IS = NoSuchProduct, EC = No, SD = Foreign,
PS = Scheme2, DT = OneMonth, OS = Ground)

3 (IS = InStock, EC = Yes, SD = Domestic,
PS = Scheme3, DT = Immediate, OS = Air)

4 (IS = OutOfStock, EC = Yes, SD = Foreign,
PS = Scheme1, DT = OneMonth, OS = Sea)

Table 3: A pairwise test plan for the online shopping
model, consisting of 12 tests

1 (IS = OutOfStock, EC = No, SD = Foreign,
PS = Scheme1, DT = Immediate, OS = Air)

2 (IS = InStock, EC = No, SD = Domestic,
PS = Scheme3, DT = OneWeek, OS = Ground)

3 (IS = NoSuchProduct, EC = Yes, SD = Foreign,
PS = Scheme2, DT = OneMonth, OS = Ground)

4 (IS = InStock, EC = Yes, SD = Domestic,
PS = Scheme2, DT = Immediate, OS = Air)

5 (IS = InStock, EC = Yes, SD = Foreign,
PS = Scheme1, DT = OneMonth, OS = Sea)

6 (IS = NoSuchProduct, EC = Yes, SD = Domestic,
PS = Scheme3, DT = Immediate, OS = Air)

7 (IS = OutOfStock, EC = Yes, SD = Foreign,
PS = Scheme2, DT = OneWeek, OS = Ground)

8 (IS = NoSuchProduct, EC = No, SD = Domestic,
PS = Scheme1, DT = OneWeek, OS = Ground)

9 (IS = OutOfStock, EC = No, SD = Foreign,
PS = Scheme2, DT = OneMonth, OS = Sea)

10 (IS = NoSuchProduct, EC = No, SD = Foreign,
PS = Scheme1, DT = OneMonth, OS = Sea)

11 (IS = OutOfStock, EC = Yes, SD = Domestic,
PS = Scheme3, DT = OneMonth, OS = Ground)

12 (IS = InStock, EC = Yes, SD = Domestic,
PS = Scheme3, DT = OneWeek, OS = Air)

3. VISUALIZATIONS
We provide an overview of the new visualization views

that we defined and support in IBM FOCUS. For each we
provide motivation for the view, what information it displays
and how it is presented, using the running example discussed
in Section 2.

The examples and descriptions in this section are for demon-
stration purposes only. In Section 5 we will describe how
these views were used in real-world projects involving real-
world use cases and data.

We divide the different views according to their visualiza-
tion form. We support three such forms: matrices, graphs,
and treemaps [19]. We describe the views per visualization
form, from the simplest form to the most complex one.

3.1 Matrix-Based Visualizations
Matrices are one of the most basic and popular forms for

the presentation of data. In the context of CTD, matrices
are a natural way to visualize the relationship between pairs
of parameters in a model and in its derived test plan. The
matrix helps explore the parameter pairs space as a means
to review and confirm understanding of which pairs are con-
strained more than others in the test space and which pairs
are covered more than others in the test plan.

Figure 1 illustrates the visualization of the online shop-
ping model from Table 1, together with the 1-way test plan
from Table 2. The upper half of the matrix represents the
validity status of the parameter pairs. Each cell reflects the
percentage of valid value pairs out of all value pairs of the
corresponding parameter pair. Darker cells draw attention

Figure 1: Matrix visualization for online shopping model

and its 1-way test plan. Upper half visualizes percentage

of valid value pairs out of all pairs for each parameter pair.

Lower half visualizes percentage of covered pairs out of all

valid pairs for each parameter pair. See Section 3.1.

Figure 2: Drill-down to the values level for the parameter

pair OS and DT. Valid pairs are marked green, invalid ones are

red. Covered pairs are marked V, uncovered ones with an X.

Green X cells are darker green than green V cells.

to pairs that are more constrained than other pairs, and may
call for an additional review by the practitioner. Similarly,
cells that are expected to be constrained but are marked
with light colors can also draw attention from the practi-
tioner. For example, the darkest cell in the upper half of the
matrix in Figure 1 is for the parameter pair (DT,OS), indicat-
ing the multiple constraints on their relationship, resulting
in only 56% of the value pairs being valid.

The lower half of the matrix represents the coverage sta-
tus of the parameter pairs with respect to the test plan.
Each cell reflects the percentage of covered value pairs out
of all valid value pairs of the corresponding parameter pair.
Darker cells draw attention to pairs that are less covered
than other pairs. For example, the darkest cell in the lower
half of the matrix in Figure 1 is for the parameter pair
(DT, PS), indicating that only 3 of 9 valid value pairs are
covered by this 1-way test plan.

Of course, in a pairwise or high interaction level test plan
we expect all cells to have 100% value coverage. We note
that IBM FOCUS can also analyze the coverage of exist-
ing, manually-designed test plans, where each test case was
mapped to a combination of values from the model. In this
case we expect different levels of coverage for different pa-
rameter pair cells.

