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Abstract

This thesis explores the notion of a program “size” in various settings. It demonstrates

that once a size of a program is properly defined, reducing that size may sometimes

induce a “smaller” equivalent program, that is easier to analyze.

For instance, inverting a string manipulating procedure might be an easier task,

when its underlying alphabet is not the entire set of characters, but rather a smaller,

“representative” set. Another example involves the equivalence of hand written string

loops to string library functions. Proving such equivalence for loops encoutered in the

wild is tricky. However, we managed to observe that somewhat often these handwritten

loops have an interesting size-agnostic property, which justifies equivalence checks only

on strings of constant length. The bounded checks then become feasible.

We generalized the reduction principal, and showed that it can be repeatedly applied

to formulate a novel kind of “induction on space” to prove program specifications. Our

new induction is in a sense orthogonal to the standard “induction on time” applied via

loop invariants in many frameworks. Evidently, our approach was able to automatically

prove program specifications that were out-of-reach for existing tools.

Last, we extended the concept of repeated size reduction, so that it can support

several reductions rather than just one. This broader viewing angle allowed us to

reason about computational complexity of programs that failed automatic complexity

classification before.





תמצית

גודלשבהינתןמדגימההיאשונים.בהקשריםתוכנית""גודלהמושגאתחוקרתהתזה
למשל,לניתוח.יותרקלהלהיותעשויהיותר,קטןשגודלהשקולה,תוכניתיצירתשכזה,
משמעותיתקלייעשהשניתוחהייתכןמחרוזות,מעלשפועלתלפרוצדורההופכיתמציאת

ונשתמשתוים,שלקטנה,מייצגת,קבוצהנזהההקיימיםהתויםבכללהשתמשבמקוםאם
לפונקציותמחרוזות,עלשפועלותלולאותביןשקילותבהוכחתנתבונןנוספת,כדוגמאבה.
כללי,באופןלמדיקשהלהיותעלולהכזאתשקילותהוכחתהסטנדרטית.הספריהשל

המחרוזת,בגודלבריאהאי-תלותמקייםלולאותמאותןלמדיגבוהשאחוזלבוכששמנו
עלהחסםחסום.שגודלןמחרוזותעבוררקשקילותלהוכיחשמספיקלהוכחהזאתניצלנו

רדוקצייתרעיוןאתוהכללנוהמשכנושקילות.שלמיידיתהוכחהמאפשרהמחרוזתגודל
הצגנולמעשהבכךחוזרות.הפעלותהרדוקציהאתלהפעיליהיהשניתןכךהתוכנית,הגודל

תוכניות.שלספסיפיקציהלהוכיח-מקוםעלאינדוקציה-אינדוקציהשלומקוריחדשסוג
שבההנפוצהלאינדוקציהאורתוגונליתלמעשההיאשהצגנו,החדשההאינדוקציה
היהשפיתחנוהכליואכן,בלולאות.אינבריינטותשלבטכניקהתוכניותלהוכחתמשתמשים

קיימות.בשיטותלהוכחהאפשריותבלתישהיותוכניותשלספסיפיקציותלהוכיחמסוגל
אפשרהזאתוהרחבההמנגנון,באותוגודלרדוקציותכמהלשלבהצלחנודבר,שלבסופו

שאתהתוכניותלגמרי.אוטומטיבאופןאימפרטיביקודשלריצהזמןסיבוכיותלהוכיחלנו
זמן הריצה שלהן הצלחנו לנתח לא היו ניתנות לניתוח בשיטות הקיימות לפנינו.



תקציר

תוכנה.בהנדסתעתיקהבעיההיאמצביםשלסופילאמסובהתוכניתשלקודניתוח
כןאםהיאבדיקתהעללהקלכדיבתוכניתהמצביםמספרבצמצוםהמוטיביציה

שניתוחההריסופי,בתוכניתהמצביםמספרכאשרספיציפי,באופןוברורה.אינטואיטיבית
מבחינת"מתגמל"יעדבעלילהואהמצביםמספרסופיותולכןרבות,פעמיםאפשרינעשה

עללולאותלמשליפרשואשרחסומים,מודליםבבדיקתלראותניתןלכךדוגמאהרדוקציה.
"לזכות"יוכלושנימצדאךדיוק,לאבדעלוליםאחדמצדובכךאיטרציות,שלקבועמספני

סופימצביםלמספרלרדוקציההשאיפהגבוה.היתכנותכושרבעליהיהשניתוחהבתוכנית
קיימיםהזההמובןהרעיוןשלוניצניםמצב,כללבדוקהיכולתידיעלכאמורמוסברת
שדןהצבעים,ארבעתמשפטעלחישבובשנים.מאותזהבמתמטיקהאחריםבענפים
שניםמאהלפניכברצבעים.בארבעהחוקיתצביעהקיימתמישורייםבגרפיםהאםבשאלה

ויותר הייתה קיימת המוטיבציה להקטין את מספר המצבים לקבוצה סופית ולבדוק רק אותה.
אילו שאלות ניתן לשאול בהקשר לרדוקציה?

האם הרדוקציה שלמה?-
האם המערכת המוקטנת קלה יותר לניתוח?-
אתועודעודלהקטיןובכךהרדוקציה?אותהשלחוזרותהפעלותלבצעניתןהאם-

מרחב המצבים?
האם ניתן להשתמש בשיטה כאבן בניין במסגרות אחרות?-
האם ניתן לשלב כמה סוגים של רדוקציה באותה המערכת?-

תכנותבשפותבעיותניתוחשלסדרהבאמצעותואחרותאלהשאלותעללענותמנסההתזה
באמצעים של רדוקציית גודל.

למרחבאםכיהמתמטי,במובןסופימצביםלמרחבאינןבתזההמוצגותהרדוקציותלרוב,
באמצעותאךסופי,אינואמנםהואבוהמצביםמסהמצורף.בקודנתבונןלבדיקה.שניתן
שכןמהלמעשה,הכתובה.הדרישהאתמקייםשהקודלבדוקבקלותאפשרסימבולי,ניתוח

סופי כאן הוא מספר המסלולים, ומכאן קלות הבדיקה.



קלאסית,מפוקחתבלמידהחישובי.מודלשלהלמידהקלותאתנצייןנושאלאותובהמשך
מצביםלגזוםיודעיםכאשררבהבמידהלהשתפריכוליםהאימוןוקבוצתהחיפושמרחב

לאמחרוזותשמסננותפרוצדורותשללמידהשלבהקשרהזההנושאאתחקרנויתירים.
תויםשלבודדלמסתויםממאותביתהאלףשצמצוםמרתקבאופןגילינווהפיכתן.חוקיות,

מספיקה.אינהאחתפעםהרדוקציההפעלתלעיתים,הלמידה.בתוצאותדרמטישיפורהשיג
זאתכשהבנומדי.חזקותדרישותהןמיידיסימבולילניתוחניתנותואפילוסופיות,שכן

עיקרוןוהגדרתהרדוקציה,אותהשלונישנותחוזרותהפעלותשלמשוכללמנגנוןפיתחנו
הסכום.אותויתקבלהכיווניםמשנימספריםמערךשלבסכימהלמשל,חדש.אינדוקטיבי

ניתןבלתיהיהזאתמתבקשתתכונהעםלמדי,פשוטקודשלאוטומטיתוהוכחההצרנה
להוכחה אוטומטית בשיטות קודמות.

בדקנוואזהמערך.גודל-התוכניתלריצת"גודל"והגדרנושונהמכיווןלבעיהניגשנואנחנו
מתקיימתובובלבד,אחדבתאקטןשגודלומערךעלבדיוקהתוכניתאותהמהרצתהאם

קונספטואליתהרדוקציהאתהפעלנוכךהמקורי.במערךגםמתקיימתשהיאנובעהתכונה
התכונהאתלבדוקניתןושם,2שגודלומערךהבסיס,למקרהלהגעהעדפעמיםועודעוד

עם ניתוח סימבולי.
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Chapter 1

Introduction

Analysis of infinite state software systems is most probably as old as software develope-

ment itself. The motivation of reducing the number of states in a system to facilitate

its analysis is intuitive and clear. In particular, checking a finite subset of system states

is often feasible, and therefore embodies an obvious size-reduction goal. Consider for

example the case of analyzing C programs with the C bounded model checker (CBMC)

[91]. The bounded model checker will unwind / unfold all loops in the program to per-

form at most k iterations, thus reducing the infinite number of states to be finite. Sure

enough, this paradigm is not complete, but in practice achieved great results. Once

the number of states is finite, a brute force check of them can often yield beneficial

feedback. The aspiration to “go-finite” is exhibited also in other related fields. Think

of the celebrated four colors theorem [119], where planar graphs are reduced to a finite

subset which is then checked individually. Indeed, this simple concept is around one

hundred years old. Evidently, the success or failure of this method depends on the

size-reduction scheme.

• Is the reduction complete?

• Can the reduced system be analyzed effectively?

• Can the reduction be used repeatedly?

• Is the approach compositional?

• Can multiple reductions be applied?

This thesis tries to explore these questions and others in a sequence of works tackling

program analysis problems.

8
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One time size reduction For the most part, the reduced instances in our works are

not mathematically finite, but rather lend themselves to effective analysis. One tech-

inque that demonstrates that a finite set of states is not always mandatory is symbolic

execution [89]. The code in Figure 1.1 contains an “infinite” (oh well, 2128) number of

void foo(unsigned int x, unsigned int y) {

if (y > 0) {

assert ((x/y)*y <= x);

}}

Figure 1.1: the code has “infinite” states, but is easily checked with symbolic execution

states, but can be easily checked as the following formula sent to the underlying SMT

solver:

(=> (not (= y 0)) (<= (bvmul (bvdiv x y) y) x))

This is because the number of paths is finite rather than the number of states. Generally,

we really aim for “analyzability” rather than “finite”. In that aspect, we explored how

classic supervised machine learning (ML) algorithms might benefit from reducing their

search space. Here too, the finite number of states requirement could be relaxed, as

long as the search space is “represented” by a proper training set. The context of ML

in program analysis is an active area of research that is dominated mostly by modern

methods ([121], [72] etc.). It was encouraging to be able to apply some of the classic,

older algorithms like ([82] and [106]) with the help of size reduction.