Double-clicking on a parameter pair cell will drill down
to the value pairs level, where one can view their validity
and coverage status, as depicted in Figure 2. For example,
the value pair (DT = OneWeek, OS = Ground) is the only valid
pair (marked with green) that is uncovered by the test plan
(marked with an X).

We added support in IBM FOCUS also for creating a ma-

trix visualization for the model only, without a correspond-
ing test plan. In this case, only the validity status will be
visualized, hence the lower half of the matrix will be empty.
In Section 5 we refer to this case as a separate view than the
one that incorporates both validity and coverage visualiza-
tion.

3.2 Graph-Based Visualizations
We use graphs to visualize elements and their relationships

via three different views.

3.2.1 Parameter graphs
Parameter graphs visualize the relationships between pa-

rameters, specifically to indicate the amount of constraints
they share. The motivation is the same as for the matrix
upper half – to assist the practitioner in reviewing and de-
bugging the CTD model during its development.

We construct the parameters graph as follows. Nodes
represent parameters, edges represent constraints, and two
parameters are connected if there is a constraint in which
they both appear. The more constraints are in common
between the two parameters, the thicker the edge between
them. Hovering over an edge displays all its constraints in
a pop-up message.

Figure 3 depicts the parameter graph for our online shop-
ping example. The thickest edge in the graph indicates that
the parameters DT and OS share the largest amount of con-
straints. Clicking on a certain node highlights all nodes it
shares constraints with and the respective edges. When a
node is selected, the user can view the graph in radial tree
layout, as shown in Figure 3, to visually emphasize the re-
lations between the selected node and the other nodes.

3.2.2 Constraint graphs
Constraint graphs are the dual of parameter graphs, where

each node represents a constraint, and edges between two
nodes represent common parameters between the two re-
spective constraints. Constraint graphs can be used to lo-
cate complex constraints that may need to be simplified and
similar constraints that may be merged. As opposed to pa-
rameter graphs, constraints graphs are hyper-edged graphs,
i.e., there may be multiple edges between two nodes, one
for each common parameter. The constraints graph for our
online shopping example is depicted in Figure 3.

3.2.3 Test-plan graphs
The motivation for visualizing combinatorial test plan via

graphs is to provide an understanding of how much power-
ful each test is with respect to the other tests in the test
plan and help prioritize the test plan. This is achieved by
visualizing (1) the amount of unique value tuples that each
test case covers, and (2) how many of its value tuples are
common with other tests (and with which ones).

We construct the test plan graph as follows. Nodes repre-
sent tests, numbered according to their numbering in IBM
FOCUS, and the more unique value combinations the cor-
responding test covers, the larger the node. Edges represent
value combinations. Two tests are connected if there are
value combinations which they both cover. The more com-
binations are in common between the two tests, the thicker
the edge between them.

It is important to note that the value combinations are de-
termined according to the interaction coverage requirements

Figure 3: On the left, the parameter graph for our example. In the middle, the same graph where the OS parameter is selected

by the engineer, in radial tree layout, highlighting the parameters it shares constraints with and the respective edges. On the

right, the constraint graph for our example: nodes represent constraints, numbered according to their order in IBM FOCUS;

edges represent parameters and are labelled with the parameter names. See Sections 3.2.1 and 3.2.2.

that were used to generate the test plan. For example, when
one requests 3-way coverage, the edges represent triplets of
values that the two related nodes are both covering.

When hovering over a node, its parameter values are dis-
played in a pop-up message. Similarly, when hovering over
an edge, all the value combinations it represents are dis-
played in a pop-up message.

Figure 4 depicts the test plan graph for the pairwise test
plan of our online shopping example, which was presented
in Table 3. According to the nodes size, it is easy to see
that test 1 contains the most unique value pairs. When
clicking it, the tests it shares value pairs with are highlighted
together with their respective edges. One can see that test 1
shares value pairs with 7 out of 11 other tests, though only
a few value pairs in each case. The next most unique test is
test 5, and it shares value pairs with 8 out of 11 other tests.

3.3 Treemap-Based Visualizations
Treemap [19] is a visualization method for displaying hier-

archical data by using nested rectangles of different sizes and
colors. Each of the dimensions of size and color represents a
different aspect of the visualized data. We use treemaps for
two types of visualization.

3.3.1 Test plan treemap
The motivation for visualizing test plans using treemaps

is similar to that explained in Section 3.2.3 for graph visu-
alization, i.e., understanding the respective strength of each
test case and prioritizing the test plan. Similarly to test-
plan graphs, we use the value combination coverage of each
test as the main measure to be visualized. However, there
are differences in the nature of the displayed information.

Each square in the treemap represents a test of the test
plan, numbered according to its numbering in IBM FOCUS.
The size of the square reflects the percentage of value tuples
it uniquely covers in the test plan, while its shade reflects the
same information only with respect to a user-selected subset
of parameters. This allows for prioritizing tests according to
specific parameters of high importance. The tests are always
visualized ordered according to their size.

We present two ways to calculate the unique coverage of
each test: incremental coverage and non-incremental cover-
age. A test incrementally covers a value tuple if this tuple is

Figure 4: At the top, the test plan graph for the online shop-

ping example and its derived pairwise test plan containing 12

tests. At the bottom, the same graph after the largest node

representing test 1 is clicked, in radial tree layout, highlight-

ing the nodes it shares value pairs with and the respective

edges. See Section 3.2.3.

not covered by any preceding test (according to the order in
which they are produced by IBM FOCUS when creating the
test plan). A test non-incrementally covers a value tuple if
this tuple is not covered by any other test in the test plan.

Figure 5 depicts the test plan treemap for the same pair-
wise test plan of our online shopping example (as in Sec-
tion 3.2.3). When using incremental coverage, the tests cov-
erage more or less follows the order in which they were gener-
ated by the CTD tool, due to the greedy nature of the CTD
generation algorithm. When using non-incremental cover-
age, we get that test 1 and 5 have the most unique coverage
of value pairs, in accordance with the test plan graph visu-
alization (note the size of nodes 1 and 5 in Figure 4).

3.3.2 Model and test plan treemap
This view visualizes similar information to the one visu-

alized by the matrix described in Section 3.1, i.e., amount
of validity and amount of coverage of value combinations.
However, as opposed to matrices, which are two-dimensional,
the treemap is not limited to pairs only. Each square rep-
resents a parameter combination (tuple). The size of the
square reflects its coverage percentage, while its shade re-
flects its validity percentage. For example, if the test plan
was generated using 3-way requirements, then the squares
in the treemap represent parameter triplets.

Figure 6 depicts the model and test plan treemap for the
online shopping example and its derived pairwise test plan
(which appears in Table 3). All squares are of equal size,
indicating that all parameter pairs are equally covered by
the test plan. The darker squares indicate lower percent-
age of valid pairs for the respective parameter pairs. As
seen before, (DT, OS) is the darkest square due to its lowest
percentage of valid value pairs.

As in the matrix view, by clicking a square, the treemap
view allows the user to drill down to the value tuples level.

4. COMPUTATION AND IMPLEMENTATION
In this section we provide details on the algorithmic as-

pects of the data queries required for the visualizations as
well as on the implementation of the visualization views.

4.1 Data Query Computation
We describe the data queries computation for each of the

visualization views. We implemented these computations as
part of IBM FOCUS.
Matrix data query computation

The matrix visualization requires two types of information
for each pair of parameters: (1) the percentage of valid value
pairs out of the total number of value pairs, and (2) the
percentage of value pairs covered by the test plan out of
all valid value pairs. In the matrix view we display both
the actual percentage (in the cell itself) and the numerator
and denominator values (in a tooltip when hovering over the
cell). The percentage is also used to determine the color and
shade of the cell.

Algorithm 1 presents the pseudo-code for computing the
above information. It receives as input a combinatorial
model S = (P, V,C), where P is the set of parameters, V is
the set of value sets (one value set per parameter), and C is
the set of constraints, a Binary Decision Diagram (BDD) [1]
V alidS representing the set of all valid tests in the model
(will be explained in the following), and optionally also a
test plan T , which is a set of value combinations, where

input : A combinatorial model S=(P,V,C)
The BDD V alidS of all valid tests of S
Optional: a test plan T

output: An array total of the number total value pairs per
parameter pair
An array valid of the number of valid value
pairs per parameter pair
Optional: an array covered of the number of
covered value pairs per parameter pair

1 for pi, pj ∈ P do
2 if i < j then
3 total(i, j)←

∣∣V (i)
∣∣×∣∣V (j)

∣∣
4 validPairs← project(V alidS , (i, j))
5 valid(i, j)←|coveredPairs|
6 if |T | > 0 then
7 covered(i, j)← 0
8 for (v1, v2) ∈ validPairs do
9 covered(i, j)←

covered(i, j) + isCovered(T, (v1, v2))

10 end

11 end

12 end

13 end

Algorithm 1: Query for matrix visualization. See Section 4.1.

each value combination t ∈ T assigns a single value to each
parameter in P . The algorithm iterates over all parameter
pairs in the model, and for each pair computes the total
number of value pairs, the valid number of value pairs, and
the number of value pairs covered by the test plan (if given).
The total number of value pairs can be easily computed by
multiplying the number of values of the first parameter with
that of the second parameter (see line 3). However, comput-
ing the number of valid pairs is much more challenging. Note
that we cannot simply evaluate the constraints in C against
a given value pair, as there may be insufficient information
to conclude whether or not they are satisfiable. Instead, to
precisely and efficiently compute the number of valid value
pairs for a given parameter pair, we use a symbolic repre-
sentation based on Binary Decision Diagrams (BDDs) [1], a
compact data structure for representing and manipulating
Boolean functions. Specifically, we follow Segall et al. [18]
and represent the set of all valid tests in the combinato-
rial test space using a single BDD, which is given to our
algorithm as input (V alidS). Note that by nature of con-
struction, V alidS considers both the constraints explicitly
specified by the user who defined the model, and those im-
plicitly derived from combinations of explicit constraints.
To compute the number of valid value pairs, we project the
V alidS BDD on the parameter pair by existentially quanti-
fying all other parameters from the BDD (line 4). Finally,
we compute the coverage of the parameter pair in the input
test plan T by iterating over all valid value pairs, and for
each valid pair, checking whether it appears in at least one
test in T (line 9).