To observe the effect of our method, consider a program that manipulates filenames.

It may choose to keep only the containing directory (string up to the last slash char-

acter) or extract its suffix (string from the last dot character) or strip "./" from the

begining of the name etc. Many such string manipulating functions exist in systems

code, and modeling them as transducers has many advantages, specifically, the ability

to easily invert them. We were able to use abstract interpretation [36] to facilitate the

learning process of such sanitizers. Our analysis was able to reduce the alphabet size

drastically, which in turn improved both the sampling process, and the actual internals

of the algorithms we experimented with. The main observation that enabled it was the

fact that most characters in these sanitizers are simply copied “as-is” from the input

string to the output string. So, for the learning process, they can be represented by

a single meta character. Very few characters violate this “goodness” property. For

https://en.wikipedia.org/wiki/Finite-state_transducer
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instance, in the context of file names they would probably be slash, backslash, dot and

colon.

Repeated size reduction Sometimes, a single size reduction is simply not enough.

Conceptually, one could re-apply the size reduction again (and again). When the con-

ditions are right, this chain of size reduction applications is a novel form of induction we

managed to harness for analyzing complicated code: One of the fundamental problems

of computer science, proving with mathematical certainty that a program respects a

given specification. Since the works of Floyd [50] and Hoare [71], the academic struggle

to automatically infer inductive invaraiants continues. Refer the innocent looking loop

void sum_bidi(int a[], int n) {

int l = 0, r = 0;

for (int i = 0; i < n; i++) {

l += a[i];

r += a[n - i - 1];

}

assert(l == r);

}

Figure 1.2: computing the sum of elements in an integer array from both directions
and verifying the sum is the same. Traditional methods have a hard time proving this
specification, since finding a first order induction invariant is tricky. In fact, to the best
of our knowledge, one doesn’t even exist.

in Figure 1.2 that sums the elements of an integer array from both directions, and then

asserts the sum is equal. Automatic verification tools like [145] fail to prove this speci-

fication. Actually, to the best of our knowledge, no first order inductive invariant exists

that can aid in proving this spec. Our novel approach for verification first identifies

a size for the execution state. In this example, it is the size of the array, but it can

generally be any explicit or even hidden quantity inside the execution state. Then, we

define a state size reduction ⋎ in a way that given a trace τ = {σi}, applying ⋎ on τ

will “induce” a corresponding trace τ ′ with “smaller” size with the following exciting

proprty (where ϕ is the desired correctness property):

(τ ′ |= ϕ) ⇒ (τ |= ϕ)

Once this is established, all that remains is a (conceptual) re-application of the state

size reduction until we “hit” a minimal unreducable size. This forms the basis of our
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induction, and needs to be checked independently, typically with symbolic execution.

Sounds almost too easy, right? the trick is how to make sure that:

state to state size reduction ⇒ trace to trace size reduction

Put in other words, how to formulate local, state-level, checkable (by an SMT solver)

properties so that they induce global, trace-level properties? This is thoroughly ex-

plained in chapter 4. Attentive readers might be concerned at this point regarding

the needed ingredients for our framework. In a sense, they are right. The framework

needs to come up with a definition for the state size, and the state-to-state size re-

ducer (which we call state squeezer, or just squeezer). The mechanism for an efficient

generate-and-test workflow is described in detail in chapter 4.

Multiple repeated size reductions Encouraged by the experimental results of our

state squeezers, we set out to tackle another notorious problem: automatic resource

management. The motivation is almost self explanatory: can the ability to perform

whole trace size reduction, be used to infer a compexity recurrence formula? This

called for two crucial improvements over the original squeezers paradigm. First, the

correspondance between a trace and its squeezed counterpart must be tight. That is,

their length difference must be carefully bounded. Second, and even more importantly,

we found that a repeated application of a single squeezer was not enough. It yielded

only linear recurrences that were easily solved by existing tools. Our key result was

achieved when we started considering multiple state squeezers, “breaking” the original

trace into pieces, then reducing each piece individually. By doing so, we were able to

automatically deduce complexity upper bounds that were beyond the reach for existing

methods.

1.1 Main results

1.1.1 Alphabet size reduction for more efficient machine learning

Backward analysis methods usually start with a user specified code location, exam-

ining the constraints on the data flow to reach it. Ideas like [65] deomonstrate that

“backward” symbolic execution can be far more efficient in some contexts, exploring

only “relevant” paths and not the entire code. In accordance to this concept, we set
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out to tackle the learning process of string to string procedure (pseudo) inversion.

Indeed, viewed as mathemtical entities, procedures do not always have inverses. For-

mally speaking, they are not even mathematical functions, as they may not terminate

on some of their inputs. Consequently, our reasearch question was limited to the fol-

lowing: Given a string to string procedure P , and a concrete output string sout, find

an input string sin that satisfies:

P (sin) = sout

The motivation behind the focus of string to string procedures lies in the abundance of

such procedures in system code. Typically, they “santize” their input in some way, and

then usually pass in to a “home-made” getopt or its library equivalent. We observed

that quite frequently, the sanitation code does a repetitive task at the character level,

completely agnostic to its location in the input string. For instance, replacing slashes

to back slashes. Or escaping (unescaping) certain characters etc. Like the code in

Figure 1.3. We searched for ML algorithms that suit this description, and found out

void escapePath(in ,out) char *in ,out; {

while (1) {

char c = *in++;

if (c == 0) return;

else if (c == ’(’ || c == ’)’ || c == ’\\’)

{

*out++ = ’\\’;

}

*out++ = c;

}}

Figure 1.3: string sanitizing procedure taken from gcc. Sanitizers like this one are
abundant in system code. most of them act on the “character level”, completely ag-
nostic to their location inside the string.

two algorithms [106] and [82]. The former comes from a biological background, referring

to insertion / deletion / replacement of DNA’s “letters”. The latter uses transducers,

which resemble finite automata, only with the ability to print characters as edges are

traversed. Both algorithms support the concept of inversion. That is, once a model

was learned for P , the corresponding model for P−1 is easily deduced. Furthermore,

P−1 can be learned directly, which is usually better, as described in Chapter 2.
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Figure 1.4: bird’s view of the alphabet reduction for ML. Abstract interpretation
determines the set of good characters. Then, a single meta character (M) is used
to represent all of them. The training set for the model uses a reduced alphabet:
BAD ∪ {M}. The output string for inversion encodes its good characters, and applies
the learned inverse. Then, the resulting string is reconstructed to use the original
alphabet. Reconstruction is possible thanks to the goodness property.

Our contribution Unfortunately, the aforementioned algorithms “suffer” from the

huge search space. It manifests itself in both the sampling process, and the actual

internals of the algorithms. For example, OSTIA [82], which is based on state merg-

ing will demonstrate a poor quality of merging when using the original alphabet of

all possible characters. Enter abstract interpretation [36]. We formalized a dedicated

abstract domain that will distinguish “good” characers from “bad” ones. Good char-

acters, which often form the vast majority, are simply copied “as-is” from the input

to the output. Bad characters may sometimes be omitted, inserted or replaced. The

property if formally defined as:

a is a good character ⇔ ∀s1 ∈ Σ∗.∀s2 ∈ Σ∗.P (s1 · a · s2) = P (s1) · a · P (s2)

Then, we were able to use a single meta character to represent all good characters.

Refer to Figure 1.4 for a demonstration of our approach.

1.1.2 String length reduction for program equivalence

Verifying the equivalence programs problem is undecideable. Still, the motivation to

establish equivalence is paramount, as it can help in many aspects of software devel-

opement: testing, refactoring, licensing and much more. Consequently, we limited our
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research question to proving equivalence of hand written string loops to string library

functions.

Our contribution We were able prove that once the underlying program satisfies

a set of static and dynamic checks, the equivalence problem is soundly reduced to a

bounded equivalence problem, checkable with symbolic execution. Consider Figure 1.5,

char *strrchr_tag(const char *f)

char *last = f + strlen(f);

for (char *p = f; *p; p++) {

// if (p == f) continue;

if (*p == ’/’) last = p;

}

return last;

}

Figure 1.5: hand written string loop equivalent to strrchr(f,’/’). Our approach
can detect that by soundly reducing the equivalence problem to a bounded instance
handling only “short” strings.

that shows a code operationally equivalent to strrchr(f,’/’).

Once the comments is removed, the resulting code is clearly distinguished from

strrchr(f,’/’). What would be the “best” counterexample proving they are distinct?

In essence, this formulates our goal: finding counterexamples bounded by a “small” size.

Refer to Figure 1.6 that illustrates how the discriminating string "/sbin" is size-reduced

to a smaller counterexample "/n". The size reduction kept the first slash character,

as it is responsible for the difference. The last character is copied to handle backward

scans similarly. For more details see Chapter 3.

Figure 1.6: illustrating the conceptual size reduction of the counterexample. string
"/sbin" proves that Figure 1.5 without the comment is not strrchr(f,’/’). The
middle characters can be soundly discarded, since the loop is guaranteed to be “mem-
oryless”. This results in a bounded length string witness.
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Hand written string loops are messy. Programmers use many styles to write such

loops. They scan strings forward, and backward use pointer comparisons, or comparing

indices etc. To accomodate for this diversity, our sytactic constraints were very limited:

single non nested loop, operating on a single constant string. The dynamic constraints

however were far more limiting, essentially enforcing a property we called “memoryless”.

That is, the loop is restricted from carrying information from one iteration to the

next. To achieve that, we instrumented to code and fed it to a symbolic execution

engine. The instrumented code made sure that reads, writes and comparisons respect

our constraints.

1.1.3 State squeezer for verification

Automatic verification of looping programs is a hard problem. Existing methods may

use various techniques to infer inductive invariants, but they will all use them to perform

induction on time. We formulated a novel kind of induction, induction on space, if you

will. It assigns a size to the execution state, and then performs an inductive proof of

correctness on that size. It can be the length of a string, the size of an array or the

sum of two integer variables in the state. Anything really, as long as one can perform

induction on it. To achieve that, we needed to establish conditions that can guarantee

that our state-to-state reduction will induce a trace-to-trace reduction. Figure 1.7

illustrates this concept. For more details see Chapter 4.