The time complexity of Algorithm 1 is proportional to
the number of pairs in P which is

(|P |
2

)
, multiplied by the

complexity of the most expensive operation inside the loop
which is the projection operation, by itself proportional to
the size of V alidS .

The values level drill-down uses the validity and coverage
data computed for the parameter level matrix to determine

Figure 5: On the left, the test plan treemap for the online shopping example and its derived pairwise test plan containing 12

tests, using incremental coverage. On the right, the same test plan using non-incremental coverage. See Section 3.3.1.

Figure 6: The model and test plan treemap for the online

shopping example and its derived pairwise test plan. The

size of the squares indicates the percentage of coverage of the

related parameter pairs in the test plan. They are all of equal

size because the test plan achieves full pairwise coverage. The

shade of the squares indicates the percentage of valid pairs

for the respective parameter pairs. See Section 3.3.2.

for specific value pairs whether or not they are valid and
whether or not they are covered by the test plan.
Graph data query computation

The parameter and constraint graphs require data queries
on the identity of the parameters that appear in each con-
straint. This information is relatively easy to extract via
parsing of the constraints, and can be performed in time lin-
ear to the size of the constraints. In contrast, the test plan
graph requires a more complex computation of the value tu-
ples that are uniquely covered by each test in the test plan,
and the number of value tuples shared between each two
tests. Thus, for each test in the test plan we compute both
the set of all value tuples it covers, and the set of value tuples
it uniquely covers in the test plan. The former is used to
calculate the value tuples intersection with every other test
in the test plan to form the graph edges and determine their
thickness. The latter is used to calculate the size of each
node. Note that the value tuples are determined according

to the parameter tuples that were defined in the interac-
tion coverage requirement that were used to form the test
plan. For example, in a 3-way test plan, the value tuples are
all valid triplets of values. In a mixed-strength test plan,
where different t level requirements are defined for different
sets of parameters, different value tuples may correspond to
different sizes of parameter tuples.

To compute the set of covered value tuples for each test,
we iterate over the parameter tuples, and extract the cor-
responding value tuple from the test. To compute the set
of uniquely covered value tuples, for each covered tuple we
iterate over the rest of the test plan to check if there is an-
other test that covers the same value tuple. If so, the value
tuple is removed from the set of uniquely covered tuples.

The complexity of the computation of the above data
queries is O(k ×|T |2), where k is the number of parame-
ter tuples in the coverage requirements. For example, if the
requirements are pairwise coverage, then k =

(|P |
2

)
.

Treemap data query computation
The two treemap-based views require data queries that

are similar to the queries of the other views, with slight dif-
ferences. The model and test plan treemap requires validity
percentage and coverage percentage for each parameter tu-
ple, hence the calculation is similar to the symbolic calcu-
lation described in Algorithm 1. The only difference is that
instead of iterating over parameter pairs, we iterate over
parameter tuples based on the coverage requirements that
were used when constructing the test plan. The time com-
plexity is similar to that of the matrix computation, where
rather than depending on the number of parameter pairs, it
depends on the number of parameter tuples in the coverage
requirements for the given test plan.

The test plan treemap requires the computation of the
number of uniquely covered value tuples by each test, simi-
larly to the computation that is performed for the test plan
graph, but it also requires the same computation with re-
spect to a selected subset of parameters. This information
is computed in a similar manner, where parameter tuples
that are not in the selected subset are skipped. Another
difference is the option for incremental coverage, which is
achieved by counting unique value tuples with respect to
the previous tests only (in order of their generation by IBM
FOCUS) instead of with respect to the entire test plan. The

complexity is again O(k ×|T |2), as that of the computation
for the test plan graph.

4.2 Implementation in IBM FOCUS
For the visualization implementation we used open source

libraries which were incorporated into IBM FOCUS, as well
as the Java Swing library which is an integral part of Java.
Our main technological consideration was to use open source
implemented purely in Java, for compatibility with the ex-
isting implementation of IBM FOCUS and in order to keep
it a pure Java tool. Another consideration was to use open
source libraries that provide a license that is suitable for use
by a commercial tool, as required by IBM.

We implemented the matrix visualization in Java using
its embedded Swing library, which supports two-dimensional
tables. We implemented the graph visualization using Java
Universal Network/Graph Framework (JUNG) [11]. We im-
plemented the treemap visualization using treemaplib [23].

5. EVALUATION
We present an evaluation of our work in two different di-

mensions. We start with a user survey we conducted to
evaluate different aspects of the effectiveness of our visu-
alization views. We then continue with reporting on two
real-world industrial projects in which our visualization was
used as part of the deployment of CTD for test design.

5.1 User Survey
The research questions guiding our user survey are: RQ1

Which of the visualization views are the most popular among
the practitioners and do they consider some of them as bet-
ter than others? and RQ2 How do practitioners rate the
value of the visualizations in terms of their usefulness, com-
prehension assistance, trust in the results, and support for
communication?