Figure 1.7: repeated application of size reduction. the state-to-state squeezer induces
a trace-to-trace size reduction. the correctness of a trace follows from the correctness of
the trace below it. The yellow lowermost trace is verified indepndently with symbolic
execution. ⋎: remove(a,0); if (i) { i--; left -= a[0]; right -= a[n-i] }.
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Figure 1.8: string sanitizing procedure taken from gcc

1.1.4 State squeezers for complexity analysis

Determining upper bounds on the time complexity of a program is a fundamental

problem with a variety of applications, such as performance debugging, resource cer-

tification, and compile-time optimizations. Automated techniques for cost analysis

excel at bounding the resource complexity of programs that use integer values and

linear arithmetic. Unfortunately, they fall short when execution traces become more

involved, especially when data dependencies may affect the termination conditions of

loops. In such cases, state-of-the-art analyzers have shown to produce loose bounds,

or even no bound at all. We propose a novel technique that generalizes the common

notion of recurrence relations based on ranking functions. Existing methods usually

unfold one loop iteration, and examine the resulting relations between variables. These

relations assist in establishing a recurrence that bounds the number of loop iterations.

We propose a different approach, where we derive recurrences by comparing whole

traces with whole traces of a lower rank, avoiding the need to analyze the complexity

of intermediate states. We offer a set of global properties, defined with respect to whole

traces, that facilitate such a comparison, and show that these properties can be checked

efficiently using a handful of local conditions. For more details see Chapter 5.



Chapter 2

Alphabet Reduction for Inverse

Finding

This chapter is based on the results published in [77].

2.1 Introduction

Recently, there has been a growing interest in applying machine learning techniques to

challenging program analysis problems [60, 108, 109, 118, 123, 124, 151]. In this chapter,

we address the dual question: Can program analysis techniques help machine learning?

We perform a preliminary case study in which machine learning algorithms are used to

invert string manipulating procedures (SMPs), and show that in this domain the answer

is reassuringly positive. Interestingly, the models generated by the machine learning

algorithms can themselves be of help to other program analysis tools. Specifically, they

can help improve the coverage of symbolic execution tools such as KLEE [27]. Thus, we

find ourselves in a pleasant situation where program analysis assists machine learning

to help program analysis.

Research problem. Let Σ be a (possibly infinite) set of characters ranged over

by a meta-character σ. A string s ∈ Σ is a finite sequence of characters. Given a

deterministic SMP p() which transforms input strings s ∈ Σ to output strings p(s) ∈ Σ,

where p(s) denotes the output p() returns when invoked on s, our goal is to find a partial

right pseudo-inverse of a (possibly non-injective) p, i.e., a function p−1 : Σ →֒ Σ such

17
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that

∀s′ ∈ Σ. p−1(s′) ̸= ⊥ =⇒ p(p−1(s′)) = s′ .

Clearly, the problem is decidable as we can always have p−1 = ⊥. Another trivial

solution is to define p−1 to be the identity function wherever it coincides with the

inverse of p, i.e., have

p−1(s′) =




s′ p(s′) = s′

⊥ otherwise .

Thus, the challenge is to come up with a function p−1 with non-trivial domain of

definition. Ideally, p−1 should be able to help automatic test generation, as we discuss

now.

Motivation. The ability to invert string-manipulating procedures (SMPs) is useful,

for example, in the context of tools for automatic test generation, e.g., KLEE [27]—

a state-of-the-art symbolic execution engine. These tools automatically generate test

cases, aiming to exercise as much of the program’s code as possible. For example,

KLEE uses various heuristics to explore the program’s code: it continuously selects

code paths that lead to not-yet-explored statements, applying a satisfiability-modulo

theory solver (SMT) [39, 51] to determine whether a path is feasible, i.e., that there is

an input which causes the selected path to be executed. As the exploration is path-

sensitive, the tool may inspect an exponential number of code paths when exploring a

loop containing a conditional, while generating formulae whose size is proportional to

the length the inspected path. As a result, it can be challenging to cover a statement

following a call to an SMP p which can be reached only if p returns a specific output s′.

Ideally, when the engine reaches such a difficult-to-handle branch condition, one would

want the symbolic execution engine to abandon the execution path it followed within

p(), and instead, try to execute it “backward” to produce s′. Our technique equips

the engine with such an ability by generating an “inverse shortcut”—a function that

inverts the behavior of p() without the cost of a path-by-path exploration.

Learning pseudo-inverses. Our goal is to help tools such as KLEE to find inputs

which drive SMPs to produce desired outputs. We suggest to do it using machine

learning: Given an SMP p() mapping input strings s to output strings p(s), we apply a

supervised machine learning algorithm to learn a model of a pseudo inverse of p. The
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model should be capable of translating strings, i.e., given a string s′ the model should

be able to find a string s which it predicts to be an inverse of s under p.

Roughly speaking, producing the model entails generating a set of arbitrary inputs

{si}
n
i=1, executing p on each input, thus producing a training set T = {(p(si), si)}

n
i=1,

and finally training the algorithm on T . Note that T is comprised of pairs of strings

mapping the output of p() to the input which produced it. Thus, by training the

algorithm using T , we in fact learn a model which approximates the behavior of a

pseudo-inverse of p().

The challenge. Unfortunately, a naive generation of the training set can be ex-

tremely inefficient in the sense that many output/input pairs effectively expose the

same behavior. For example, consider an SMP which adds an escape character before

tab and newline characters in its input. If we use randomly generated training sets,

p() will act as the identity function on most of the examples, and it might require a

very large training set to expose other, more “interesting”, behaviors: A randomly con-

structed string with 10 resp. 88 characters has a 92% resp. 50%, chance not to include

a tab or a newline character. As a result, the machine learning algorithm might find it

difficult to generalize the interesting cases (or outright ignore them, considering them

to be noise), and end up learning a bad approximation of the inverse.

Our solution: Learning with reduced alphabets. To remedy the above situa-

tion, we propose a static analysis which allows to reduce the alphabet from which the

training set examples are drawn, without scarifying the ability to encode any “interest-

ing” behaviors. In fact, our approach increases the chances of generating “interesting”

examples by reducing the part of the alphabet from which “non-interesting” examples

are drawn. Intuitively, we identify a set of good characters (2) whose only effect on

the analyzed procedure is to be copied in an order-preserving manner from the input

to the output. Our key insight is that given such a set, it is possible to expose all the

interesting behaviors of a procedure using an alphabet containing a single representa-

tive good character, and deduce the effect of an SMP on a string containing characters

which were not found in the reduced alphabet from its effect on a similar string (1)

whose characters do.
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Alphabet reduction via static analysis. To automate the selection of good char-

acters, we designed a static analysis that can find the set of good characters for a

given string manipulating procedure. Our analysis handles a restricted class of pro-

cedures. In this class, a procedure takes a string input and returns a string output.

The procedure can read its input from left-to-right, from right-to-left, or in both di-

rections, however each input character is read only once. The procedure is allowed to

use variables that can hold character values and employ conditionals and loops, where

condition can only test whether a character variable is equal or not to another variable

or to a constant. While simple, we found that our restricted programming model is

still expressive enough to handle a variety of procedures.

Technically, the static analysis maintains an order between the variables according

to the position of the input character that they got their value from. Essentially,

whenever a variable x containing an input character is written to the output out of

turn, i.e., before any other variable y holding an input value σ which was read off the

input x was set, the analysis determines that the σ cannot be good. Similarly, writing

a constant character const to the output leads the analysis to dictate that const is

not good either.

Implementation and experimental evaluation. We implemented our analysis in

a tool called StrInver. We applied it to invert a small selection of procedures written

in C and taken from real-life software. (The tool operates on LLVM bitcode.) We then

ran KLEE on a simple program containing a call to the SMP followed by an erroneous

command whose execution is predicated on the SMP returning a particular output.

Our analysis succeeded to find useful pseudo-inverses of the particular outputs in a few

seconds, whereas KLEE, a state-of-the-art symbolic execution tool, failed to find an

input which lead to the bug.

Main contributions. The main conecptual contribution of this chapter is the ob-

servation that when a machine learning algorithm is used to discover properties of

programs, it might be possible to use program analysis to help direct the choice of the

training set towards examples that expose interesting behaviors. The main technical

contribution of our work is the concretization of this observation by developing a static

analysis algorithm which allows to reduce the size of the alphabet from which examples

are drawn when learning pseudo inverses of a restricted class of string manipulating
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char* escapeWS(char *in) {

char *out = malloc(MAXLEN );

char *s = out;

while (*in != 0) {

if (*in==’5’||*in==’8’)

*s++ = ’$’;

*s++ = *in++;

}

*s = *in;

return out }

Figure 2.1: A simple SMP1 and a transducer approximating its pseudo-inverse under
the reduced alphabet

procedures. The main practical contribution of our work is the implementation of the

analysis and an empirical evaluation where we applied our technique to a small selec-

tion of procedures taken from real-life software. Also, to the best of our knowledge, the

idea of using machine learning to invert string-manipulating procedures is novel.

2.2 Overview

In this section, we motivate our research problem and give a high-level overview of our

approach by walking the reader through a series of examples.

Example 1. Figure 2.1 shows procedure escapeWS(), an SMP which returns a copy

of its input string with a $ character before every 5 and 8 character it contains.1 For

example, given the input string “Ali5BaBa8”, escapeWS() outputs “Ali$5BaBa$8”.

To motivate the need for computing inverses of SMPs, assume that we wish to

symbolically execute a program which aborts in an error state only if escapeWS()

produces a particular output, e.g.,

ret = escapeWS(input);

if (strcmp(ret , "Ali$5BaBa$8") == 0) abort ();

...

Note that escapeWS() produces “Ali$5BaBa$8” only if it is given “Ali5BaBa8” as

input. To find this input, symbolic execution engines such as KLEE would have to

1The procedure is based on a GCC procedure which adds an escape character before tab and
newline characters. For clarity, we replaced the whitespace characters with more visible characters.
For simplicity, we removed code concerning array bound checking.
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follow a very particular code path, namely the one in which the loop body is executed

nine times and the true branches of the first and second if statements are taken after

reading the fourth and ninth input characters, respectively.