5.1.1 Setup and participants
Our survey consisted of an online questionnaire that the

users of IBM FOCUS were asked to fill in an IBM network.
For each of the 7 views in IBM FOCUS (matrix views with
and without coverage information were counted as different
views), we first asked whether the participant has used this
view in their work. If they answered positively, we followed
with four additional questions asking them to rate their level
of agreement on a Likert scale from 1 to 5 (from strongly
disagree to strongly agree) with statements indicating that
the view (1) was useful, (2) assisted in comprehension of
the model and/or test plan, (3) increased trust in IBM FO-
CUS results, and (4) provided support for communication
of the model and/or test plan to others. We also asked the
participants to indicate whether they are “visual” by rating
their level of agreement with the statement “I am a visual
person and typically like using visualizations in my work”.
We concluded the survey with two general rating questions,
asking the participants to rate their level of agreement with
the statements that the visualizations in IBM FOCUS made
it (1) better and (2) more fun to use.

34 practitioners answered the survey, all of whom are CTD
practitioners regularly involved in creating and comprehend-
ing combinatorial models for test designs, as part of their
work in IBM. 19 of the 34 participants indicated that they
have already used at least one of the visualization views in
their work, and the results we report are based on their an-

swers. Of these 19, 2 indicated they use IBM FOCUS for
test design for more than 3 years, 8 use it for 1-3 years, and
9 for less than a year.

5.1.2 Results
Out of the 19 participants, 15 indicated they used the test

plan and model matrix in their work, and 14 indicated they
used the model matrix in their work. The test plan graph
and the test plan treemap were used by 10 participants. The
test plan and model treemap and the constraints graph were
used by 7 participants. Finally, the parameter graph was
used by 6 participants. These numbers indicate that the
matrix-based views are the most popular ones; they were
used more than twice than the non-popular ones.

To assess the perceived quality of each of the views, we
report for each view its overall rating average, median, and
standard deviation (SD). Note that each view was rated by
a different number of participants, as detailed above.

The median rating for each of the 7 views was 4 (out of
5). The model and test plan treemap received the highest
average rating of 4.21 (SD: 0.72), followed by the test plan
treemap with average of 3.92 (SD: 0.91), then both model
matrix and constraints graph with average of 3.79 (SD: 0.7
and 0.86, respectively). Next was the parameter graph with
average of 3.75 (SD: 0.97), followed by model and test plan
matrix with average of 3.72 (SD: 0.98). Closing the list is
the test plan graph with average of 3.57 (SD: 1.16).

To answer [RQ1], the results show that the matrix vi-
sualizations are the most popular ones, and that the treemap
visualizations and specifically the model and test plan treemap
view are the ones most appreciated by the survey partici-
pants.

To assess the four quality aspects asked about in the sur-
vey, we report for each view its overall rating average, me-
dian, and standard deviation. The median rating for each of
the four qualities was 4. For usefulness, the average rating
was 3.85 (SD: 0.94), for comprehension assistance 3.81 (SD:
0.94), for trust in the results 3.74 (SD: 0.94), and for com-
municating to others 3.8 (SD: 0.89). In addition, the average
rating for the statements that the visualizations made IBM
FOCUS better and more fun to use were 3.95 (median: 4,
SD: 0.89) and 3.8 (median: 4, SD: 0.83), respectively.

14 of the 19 participants indicated they are “visual” peo-
ple, i.e., agreed or strongly agreed to the statement that
they liked using visualizations in their work. When consid-
ering the answers of these 14 participants only, the overall
ratings increase in all aspects, with lower standard devia-
tion. For usefulness, the average rating is 4.07 (SD: 0.76),
for comprehension assistance 4.05 (SD: 0.72), for trust in
the results 3.93 (SD: 0.81), and for communicating to others
4 (SD: 0.71). The average rating for the statements that
the visualizations made IBM FOCUS better and more fun
to use are 4.36 (SD: 0.48) and 4.07 (SD: 0.49), respectively.

To answer [RQ2], all quality aspects were rated rela-
tively high and with low variance. None of these four quali-
ties was very different than the others.

5.1.3 Limitations and threats to validity
We discuss threats to the validity of the survey results,

starting with internal validity. Our visualization views were
introduced recently to IBM FOCUS and their use is op-
tional. We note that out of more than 300 practitioners who
are registered as users of IBM FOCUS in IBM, only 34 chose

to answer our survey. From these 34, only 19 have indicated
that they have already used at least one of the visualiza-
tions in their work. The results we report here are based on
the answers of these 19 practitioners. This relatively small
number of answers reflects the fact that the visualizations
are not perceived as a critical feature of IBM FOCUS and
that it may take time until more users of IBM FOCUS adopt
and take advantage of them. That said, we are encouraged
by comments we have received from several practitioners
who answered the questionnaire, including, e.g., “I didn’t
know about a couple of the later graphs until taking this sur-
vey (like the constraints one).” and “I really like all the new
graphical features, unfortunately, I’ve not had the time to
really understand how they all work. If I did, I think I’d use
them in my work much more. Tks”.