Our goal is to help tools such as KLEE to find inputs which drive SMPs to produce

specific desired outputs. We would like to use an off-the-shelf supervised machine

learning algorithm and train it to generate a model of the inverse function. While it

is quite easy to generate random inputs, most of them will be non-representative of

the function’s actual semantics, necessitating large training sets, as we noticed in our

experiments. Consider again procedure escapeWS() shown in Figure 2.1. It is easy to

see that the procedure acts rather uniformly on most of the input characters: all the

characters are copied from the input string to the output string in an order-preserving

fashion, only characters 5 and 8 trigger an insertion of the ’$’ character. Thus, if the

input string does not contain characters 5 and 8 then the procedure acts as the identity

function. Thus, intuitively, all the “interesting” behaviors of the procedure should be

detected by considering string comprised of four characters: 5, 8, $, and an arbitrary

character M representing all other characters.

Inverting SMPs with reduced alphabets. To remedy the above situation, we

propose a static analysis which allows to reduce the alphabet from which the training

set examples are drawn, without scarifying the ability to encode any “interesting” be-

haviors. Our key insight is that if we can identify that the SMP does not distinguish

between several characters then it might be possible to expose all the interesting be-

haviors of a procedure using an alphabet containing a single representative character of

the set, and deduce the effect of an SMP on a string containing characters which were

not found in the reduced alphabet from its effect on a similar string whose characters

do. In this paper, we focus on a particular class of indistinguishable characters, those

which the procedure act on as, essentially, the identity function, and refer to these

characters good characters.

Definition 1 (Similar strings). Let S ⊆ Σ be a set of characters. Strings s1 ∈ Σ

and s2 ∈ Σ are similar up to S, denoted by s1 ∼S s2, if |s1| = |s2|, where |s| denotes

the length of a string s, and for every i = 1..|s1|, it holds that either s1(i) = s2(i) or

{s1(i), s2(i)} ⊆ S.
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Definition 2 (Good characters). a is a good character if and only if:

∀s1 ∈ Σ∗.∀s2 ∈ Σ∗.P (s1 · a · s2) = P (s1) · a · P (s2)

Lemma 1. Let G ⊆ Σ be a set of good characters for p(). For any two strings s1 and

s2, if s1 ∼G s2 then p(s1) ∼G p(s2).

Given a procedure p(), our static analyzer, discussed next, finds a set of good charac-

ters for p() by way of elimination. For example, our analyzer finds that the set {$, 5, 8}

is bad for procedure escapeWS(). We use this result to construct a reduced alphabet

Γ = {$, 5, 8,M} , where M ∈ Σ is the single representative of the good characters,

which we refer to as a metacharacter. Given Γ, we apply the aforementioned learning

process; this time, however, we generate the training set by only drawing examples

from Γ. Our static analysis is independent of the machine learning algorithm used to

find the inverse. In our experiments, we use two such algorithms: OSTIA [82], which

learns a transducer, and the other is a non deterministic model for character inser-

tion/replacement/deletion based on the Needleman Wunsch alignment algorithm [106].

(See Section 2.6.) A transducer is a finite state machine that, instead of accepting

or rejecting an input string, outputs characters upon transition. Figure 2.1 depicts a

transducer approximating the pseudo inverse of escapeWS() which OSTIA has learned

using a training set comprised of 100 strings, randomly generated over Γ. (We explain

the graphical notations in Section 2.6.1.) In our example, the transducer has two states,

where state 0 is the initial one. An edge labeled
x::s
→ is traversed when reading an input

character x and it outputs the string s. (For further details, see Section 2.6.) For

example, when applied to the string s′ = MM$5$5MM$8, the transducer outputs the

string s = MM55MM8. Note that executing escapeWS() on s results in s′, i.e.,

escapeWS−1(MM$5$5MM$8) = MM55MM8.

In fact, if we only consider strings comprised of characters coming from Γ then the

transducer in Figure 2.1 can invert any string in the image of escapeWS().

Static analysis for a restricted class of SMPs. One of the key technical con-

tributions of this chapter is the design of a static analysis that can find a set of good

characters for a given string manipulating procedure. Our analysis handles a restricted
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class of procedures. In this class, a procedure takes a string input and returns a string

output. The procedure can read its input from left to right or from right to left,

however each input character is read only once. The procedure is allowed to use vari-

ables that can hold character values and employ loops and conditions where a variable

is compared with a constant character or another variable. While simple, we found

that our restricted programming model is still expressive enough to handle a variety of

procedures.

The analysis abstracts the execution trace of the procedure by maintaining an or-

dering over program variables according to the position of the input character that they

got their value from. Essentially, whenever a variable containing an input character

is written out of order, the analysis determines that the values of all the unwritten

variables that may have been read before it are not good. Writing a constant character

to the output also leads the analysis to decide that this character is not good either.

String inversion. Given the machine learning model approximating a pseudo inverse

of p() and an output string s′, we first replace every good character in s′ with the meta

character. For example,

s′ = Ab$5$5T@$8
translates to
−−−−−−−→ s′0 = MM$5$5MM$8 .

We then execute the transducer using s′0, which returns s0. Recall that

escapeWS−1(s′0) = s0. Our main theorem (see Section 2.5) ensures that the static

analysis indeed finds a set of good characters for the analyzed procedure. Thus, us-

ing Definition 2, we can get an input s which would lead to the desired output s′ by

replacing the meta character M back to the good character it came from in s′. For

example,

s0 = MM55MM8
translates back to
−−−−−−−−−−−→ s = Ab55T@8.

Indeed, escapeWS (Ab55T@8) = Ab$5$5T@$8.

Disclaimer. We note that our technique is not guaranteed to always find an input s

which leads p() to produce a particular output string s′. This can be because p() is not

surjective and p−1(s′) is undefined, or because the translation model produced by the

machine learning algorithm is not accurate enough. (To isolate any client application

from this kind of inaccuracy, and as we have p() at our disposal, we can execute p() on
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s and validate that indeed it returns s′). Furthermore, in case p() is not injective, and

there might be multiple inputs leading to a specific output, the model we learn may

return an arbitrary string, which, untested by a forward execution, might not even be

in the preimage of p. However, as our technique involves generating a random training

set, re-executing the learning phase may create a different model which would possibly

find a different input.

2.3 Programming Language

We formalize our results for a simple imperative programming language specialized for

string processing: Every program receives a string as input and produces a string as

output. The design of the language is inspired by real life examples of string manipu-

lating procedures which often process their inputs character by character.2

Computation model. Roughly speaking, programs have at their disposal two read

heads and two write heads. The input resides in the read buffer. The first read head

is used to read the input from left to right, and the last read head allows to read the

input from right to left. Once a read head inspects a character, it advances to the next

position. A special built-in expression done() allows the programmer to determine

whether all the input characters have been read. Trying to read a character after all

the input has been read blocks the program.3 The program produces its output using

the write heads. The first write head writes characters to the program’s first write

buffer, and the last write head writes to the program’s last write buffer. The first write

buffer is written from left to tight and the last write buffer is written from right to left.

When the program terminates, it returns a concatenation of the first and last write

buffers. This model allows us to handle programs which process their input string in

a character by character fashion and read every character at most once in a sequential

manner going from the beginning of the string to it end, the other way around, or even

alternating between the two directions.

2We remind the reader that our tool operates directly on LLVM bitcode.
3The choice to block the program was done in the sake of simplicity. Alternatively, we could have

designed the language to signal an error.
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stmt ::= cmd | stmt stmt |

| if (bexp) { stmt } else { stmt }

| while (bexp) { stmt }

cmd ::= x = read-first() | x = read-last()

| write-first(x) | write-last(x)

| x := exp | return

exp ::= const | y

bexp ::= x ▷◁ exp | done() | !done()

d = $

while(!done()) {

x = read-first()

if (x = 5) {

write-first(d) }

if (x = 8) {

write-first(d) }

write-first(x) }

return

Figure 2.2: Syntax of the programming language and a version of procedure escapeWS()
written in our programming language. ▷◁∈ {=, ̸=}

2.3.1 Syntax

Figure 2.2 defines the syntax of our programming language and, as an example, shows

a possible encoding of procedure escapeWS() in our language.

A program is a statement stmt, which can be either a primitive command cmd, a se-

quential composition of statements, denoted by juxtaposition, a conditional statement,

or a while loop.

Primitive commands allow to read input characters, write output characters, and

assign the values of expressions to variables: The command x = read-first() reads

a character from the input using the first reading head, and assigns it to variable

x. The command x = read-last() does the same using the last read head. The

commands write-first(x) and write-last(x) write the contents of x to the first

and last output buffers, respectively. We allow for assignments of the form expression

x = exp where an expression exp is either a character variable or a constant character.

The return command terminates the execution of the program and produces the output

by concatenating the write buffers.

Conditional statements and while loops use boolean expressions bexp which allow to

check whether the value of a given variable is equal to a given expression or not. Two

additional boolean expressions are the special built in operators done() and !done(),

which allow the program to determine whether all its input has, respectively, has not,

been read.
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(σin, outF , outL, env)
v=read−first()
−−−−−−−−−−→ (in, outF , outL, env [v 7→ σ])

(in, outF , outL, env)
write−first(v)
−−−−−−−−−→ (in, outF env(v), outL, env)

(inσ, outF , outL, env)
v=read−last()
−−−−−−−−−→ (in, outF , outL, env [v 7→ σ])

(in, outF , outL, env)
write−last(v)
−−−−−−−−→ (in, outF , env(v)outL, env)

(in, outF , outL, env)
v:=const

−−−−−→ (in, outF , outL, env [v 7→ const])

(in, outF , outL, env)
v:=x
−−−→ (in, outF , outL, env [v 7→ env(x)])

(in, outF , outL, env)
assume(x▷◁const)
−−−−−−−−−−−→ (in, outF , outL, env) env(x) ▷◁ const

(in, outF , outL, env)
assume(x▷◁y)
−−−−−−−−→ (in, outF , outL, env) env(x) ▷◁ env(y)

(in, outF , outL, env)
assume(done())
−−−−−−−−−−→ (in, outF , outL, env) in = ϵ

(in, outF , outL, env)
assume(!done())
−−−−−−−−−−→ (in, outF , outL, env) in ̸= ϵ

(in, outF , outL, env)
return
−−−−→ outF outL

Figure 2.3: Concrete meaning of commands. ▷◁∈ {=, ̸=}

2.3.2 Concrete Semantics

Before defining the meaning of programs in our language, we introduce some notation.

Notation. We assume a (possibly infinite) domain (alphabet) of charactersΣ ranged

over by the meta variable σ, and a syntactic domain VAR of variable names, ranged

over by v, x, . . ., which we also use as a semantic domain. A string s ∈ Σ is a sequence

of characters, i.e., a function from 1..n, for some n ∈ N
0, to Σ. In the following,

we denote string concatenation by juxtaposition and the empty string by ϵ. Given a

function env , we write env [x 7→ y] to denote a function which acts like env anywhere

except at x, where its value is y.

Concrete memory states. A concrete memory state

m = (in, outF , outL, env) ∈ M = Σ ×Σ ×Σ × E

is a quadruple. The first three components, namely in, outF , and outL, are strings

which store the contents of the program’s read buffer, first write buffer, and last write

buffer, respectively. env ∈ E = VAR → Σ is an environment which records the values

of variables. We assume that variables are initialized to some fixed zero character. By

abuse of notation, we let env(const) = const for any constant character const.
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Operational semantics. Figure 2.3 defines the meaning of programs using a small

step operational semantics. The latter is defined by translating the program into a

control-flow graph form, and encoding conditional using assume commands in the

standard way: executing an assume(bexp) command blocks the execution on state

where bext does not hold, and does not change the state otherwise. The meaning of

commands is rather self explanatory. We only direct the reader’s attention to the fact

that a write-first() command adds a character at the end of the first write buffer

whereas the write-last() command adds a character at the beginning of the last write

buffer and that the program gets stuck if it tries to read an input character when the

read buffer is empty.

2.4 Instrumented Semantics

The purpose of our static analyzer is to help reduce the size of the input alphabet used

by the machine learning algorithm when computing the pseudo-inverse of the analyzed

SMP. To do so, it detects characters on which the SMP act as the identity function: It

turns out that rather often a string-manipulating procedure treats many characters in

a particularly uniform way; it only copies them once from the input to the output in an

order-preserving fashion. The static analyzer conservatively finds these good characters,

and enables the use of a single good representative character in the alphabet during

learning. This reduction in the size of the alphabet translates to a huge benefit for the

learning algorithms, as we discovered in our experiments.

The instrumented semantics extends the concrete one with properties which are

of matter to the analysis. The main tracked property is the set BAD ⊆ Σ of bad

characters for the execution. We explain the role of BAD by describing its complement

GOOD = Σ − BAD. A set of characters G ⊆ Σ is good if every time a character ∈ G

is read off the input, it is copied as-is to the output. In particular, the subsequences

of the input and output strings comprised of the good characters are identical. (See

Definition 2.)

The goal of our static analysis is to determine a set of good characters for an SMP.

The role of the instrumented semantics is to explicate which properties of the execution

are tracked to facilitated this task. Thus, when the instrumented semantics terminates,

it returns, in addition to the output string, the set of bad characters it computed.
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x = read-first()

y = read-first()

3: z = y

if (y = $) { write-first(y); write-first(x) }

else { write-first(x); write-first(z) }

while (!done()) { x = read-first(); write-first(x) }

Figure 2.4: SMP showDough()

Let p̂(s) = (s′,BAD) denote the output p() produces if it executes according to the

instrumented semantics on input string s. The usefulness of the instrumented semantics

as a basis for analysis stems from the following lemma.

Lemma 2. Let p() be an SMP and s, s′ strings. If p̂(s) = (s′,BAD) then Σ \BAD is

a good set of characters for p() and s.

2.4.1 Instrumented States

Instrumented states record properties pertaining to the flow of information from the

input string through variables to the output string. Specifically, every instrumented

state augments a concrete state with four binary relations EF , EL, RF , RL ⊆ Σ × Σ

and the set of possibly-not-good characters BAD ⊆ Σ. We refer to the quintuple

ι = (EF , EL, RF , RL,BAD) as an instrumentation. We assume the components of the

instrumentation are initialized to ∅.

m̂ = (m, ι) ∈ M̂ = M× Î

where ι = (RF , RL, EF , EL,BAD) ∈ Î = (2VAR×VAR)4 × 2Σ .

The m component of an instrumented state is the concrete state it augments.

EF and EL are equivalence relations over variable names. Recall that in our

language, a variable can be assigned a value either by reading into it a character

from the input, assigning into it a constant value, or assigning into it the value

of another variable. EF equates variables whose values originated from the same

read-first() operation, either directly, or through a sequence of copy assignments.

For example, in the instrumented state which arises at program point 3 in Figure 2.4,

EF = {(x, x), (y, y), (y, z), (z, y), (z, z)}. EL does the same for variables whose value
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was originated from a read-last() command. In Figure 2.4, there are no read-last()

commands. Thus, EL = ∅ at any state which arises during the execution.

RF and RL are preorders over variable names. RF represents the order in which

variables were read using the first reading head, and RF represents the order in which

variables were read using the last reading head. Both orders take variable copy-

assignments into account. For instance, at the instrumented state in program point

3, RF = {(x, x), (y, y), (z, z), (y, z), (z, y), (x, y), (x, z)}. RL = ∅ because there are no

read-last() commands.

BAD over approximates the set of bad characters for the input string on which the

SMP executes to produce the state. The over approximation is based on the flow of

characters from the input string to output string, as we discuss in Section 2.4.2.

Healthiness conditions. The instrumentation in instrumented states respects cer-

tain natural healthiness conditions: A variable may appear in RF only if it appears in

EF , as in a concrete execution the order in which input characters is read is total and

every input character may be read at most once. In fact, RF can be seen as a total

order over the equivalence classes of EF . A similar relation exists between RL and EL.

Finally, a variable cannot appear in both EF and EL as an input character may be

read either by the first read head or by the last read head.

2.4.2 Instrumented Small-Step Operational Semantics

The instrumentation is manipulated by the instrumented transformers presented in

Figure 2.5 which defines a deterministic transition relation over Î × Î.4 The transition

rules of the instrumented semantics extends the ones of the concrete semantics to track

must value-flow information:

m
cmd
−−→ m′ ι

cmd
−−→m ι′

(m, ι)
cmd
−−→ (m′, ι′)

cmd ̸= return
m

return

−−−−→ s ι
return

−−−−→m BAD

(m, ι)
return

−−−−→ (s,BAD)

The transition relation of the instrumented part of the state is parameterized with the

source concrete state of the transition because it requires access to the environment.

We define the rules in Figure 2.5, which we explain next, using the follow-

ing shorthand: Let R resp. E be a binary resp. equivalence relation over vari-

4The transformers pertaining to read-last() and write-last() operations are similar to those of
read-first() and write-first(), respectively, and are thus omitted.
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(RF ,RL,EF ,EL,BAD)
v=read−first()
−−−−−−−−−−→m (Rr

F , RL|¬v, EF |¬v ∪ {(v, v)}, EL|¬v,BAD ∪ BADr)

Rr
F = RF |¬v ∪ {(x, v) | (x, x) ∈ EF } ∪ {(v, v)}

BADr =

{
{env(v)} (v)EF

= {v} ∨ (v)EL
= {v}

∅ otherwise

(RF ,RL,EF ,EL,BAD)
write−first(v)
−−−−−−−−−→m

(
Rw

F , RL|¬v, EF |¬((v)EF
), EL|¬((v)EL

),BAD ∪ BADw
)

Rw
F =

{
{(z, y) ∈ RF | z ̸∈ (v)EF

} (v, v) ∈ EF

RF otherwise

BADw =

{
{env(v)} (v, v) ̸∈ EF ∨ (v, v) ∈ EL ∨ exp = const

{σ ∈ {env(y)} | (y, y) ∈ EF ∧ y ̸= v ∧ (v, y) ̸∈ RF } (v, v) ∈ EF ∧ exp = v

(RF ,RL,EF ,EL,BAD)
v:=const

−−−−−→m (RF |¬v, RL|¬v, EF |¬v, EL|¬v,BAD ∪ BADv)

(RF ,RL,EF ,EL,BAD)
v:=x
−−−→m (RF |¬v, RL|¬v, EF |¬v, EL|¬v,BAD ∪ BADv) (x, x) ̸∈ EF ∪ EL

(RF ,RL,EF ,EL,BAD)
v:=x
−−−→m (Add(RF |¬v, v, x), RL,Add(EF |¬v, v, x), EL,BAD ∪ BADv) (x, x) ∈ EF

(RF ,RL,EF ,EL,BAD)
v:=x
−−−→m (RF ,Add(RL|¬v, v, x), EF ,Add(EL|¬v, v, x),BAD ∪ BADv) (x, x) ∈ EL

where BADv =

{
{env(v)} (v)EF

= {v} ∨ (v)EL
= {v}

∅ otherwise

(RF ,RL,EF ,EL,BAD)
return
−−−−→m BAD

Figure 2.5: Instrumented semantics. The transformers pertaining to assume commands
act like the identity function. m = ( , , , env). We assume v ̸= x

able names and X a set of variable names. We use the following as shorthand

R|¬X ≡ {(a, b) ∈ R | (a /∈ X) ∧ (b /∈ X)} removes from R any pair coming from

X × X, (v)E ≡ {x | (x, v) ∈ E} denotes the equivalence class of v in E, and

Add(R, v, x) ≡ R ∪ {(a, v) | (a, x) ∈ R} ∪ {(v, a) | (x, a) ∈ R} adds v to R in the

same positions as x.

The instrumented semantics of a v = read-first() command removes any mention

of v from all the relations in the instrumentation—it might be there because its value

could have come from a previous read command. It then places it in its own equivalence

class in EF and as the the minimal element in RF : v is the only variable that got its

value from that read-first() operation, which is the last command executed so far. If

before the assignment v relates only to itself in either EF or EL then its value is about

to be overridden and lost before having a chance to get written to the output. Hence,

in this case the value of env(v) is considered a bad character.