There are also threats to external validity. Due to the self-
selection of our survey participants and the small sample,
the survey results may not be representative, hence gener-
alization is questionable.

5.2 Real-World Industrial Projects
We report on two real-world industrial projects in which

our visualization was used as part of the deployment of CTD
for test design. The projects are reported by the second
listed author who works as a test architect in the Systems
division of IBM. They were not done specifically for the pur-
pose of evaluating the visualizations but as part of the ordi-
nary work of this author in IBM.

5.2.1 IBM TS7700 virtual tape server (VTS)
VTS tests were designed and used for functional testing,

covering functional operation variations. The emphasis was
on proper completion of a single task in a given test en-
vironment. The model contained 6 parameters in total.
The test environment was represented by 5 model parame-
ters, MachineModel (2 values), Number_of_Drives (2 values),
Drive_type (4 values), MediaType (3 values), and Encrypt-

edType (2 values), and functional tasks were represented
by another parameter Test, with 13 values for the different
tasks. There were 41 constraints on the value combinations
(for example limiting specific tasks to specific environment
elements in which they can be performed), resulting in 368
legal tests. Pairwise requirements were used and IBM FO-
CUS created a test plan containing 39 tests.

At first, no limitation was considered with respect to af-
fordability of total tests given test resources (people, ma-
chines, time). The 39 resulting tests were considered afford-
able. However, the test team was informed that an early
milestone (playback) existed. This milestone entailed pro-
viding a beta version of the new function to select customers.
Given that there were not enough resources to execute all
the tests prior to the early milestone, the test team began
using IBM FOCUS visualizations.

Before any testing was started, the test team used the vi-
sualizations to assist in making the decision on which combi-
nations of test to prioritize. The prioritization would allow
sufficient coverage prior to support of beta customers. The
tests were prioritized for execution by studying the treemaps
showing incremental and coverage benefits. Figure 7 depicts
the incremental and non-incremental treemap for VTS pair-
wise test plan. Initially, the incremental treemap for the test
plan was explored, pointing out how much more incremental
coverage benefits the first couple tests provide. By deselect-

ing incremental, the tests with the highest value coverage
were quickly seen. These views enabled the team to think
about what tests they may want to try first. From both
treemaps, they got an idea that they like tests 1 and 2 for
incremental benefits, but they also like tests 7, 12, and 20
for the value coverage benefits.

The test designers then used the graphs to “see” the spe-
cific relationships covered by the tests they selected to exe-
cute first (7, 12, 20, then 1 and 2). For example, Figure 8
visualizes the relationship between test 1 and the other tests,
by selecting the node that represents test 1 in the graph. The
graph shows how test 1 dominates most of the other tests,
i.e., covers value pairs also covered by most other tests, but
does not have common coverage with tests 2, 7, and 12.

The test designers then looked at the test plan model
matrix view, depicted in Figure 9. This allowed them to
confirm the total coverage offered by the test plan. (Inci-
dentally, it was mentioned that it might be helpful if there
were a matrix view that would show percentage coverage of-
fered by the subset of tests they had selected for their beta
support1). Lastly, the test designers drilled down into the
cells with validity percentage less than 100% to see that the
expected constraints were applied as desired.

5.2.2 IBM zEnterprise EC12 Enhanced Driver Main-
tenance (EDM)

EDM tests were of a system level. They cover interactions
between different system functions. Each test represents
what can be described as an end to end sequence of several
steps for related and also unrelated tasks. These main steps
are reflected by the parameters prefixed with Pre, During,
and Post. In total there were 12 parameters in the model
with number of values per parameter ranging from 3 to 17,
and with 20 constraints, resulting in a test space containing
1.5× 109 valid tests.

Given that many of the tasks introduced into the execu-
tion sequences are unrelated to EDM flow and that these
same tasks can take hours to complete, the test designer
wished to limit the appearance of some tasks in the test
case matrix. Parameter value weights, as supported by IBM
FOCUS, were defined in order to meet this requirement.

The coverage requirement was 3-way across three different
parameters that were considered central to the execution
sequence, Pre_Condition, During_Workload, and
Post_Condition. All of the other parameters were allowed
to be distributed across the resulting tests (a.k.a. to “float”
in the jargon used by the test designers). This is where
weights were chosen to emphasize and de-emphasize certain
parameter values in the resulting tests2. Using the above
coverage requirements and weights, the resulting test plan
produced by IBM FOCUS contained 48 tests.

EDM testing had an early milestone like VTS testing.
Again, this milestone was defined such that not all the tests
could be attempted before that date. The test designer con-
sidered whether certain tests might be likely to provide more
coverage benefits. From studying the test plan treemaps and
graphs for EDM tests, it became clear that unlike VTS test-
ing where there were coverage benefits offered by starting

1We have added this to IBM FOCUS list of feature requests.
2Assigning weights to values in a combinatorial testing
model is a requirement on the distribution of values in the
solution test set. This requirement reflects the importance
of different values to the tester [5].