The instrumented meaning of write-first(v) removes any mention of v or any of

the variables in its equivalence class according to EF from any relation it belongs to.

This is because a read good character should not be written more than one time to the

output. If v got its value from a constant assignment or from the opposite read head,

or if its value has already been written then env(v) becomes a bad character. If v did
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get its value from the first-head but it is not written in the right order, i.e., it is not

a maximal element in RF then the contents of all the larger variables in RF becomes

bad.5

The instrumented meaning of a v := exp removes v from its current place in the

instrumentation and, if exp is a variable, places v in the same relations and at the same

positions as exp. If v was the only variable to contain a value coming from a read

command then env(v) becomes a bad character.

The instrumented meaning of a return command ends the execution with the

accumulated BAD set.

The rules in Figure 2.5 never interfere with neither the values nor the control of the

underlying concrete semantics. They also preserve healthiness.

Lemma 3. Let (m, ι) and (m′, ι′) be instrumented states and cmd a command such

that (m, ι)
cmd
−−→ (m′, ι′). If ι is a healthy instrumentation then ι′ is healthy too.

2.5 Static Analysis

Our abstract interpretation algorithm over-approximates the instrumented semantics

described in Section 2.4 by replacing the concrete memory state component of instru-

mented states with an abstract one.

Abstract States Our static analysis algorithm computes an abstract instrumented

state

A = (m♯, ι) ∈ A = M♯ × Î where m♯ = (Done, env ♯) ∈ M♯ .

at every program point. An abstract instrumented state is comprised of an abstract

state m♯ = (Done, env ♯) and an instrumentation ι ∈ Î (see Section 2.4.1). The Done

component of the abstract state abstracts the number of unread characters, i.e., whether

the two read-heads passed each other or not: {T} means that all the input characters

have been read, {F} means the opposite, and {T, F} means that the situation is un-

known. env ♯ : VAR → 2Σ is an abstract environment mapping variable names to the

sets of their possible values. The instrumentation component ι is utilized for the same

purpose and in the same way as in the instrumented semantics.

5An equally plausible alternative would be to make env(v) bad.
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Notice that while env ♯(x) ∈ 2Σ may be infinite, the only changes to it are additions

and removals of values that occur as literal constants in the program. Therefore the

number of such distinct values is at most 2k, where k is the number of such constants.

This provides a termination guarantee of the analysis even with an infinite alphabet.

Join. The least upper bound (join) operator is defined as follows:

(m♯
1, ι1) ⊔ (m♯

2, ι2) = (m♯
1 ⊔m♯

2, ι1 ⊔ ι2) , where

(Done1, env
♯
1) ⊔ (Done1, env

♯
1) = (Done1 ∪Done1, λx. env

♯
1(x) ∪ env ♯2(x))

(
R1
F ,R

1
L,E

1
F ,E

1
L,C

1,BAD1
)
⊔
(
R2
F ,R

2
L,E

2
F ,E

2
L,C

2,BAD2
)
=

(R1
F ∩ R2

F ,R
1
L ∩ R2

L,E
1
F ∩ E2

F ,E
1
L ∩ E2

L,BAD
3)

where BAD3 = BAD1 ∪ {σ ∈ ρ1(x) | x ∈ E1
F − E2

F ∪ E1
L − E2

L} ∪

BAD2 ∪ {σ ∈ ρ2(x) | x ∈ E2
F − E1

F ∪ E2
L − E1

L}

With the exception of the BAD component, it is easy to see that the the resulting state

is indeed the least upper bound of the two abstract instrumented states. The reason

we chose in to intersect most of the component of joined instrumentations is rather

clear—we track must information. To understand the reason why defining BAD3 =

BAD1 ∪ BAD2 would not suffice to ensure a sound analysis consider a scenario when

(x, x) ∈ E1
F −E2

F . Had we kept (x, x) ∈ E1
F ∩E

2
F (:= E3

F ), then a future write-first(x)

possibly violates the goodness of the character set ρ1(x)∩ρ2(x) (:= ρ3(x)) as it may be

written without ever being read. On the other hand, as we discarded (x, x) from E3
F , we

opened the door for a future x = read-first() to possibly violate the goodness of the

character set ρ3(x), as some characters may have been read without ever being written.

So whenever (x, x) ∈ Ei
F −Ej

F ({i, j} = {1, 2}) we include ρi(x) in BAD3. The same line

of reasoning applies to EL too. Thus, we add to BAD3 the characters associated with

the variables found in the symmetrical difference of the relevant equivalence realtions.

2.5.1 Concretization

The concrete domain which we use to justify the soundness of our analysis is the

powerset of instrumented states. The concretization function γ maps an abstract state
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(
env ♯,Done

) v=read−first() / v=read−last()
−−−−−−−−−−−−−−−−−−−−−→

(
env ♯[x 7→ Σ],Done ∪ {T}

)
Done ̸= {T}

(
env ♯,Done

) write−first(v) / write−first(v)
−−−−−−−−−−−−−−−−−−−−→

(
env ♯,Done

)

(
env ♯,Done

) v:=const

−−−−−→
(
env ♯[v 7→ {const}],Done

)

(
env ♯,Done

) v:=x
−−−→

(
env ♯[v 7→ env ♯(x)],Done

)

(
env ♯,Done

) assume(v=const)
−−−−−−−−−−−→

(
env ♯[v′ 7→ {const} | φ(v)],Done

)
const ∈ env ♯(x)

(
env ♯,Done

) assume(v!=const)
−−−−−−−−−−−→

(
env ♯[v′ 7→ env ♯(x) \ {const} | φ(v)],Done

)
{const} ≠ env ♯(x)

(
env ♯,Done

) assume(v=x)
−−−−−−−−→

(
env ♯[v′, x′ 7→ env ♯(v) ∩ env ♯(x) | φ(v) ∧ φ(x)],Done

)
env ♯(v) ∩ env ♯(x) ̸= ∅

(
env ♯,Done

) assume(v!=x)
−−−−−−−−−→

(
env ♯[v 7→ V, x 7→ X | φ(v) ∧ φ(x)],Done

)
env ♯(v) = env ♯(x)

V = if (|env ♯(x)| = 1) then env ♯(v) \ env ♯(x) else env ♯(v) =⇒ |env ♯(v)| > 1

X = if (|env ♯(v)| = 1) then env ♯(x) \ env ♯(v) else env ♯(x)

(
env ♯,Done

) assume(done())
−−−−−−−−−−→

(
env ♯, {T}

)
{F} ≠ Done

(
env ♯,Done

) assume(!done())
−−−−−−−−−−→

(
env ♯, {F}

)
{T} ≠ Done

(
env ♯,Done

) return
−−−−→

(
env ♯,Done)

)

Figure 2.6: Abstract semantics. φ(z) = z′ = z ∨ z′ ∈ (z)EF
∨ (z)EL

to a set of instrumented ones. Let ι = (RF , RL, EF , EL,BAD), then

γ(((Done, env ♯), ι)) = {((in, outF , outL, env), (R
c
F , R

c
L, E

c
F , E

c
L,BAD

c)) |

in = ϵ → T ∈ Done ∧ in ̸= ϵ → F ∈ Done ∧

∀x. env(x) ∈ env ♯(x) ∧

Rc
F ⊇ RF ∧ Rc

L ⊇ RL ∧ Ec
F ⊇ EF ∧ Ec

L ⊇ EL ∧ BADc ⊆ BAD

When an abstract instrumented state ι♯ = (A, ι) represents an instrumented state

((in, outF , outL, env) , ι
c), A’s Done component conservatively tracks whether all the

input characters in in have been read and that the values env gives to variables agree

with the ones provided by the abstract environment. The instrumentation ιc of the

concrete state should track no less information regarding the information flow of char-

acters from the input string to the output string as does the instrumentation ι. The

latter should also consider as bad any bad character in ιc.

2.5.2 Abstract Transformers

The abstract transformers are defined by replacing the concrete component in the

transition rules of the instrumented semantics with the rules pertaining to abstract
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states defined in Figure 2.6 and adapting the rules in Figure 2.5 to utilize an abstract

environment instead of a concrete one as explained below

m♯ cmd
−−→ m♯′ ι

cmd
−−→m♯ ι′

(m♯, ι)
cmd
−−→ (m♯′, ι′)

Again, the transition relation of the instrumented part of the state is parameterized

with the source abstract state of the transition because it requires access to the abstract

environment. The required adaptation of Figure 2.5 is rather direct: where ever an

expression of the form {env(x)} appears in a rule, we replace it with env(x).

The rules are quite simple; the tricky ones pertain to assume statements regarding

inequalities, which we now explain.

The abstract transformer of command assume(v!=const) blocks the execution if

the only possible value of v is const. Otherwise, it merely records that const is not in

fact a possible value of v. Note that not only env ♯(v) may be adapted, but in case v

got its value from the input string, any variable who got its value from the same read

operation, i.e., in the same equivalence class as v in either EF or EL, may have the set

of its possible values refined.

The abstract transformer of command assume(v!=const) blocks the execution if

the only possible value of v is const. Otherwise, it merely records that const is not in

fact a possible value of v. The abstract transformer of command assume(v!=y) blocks

the execution if the abstract environment associates both variables with the same single

character. Otherwise it attempts to refine the set of possible values of one variable if

the other one is associated with a singleton set.

Main Theorem The static analysis algorithm computes at every program point an

abstract state which over-approximates any instrumented state which can arise at this

point for some input string. We denote by BAD(p) the union of the BAD sets at p()’s

exit points, i.e., right after p() executes a return command. Our main theorem, whose

proof follows directly from Lemma 2 and the soundness of the analysis, states that the

analyzer computes a set of good characters p().

Theorem 1. Let p() be an SMP. Σ \ BAD(p) is a good set of characters for p().
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2.6 Learning Pseudo-Inverse Functions

Our overall goal is that given an SMP p and a desired output string s′ to find a string s

such that p(s) = s′. One natural candidate for s is s′ itself. Thus, when trying to learn

an inverse we look for an input s ̸= s′ such that p(s) = s′ and hence when generating

the training examples, we only use ones where the input is different from the output.

Also, if p() is not injective, then it may have many pseudo-inverses, and there is no a

priori way to favor any of them. Thus, it suffices to learn an arbitrary pseudo-inverse

of p().

The learning algorithms chosen to be employed in this paper are the ones we thought

handle best the SMPs we have examined. However, they can be easily interchanged

with others—our approach, as we said before, is indepedent of the chosen learning

algorithm.

2.6.1 Learning Transducers with OSTIA

Transducers are deterministic finite state machines that are used to translate strings.

We explain them using the example transducer depicted in Figure 2.7. Just like DFAs,

transducer read their input strings from the left to the right, character by character, and

traverse edges according to a transition function. In addition, as edges are traversed,

the transducer prints characters to the output. If the input string MMMM## is

fed to the transducer, it will go through states 0, 2, 5, 0, 2, 6, 0, and print the output

string MMMM#$#. Any states of the transducer can hold inner strings. If some

state q is a final state for the transduction, and it holds an inner string sigma, then it

is appended at the end of the output. For example, the transduction of MMMM#

equals MMMM$#.

OSTIA [82] is a supervised learning algorithm that is capable of learning transduc-

ers. Assuming the training set is without noise, like in our case, OSTIA is guaranteed

to converge to the real transducer as the size of the training set increases. The SMP

from Figure 2.2 and its inverse are both transducers, and we depict them in Figures 2.1

and 2.8, respectively. Every state of the transducer is depicted as a square containing a

unique identifier, with state 0 being the initial state, and the string sigma which is ap-

pended to the output if the transduction end at that state. Transitions between states

are depicted as edges annotated with σ :: s denoting the character σ which triggers the
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char* ReplaceSpaces(char *in) {

char *out = malloc(MAXLEN );

char *s = out;

char c = 0;

char skip_next_lf = 0;

while (*in != 0) {

c = *in; in++;

if (skip_next_lf) {

skip_next_lf = 0;

if (c == ’#’) {

c = *in; in++;

if (!c) break; }}

if (*c == ’$’) {

skip_next_lf = 1;

c = ’#’; }

*s = c; s++;}}

*s = *in;

return out;}

Figure 2.7: An SMP written in C and its pseudo-inverse as learned by OSTIA.

Figure 2.8: A transducer implementing the SMP in Figure 2.2

transition and the string s appended to the output due to taking the transition.

OSTIA succeeds in learning the exact inverse at the righthand side of Figure 2.7. In

its essence, OSTIA is an iterative state merging algorithm. At each step the algorithm

considers pairs of states as candidates for a possible merge, and if the resulting merged

transducer is consistent with the training set, it accepts the merge and proceeds to the

next iteration. The transducer in Figure 2.7 is the pseudo inverse OSTIA learns for

the SMP shown in the same figure. The character # in an output string could have

originated from either #, $ or $# in the input string. While randomizing our input

for the training set, all three possibilities introduce themselves. This is evident in the

transducer, as the edges (5, 0), (2, 6), (6, 0) choose a different source for the # character

each. Thus neither # nor $ can be good characters.
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2.6.2 Needleman Wunsch Alignment Algorithm

To show the versitility of our approach, we also used the alignment algorithm of

Needleman-Wunsch [106] to learn procedure inverses. The algorithm is designed to

align input and output strings, where the latter comes from the former by performing

a sequence of steps. In each step a character is either deleted, inserted or replaced

by another character. Naturally, as the number of steps is smaller, and the input and

output are close in terms of edit distance, the results of the alignment are better. Our

application uses a random set of inputs {si}
n
i=1 just as before, and apply p on each

element of the set to end up with a training set {(si, p(si))}
n
i=1. Note, the order of the

training set has changed, as we now want to learn the effect of the original SMP p.

Each (input,output) pair is then aligned, and three probability tables are accumulated

for the original SMP p: (1) A two dimensional table Tr(p) for character replacements,

in which Tr(p)[$][#] = 0.45 means that there is an estimated probability that a $ in

the input string will be replaced by a #. (2) A one dimensional table Td(p), in which

Td(p)[∗] = 0.95 means there is a probability of 0.95 that ∗ will be deleted from the

input string. (3) A one dimensional table Ti(p), in which Ti(p)[@] = 0.55 ,means there

is a 0.55 probability of inserting @ somewhere in the output. Once these tables have

been learned for the original SMP p, they can be used to deduce pseudo inverses p−1:

If Tr(p)[$][#] = 0.45 then clearly Tr(p
−1)[#][$] = 0.45. Deducing Ti(p

−1)[∗] based on

Td(p)[∗] is a little more subtle, and should also take into account the prevalence of

the character ∗ in the input strings of the training set. Note that for more accurate

results, Ti(p
−1)[∗] depends on the length of the string y it wishes to invert. Finally,

computing Td(p
−1)[@] from Ti(p)[@] depends on the prevalence of the character @ in

the output strings of training set, the prevalence of @ in y, and the length of y too.

It is important to stress out that the resulting pseudo inverse p−1 is not deterministic,

and could return different outputs when invoked multiple times. This can be seen as

an advantage, because of p−1(y) failed to find a relevant x, we do not have to perform

the learning process again, but simply call p−1(y) again.

2.7 Implementation and Experimental Evaluation

We have implemented our ideas in a tool called StrInver. The tool gets as input an

SMP p() written in LLVM [96] intermediate representation language, and a concrete
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query string y. (In our experiments, we used procedures written in C, compiled using

Visual C 2010.) The tools checks whether the procedure falls within the class of re-

stricted SMPs we handle (see Section 2.3) by expecting it to follow certain syntactic

conventions, and if so it looks for a string s such that s ̸= s′ and p(s) = s′. If the

learning algorithm failed to find a model that returns a non-identity inverse for the

given string s′, it is retried with a new randomized training set. The algorithms were

trained using a training set comprised of 64-100 examples, with a bias towards choosing

shorter strings.

Table 2.1 summarizes our experimental results. We considered four string manip-

ulating procedures coming from real-life software. DPSTrim() removes prefixes and

suffixes comprised of character #. It is taken from DataparkSearch [1] open source

search engine and is used to help parse configuration files. escapeWS() is our running

example shown in Figure 2.1 and ReplaceSpaces() is shown in Figure 2.7. Both come

from GCC. DosNames() is a python library function which replaces all the dots in a

file name with underscores, except for the last one.

In our experiments, we randomly chose output strings using uniform distribution

and with average length of 32 characters. We applied our technique to invert 100 strings

for and each procedure. Table 2.1 shows the reduced alphabet our analysis discovered

and the machine learning algorithm which we used. We ran our experiments in a laptop

equipped with an i5 2.3Ghz CPU with 6GB memory running Windows 7. In all our

experiments, it took our analysis to invert each string less than 10 seconds, whereas

KLEE [27], a state of the art symbolic executor, failed to invert any string after running

for one hour. (KLEE was able to invert short strings containing around 5 characters in

a few seconds.) Similarly, a machine learning algorithm trained with randomly selected

strings chosen using the full alphabet failed to invert the given output strings. It might

be the case that using a larger training set would make the naive machine learning

more successful, however, this process might lead to expensive analyses as the space of

possible strings grows exponentially with the length of the string.

2.8 Related Work, Conclusion and Future Work

Automatic inversion of programs was first studied by Dijkstra who manually inverted

simple array-manipulating programs [41]. Follow up works looked at inverting (i) simple
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Procedure Reduced alphabet ML. Alg.

DPSTrim() {M,#} Needleman Wunsch

escapeWS() {$, 5, 8,M} OSTIA

ReplaceSpaces() {$,#,M} OSTIA

DosNames() {., ,M} OSTIA

Table 2.1: Experimental evaluation of selected SMPs. The table shows the size of the
reduced alphabet and the machine learning algorithm used to model the pseudo inverse.

programs whose semantics is given as logic programs [120], (ii) tree-traversal programs

using relational calculus and deductive methods [29, 128], (iii) array transformers

using techniques based on LR-parsing [55, 87] or testing [84], and (iv) bijective string-

manipulating procedures [75, 101]. To the best of our knowledge, we are the first to

apply machine learning tools to invert programs. We also note that the programs we

invert are not necessarily injective.

Recent advances in machine learning lead researchers to explore its capabilities

in helping challenging program analysis tasks, e.g., specification inference [118, 124],

speed up abstraction refinement [60], invariant generation [52, 108, 123], setting up

parameters for parametrized static analyses [110], and infer clustering of variables in

partially relational static analyses [70]. In our work, we address a dual question–how

can machine learning technique help program analyses. To the best of our knowledge

the question has not been widely addressed, with the notable exception of [107] which

also argues that a combination of machine learning and program analysis can be a

win-win situation.

Another active research area is the use of input/output examples to learn computer

programs. Often, this is done in the context of synthesis, where examples guide a

search-based synthesis process [63]. For example, in [62], a learning procedure is used to

synthesize string manipulating procedures which appears in the context of spreadsheets

based on syntactic manipulation. Another attack on this problem was taken in [131],

where the procedures were synthesized using database-like lookup operations. In these

works, the focus is on designing a language in which programs can be synthesized and an

efficient search heuristics. In this work we too focus on string manipulating procedures

(SMPs), which are abundant in almost all software packages. However, instead of

asking the user for input/output examples, we analyze the code of one procedure and
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its behavior, as expressed by input-output pairs, to synthesize another procedure.

In [152], the authors suggest to learn the behavior of a procedure by inspecting

its code and input-output examples. Their technique applies to a class of procedures

which accepts their input character by character, e.g., multi-digit addition. They use

recurrent neural network models with long short-term memory to accurately learn a

model of the procedure behavior as a sequence-to-sequence transformer [141]. It can

be interesting to see if a preliminary phase of program analysis, as we do in this work,

can help improve the accuracy of their technique.

String solvers, e.g., [16, 39, 88], can reason about constraints involving operations on

strings. For example, HAMPI [88], can reason about constraints expressing membership

in regular languages and fixed-size context-free languages. In contrast, we provide a

technique based on a combination of machine learning and static analysis that can help

invert string manipulating procedures written in a restricted programming language.

Conclusion and Future Work We present a machine learning-based approach for

inverting string manipulating procedures (SMPs). To the best of our knowledge, the

use of machine learning for program inversion is novel. We make the approach feasible

by developing a static analysis which reduces the size of the alphabet of the examples

used during training. While the idea of reducing the input domain size is a known idea,

we believe that we are the first to design a static analysis specific for enabling such a

reduction. We evaluated our technique using a small selection of procedures taken from

real-life software. Our approach does not require that the inverted SMP be bijective.

However, our analysis is beneficial when the SMP acts as the identity on a large part

of its alphabet, which we refer to as the “good” characters.



Chapter 3

String Length Reduction for

Verifying Function Equivalence

This chapter is based on the results published in [85].

Strings are perhaps the most widely-used datatype, at the core of the interaction

between humans and computers, via command-line utilities, text editors, web forms,

and many more. Therefore, most programming languages have strings as a primitive

datatype, and many program analysis techniques need to be able to reason about strings

to be effective.

Recently, the rise of string solvers [16, 18, 39, 88, 143, 154] has enabled more effective

program analysis techniques for string-intensive code, e.g. Kuduzu [125] for JavaScript

or Haderach [129] and JST [54] for Java. However, these techniques operate on domains

where strings are well-defined objects (i.e. the String class in Java). Unlike Java or

similar languages, strings in C are just arbitrary portions of memory terminated by a

null character. That means interacting with strings does not have to go through a well-

defined API as in other programming languages. While there are string functions in

the C standard library (e.g. strchr, strspn, etc.defined in string.h), programmers can—

and as we will show often do—write their own equivalent loops for the functionality

provided by the standard library.

In this paper, we focus on a particular set of these loops, which we call memoryless

loops. Essentially, these are loops that do not carry information from one iteration to

another. To illustrate, consider the loop shown in Figure 3.1 (taken from bash v4.4).

This loop only looks at the current pointer and skips the initial whitespace in the string

42
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#define whitespace(c) (((c) == ’␣’) || ((c) == ’\t’))

char* loopFunction(char* line)

{

char *p;

for (p = line; p && *p && whitespace (*p); p++);

return p;

}

Figure 3.1: String loop from the bash v4.4 codebase, extracted into a function.

line. The loop could have been replaced by a call to a C standard library function, by

rewriting it into line += strspn(line, " \t"). 1

Replacing loops such as those of Figure 3.1 with calls to standard string func-

tions has several advantages. From a software development perspective, such code

is often easier to understand, as the functionality of standard string functions is well-

documented. Furthermore, such code is less error-prone, especially since loops involving

pointer arithmetic are notoriously hard to get right. Our technique is thus useful for

refactoring such loops into code that calls into the C standard library.

From a program analysis perspective, reasoning about calls that use standard library

functions is easier because the semantics is well-understood; conversely, understanding

custom loops involving pointers is difficult. Moreover, code that uses standard string

functions can benefit from recent support for string constraint solving. Solvers such as

HAMPI [88] and Z3str [18, 153, 154] can effectively solve constraints involving strings,

but constraints have to be expressed in terms of a finite vocabulary that they support.

Standard string functions can be easily mapped to this vocabulary, but custom loops

cannot. In this paper, we show that program analysis via dynamic symbolic execu-

tion [26] can have significant scalability benefits by using a string solver, with a median

speedup of 79x for the loops we considered.

Finally, translating custom loops to use string functions can also impact native

execution, as such functions can be implemented more efficiently, e.g. to take advantage

of architecture-specific hardware features.

The goal of our technique is to translate2 loops such as the one in Figure 3.1 into

calls to standard string functions.

1We remind the reader that strspn(char *s, char *charset) computes the length of the prefix
of s consisting only of characters in charset.

2In this paper, we use the terms translate, summarise and synthesise interchangeably to refer to the
process of translating the loop into an equivalent sequence of primitive and string operations.
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3.1 Loops Targeted

Our approach targets relatively simple string loops which could be summarised by

a sequence of standard string library calls (such as strchr) and primitive operations

(such as incrementing a pointer). More specifically, our approach targets loops that

take as input a pointer to a C string (so a char * pointer), return as output a pointer

into that same string, and have no side effects (e.g., no modifications to the string

contents are permitted). Such loops are frequently coded in real applications, and

implement common tasks such as skipping a prefix or a suffix from a string or finding

the occurrence of a character or a sequence of characters in a larger string. Such loops

can be easily synthesised by a short sequence of calls to standard string functions and

primitive operations. While our technique could be extended to other types of loops,

we found our choice to provide a good performance/expressiveness trade-off.

More formally, we refer to the two types of loops that we can synthesise as memo-

ryless forward loops and memoryless backward loops, as defined below.

Definition 1 (Memoryless Forward Loop). Given a string of length len, and a pointer

p into this buffer, a loop is called a forward memoryless loop with cursor p iff:

1. The only string location being read inside the loop body is p0 + i, where p0 is the

initial value of p and i is the iteration index, with the first iteration being 0

2. Values involved in comparisons can only be one of the following: 0, i, len for

integer comparisons; p0, p0+i, p0+len for pointer comparisons; and ∗p (i.e. p0[i])

and constant characters for character comparisons;

3. The conceptual return value (i.e. what the loop computes) is p0+ c, where c is the

number of completed iterations.3

Definition 2 (Memoryless Backward Loop). Such loops are defined similarly to forward

memory loops, except that the only string location being read inside the loop body is

p0 + (len− 1)− i and the return value is p0 + (len− 1)− c.

We collaborated with Kapus et al. which developed an enumerative synthesizer

comprising of string functions composed together with string atoms like pointer incre-

ment, null checking etc. The synthesised programs were only symbolically tested to

3I.e., the number of times execution reached the end of the loop body and jumped back to the loop
header [5].
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have the same effect as the original loop for all strings up to a given bound. In this

section, we show how we can lift these bounded checks into a proof of equivalence.

Intuitively, we show that the loops we target cannot distinguish between executing

on a “long” string and executing on its suffix. In both executions, the value returned

by the loop is uniquely determined by the number of iterations it completed, and every

time the loop body operates on a character c, it follows the same path, except, possibly,

when scanning the first or last character.

Technically, we define a syntactic class of memoryless specification (Definition 3),

which scans the input string either forwards or backwards, and terminates when it

reaches a character which belongs to a given set X. The choice of this class of speci-

fication is a pragmatic one: We observed that all the programs we synthesise can be

specified in this manner.

We then prove that if an arbitrary loop respects a memoryless specification on

all strings up to length 3 and the original loop also adheres to certain easy-to-verify

mostly-syntactic restrictions, the loop respects the specification on arbitrary strings.

Essentially, we prove a small-model theorem: We show that any divergence from the

specification on a string of length k+1, for 3 ≤ k, can be obtained on a string of length

k.

The proof goes in two stages. First, we prove a small-model theorem (Theorem 3)

for a class of programs (memoryless loops) which is defined semantically. For example,

the definition restricts the values the loop may use in comparisons. Second, §3.4 shows

most of our programs respect certain easy-to-check properties. The combination of the

aforementioned techniques allows us to provide a conservative technique for verifying

that the synthesised program is equivalent to the original loop.

Notations. We denote the domain of characters by C and use C0 = C ∪{null} for the

same domain extended with a special null character. We denote (possibly empty) se-

quences of non-null characters by C∗. We refer to a null -terminated array of characters

as a string buffer (string for short). We denote the set of strings by s ∈ S. We write

constant strings inside quotation marks. For example, the string s = "abc" is an array

containing four characters: ‘a’, ‘b’, ‘c’, and null. Note that if ω = abc then s = "ω".4

We use "" to denote an empty string, i.e., one which contains only the null character.

4ω is a mathematical sequence of characters, s is a string buffer.
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The length of a string s, denoted by strlen(s), is the number of characters it contains

excluding the terminating null character. For example, strlen("abc") = |abc| = 3

and strlen("") = 0. We denote the ith character of a string s by s[i]. Indexing into

a string is zero-based: s[0] is the first character of s and s[strlen(s)] is its last. Note

that the latter is always null . We write "cω" resp. "ωc" to denote a string whose first

resp. penultimate character is c. We denote the complement of a set of characters X

by X = C0 \X.

3.2 Memoryless Specifications

Definition 3 (Memoryless Specification). A memoryless specification of a string op-

eration is a function whose definition can be instantiated from the following schema by

specifying the missing code parts (start, end, R, and X ):

char* func(char *input) {

int i, len = strlen(input);

for (i = start to end)

if (input[i] ∈ X)

return input + i;

return R;

}

The schema may be instantiated to a function that traverses the input buffer either

forwards or backwards: In a forward traversal, start = 0, end = len - 1, and R =

input + len. In a backward traversal, start = len - 1, end = 0, and R = input.

X is a set of characters.

Example 1. It is easy to see that many standard string operations respect a memo-

ryless specification. For example, the loop inside strchr(p,c) resp. strrchr(p,c)

can be specified using a forward resp. backward memoryless specification with X set to

{c}. The loop inside strspn(p,s) has a memoryless forward specification in which X

contains all the characters except the ones in s.

In this section we focus exclusively on memoryless forward loops. The definitions

and proofs for memory backward loops are analogous, and are thus omitted.

We use JP K for the semantic function of P , that is, JP K(s) is the value returned
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by P when its string buffer is initialised to s ∈ S. We refer to the character that a

memoryless forward loop may observe in the ith iteration as the current character of

iteration i, and omit the iteration index i when clear from context.

Definition 4 (Iteration Counter). Let P be a memoryless forward loop, as per Defini-

tion 1. We define ∆P (s) as the number of iterations that P completes when its input

is a string s. If P does not terminate on s, then ∆P (s) = ∞.

Note that the semantic restrictions imposed on memoryless loops ensures that JP K

and ∆P have a one-to-one mapping. Thus, in the rest of the paper, we use these

notations interchangeably.

3.3 Bounded Verification of Memoryless Equivalence

Theorem 1 (Memoryless Truncate). Let P be a memoryless forward loop, and let

ω, ω′ ∈ C∗.

1. If ∆P ("ωω
′") < |ω|, then ∆P ("