Figure 7: On the left, the test plan treemap for VTS and its pairwise test plan containing 39 tests, using incremental coverage.

On the right, the same test plan using non-incremental coverage. See Section 5.2.1.

Figure 8: The test plan graph for VTS and its pairwise test

plan containing 39 tests, where the node representing test

1 is selected in order to explore its coverage relative to the

other tests. See Section 5.2.1.

Figure 9: The matrix for VTS model and its derived pair-

wise test plan containing 39 tests. See Section 5.2.1.

with certain tests, EDM tests did not offer such an advan-
tage. The coverage was largely equivalent from one test to
another, albeit for different parameter values. This was re-
flected by identical sizes and shades for the treemap, and
identical node sizes for the graph. For this reason, EDM
test execution leader was given the freedom to select which
tests to do and when.

The matrix view was used to evaluate the impacts of
the different weights, as applied to parameter values. Fig-
ure 10 top and bottom depict the matrix views for the test
plan with and without the use of weights, respectively. As
expected, the pairs involving the three central parameters
mentioned earlier maintain 100% coverage. The intent was,

as mentioned, to minimize specific parameter values’ ap-
pearance in the resulting tests. By using the matrix view
with the drill downs for specific cells, judgements were made
by the subject matter expert test designer regarding suit-
ability of resulting test coverage. These judgements were
based on historical data relating to prior EDM test efforts
and performance on customer systems. For example, pre-
vious EDM releases demonstrated that while there were
many different Pre_Level parameter values, one particular
parameter value dominated actual customer usage. Coin-
cidentally, the dominant value was also the least costly in
terms of test environment setup time. Weights were used
to favor this value in the tests. By using the matrices
in Figure 10, and drilling into the (Pre_Level, Precon-

dition/Post_Condition/During_Workload) cells, the test
engineer confirmed that the desired Pre_Level parameter
value distribution was achieved. In prior EDM releases with-
out this CTD visualization capability, the engineer resorted
to doing this evaluation “by eye” over the entire test list.

5.2.3 Projects discussion
The similarities and differences between these two case

studies of IBM FOCUS visualizations are interesting.
On the one hand, both test efforts were motivated by early

milestone coverage objectives. The visualizations allowed
the test designers to plan for test execution accordingly.

On the other hand, the two projects differed in the type
of testing, functional versus system testing, and in the in-
teraction coverage requirements. The resulting observation
that the test plan treemap and graph were useful for VTS
test plan and less useful for EDM test plan may be related to
these differences. The reason is that while using pairwise re-
quirements to generate the test plan induces different levels
of pairwise coverage for different tests with respect to the
rest of the test plan, having most of the parameters float
without coverage requirements as in EDM induces similar
levels of coverage for different tests.

Both test plan design efforts did benefit from the ma-
trix view with the drill down. In VTS test plan the matrix
view proved beneficial for constraint evaluation. In EDM
it proved advantageous for deciding on floating parameter
value distribution and for constraint evaluation.

In sum, IBM FOCUS visualizations allowed test designers
to get vital insight into their models and into the coverage
provided through CTD generated test plans, and thus helped

Figure 10: At the top, the matrix for EDM and its test plan derived from 3-way requirements on the three central parameters,

without weights. At the bottom, the matrix for the test plan derived using the same coverage requirements with the addition

of weights. Note the different shades and coverage levels for the same cells in the two matrices. See Section 5.2.2.

them better tune, trust, and ultimately improve their test
design and execution approach.

6. RELATED WORK
Many CTD tools are listed in [17], e.g., [3,5,10,15]. To the

best of our knowledge, almost none is providing visualiza-
tion of models and test plans (with the exceptions described
below). We are aware of only three works that suggest the
use of visualizations related to combinatorial models and
test plans. A short paper by Lopez-Herrejon and Egyed [16]
suggested the use of visualizations related to combinatorial
models and test plans, specifically for pairwise test plans in
the context of software product lines. This paper did not
present implementation and evaluation. The NIST Combi-
natorial Coverage Measurement Tool [14] creates a graphical
view for a given test set, showing for each level of value cover-
age, the percentage of parameter combinations that reached
that coverage level. The view is accumulative and does not
refer to individual parameter combinations. Finally, the
commercial CTD tool Hexawise [8] includes a value-level
coverage matrix and has a slider one can use to see how
the coverage increases as one adds tests from the test plan.
The tool does not show a matrix at the parameters level and
does not include any additional visualizations.

Save of the above, to the best of our knowledge, our work
is the first to present, implement, and evaluate interactive
visualizations for combinatorial models and test plans.

7. CONCLUSION AND FUTURE WORK
We presented visualizations based on matrices, graphs,

and treemaps, as a means to assist in comprehension of com-
binatorial models and test plans and in prioritizing a test
plan. We integrated the visualizations into IBM FOCUS, a
commercial industry-strength CTD tool, using a non-trivial
symbolic implementation, and evaluated it via a user sur-
vey and two real-world industrial projects. The evaluation
shows that the visualizations can help testers better tune,

trust, and improve their test design and execution approach.
Matrices, graphs, and treemaps are useful if they are not

too large and complex; otherwise, additional techniques should
be used to help the viewer in exploring them, such as fish-
eye graph views (see, e.g., [22]). Our use of interactive drill-
down and focus, in all three visualization forms, which fol-
lows the overview first, zoom and filter, details-on-demand
paradigm [20], is one means to address this challenge. In
terms of performance, our use of BDD-based data struc-
tures and algorithms makes the computation of the data for
the visualizations scale well: in all cases we encountered the
computation took no more than a few seconds; we did not
receive any scale complaints from the users of IBM FOCUS.

In the future, we plan an extended and more systematic
user evaluation. We would also like to expand the interac-
tivity of our visualizations by enabling on-the-fly updates
to the views following changes in the underlying data layer,
e.g., when choosing different subsets of the test plan for ex-
ecution. Finally, we plan to investigate the use of visualiza-
tion to help IBM FOCUS users compare between different
versions of a combinatorial model and between alternative
combinatorial test plans.

8. ACKNOWLEDGMENTS
We thank Itai Segall for suggesting the use of visualiza-

tions to improve the usability of IBM FOCUS. We thank
Aya Chayat and Shiri Ladelsky for implementing the visu-
alizations as part of an undergraduate project class at TAU.
Part of this work was done while SM was on sabbatical as
visiting scientist at MIT CSAIL. This research was done
under the terms of a joint study agreement between IBM
Corporation Inc (via the IBM Research Lab - Haifa) and
Tel Aviv University. Additionally, part of the research lead-
ing to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 610802.

9. REFERENCES
[1] R. E. Bryant. Graph-Based Algorithms for Boolean

Function Manipulation. IEEE Trans. on Comp., 1986.

[2] K. Burroughs, A. Jain, and R. Erickson. Improved
quality of protocol testing through techniques of
experimental design. In SUPERCOMM/ICC, 1994.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG System: An Approach to Testing
Based on Combinatorial Design. IEEE Trans. on
Softw. Eng., 1997.

[4] M. B. Cohen, J. Snyder, and G. Rothermel. Testing
across configurations: implications for combinatorial
testing. SIGSOFT Softw. Eng. Notes, 2006.

[5] J. Czerwonka. Pairwise Testing in Real World. In
PNSQC, 2006.

[6] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-Based Testing in Practice. In ICSE, 1999.

[7] M. Grindal, B. Lindström, J. Offutt, and S. F. Andler.
An evaluation of combination strategies for test case
selection. Empirical Softw. Eng., 2006.

[8] Hexawise. https://hexawise.com/.

[9] IBM Functional Coverage Unified Solution (IBM
FOCUS). http://researcher.watson.ibm.com/
researcher/view group.php?id=1871.

[10] Jenny website.
http://burtleburtle.net/bob/math/jenny.html.

[11] Java universal network/graph framework (JUNG).
http://jung.sourceforge.net/.

[12] D. R. Kuhn, R. N. Kacker, and Y. Lei. Introduction to
Combinatorial Testing. Chapman & Hall/CRC, 2013.

[13] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
Fault Interactions and Implications for Software
Testing. IEEE Trans. on Softw. Eng., 2004.

[14] R. Kuhn. Combinatorial coverage measurement tool,
user guide. Technical report, NIST, 2011.

[15] R. Kuhn, Y. Lei, and R. Kacker. Practical
Combinatorial Testing: Beyond Pairwise. IT
Professional, 2008.

[16] R. E. Lopez-Herrejon and A. Egyed. Towards
interactive visualization support for pairwise testing
software product lines. In 2013 First IEEE Working
Conference on Software Visualization (VISSOFT),
pages 1–4, 2013.

[17] Pairwise testing website.
http://www.pairwise.org/tools.asp.

[18] I. Segall, R. Tzoref-Brill, and E. Farchi. Using Binary
Decision Diagrams for Combinatorial Test Design. In
ISSTA, 2011.

[19] B. Shneiderman. Tree visualization with tree-maps:
2-d space-filling approach. ACM Trans. Graph., 11(1),
1992.

[20] B. Shneiderman. The eyes have it: a task by data type
taxonomy for information visualizations. In Visual
Languages, 1996. Proceedings., IEEE Symposium on,
1996.

[21] K. Tai and Y. Lie. A Test Generation Strategy for
Pairwise Testing. IEEE Trans. on Softw. Eng., 2002.

[22] C. Tominski, J. Abello, F. van Ham, and
H. Schumann. Fisheye tree views and lenses for graph
visualization. In 10th Int. Conf. on Inf. Vis. (IV),
pages 17–24. IEEE Computer Society, 2006.

[23] treemaplib. https://github.com/smurf667/treemaplib.

[24] A. W. Williams. Determination of test configurations
for pair-wise interaction coverage. In TestCom, 2000.

[25] P. Wojciak and R. Tzoref-Brill. System Level
Combinatorial Testing in Practice – The Concurrent
Maintenance Case Study. In ICST, 2014.

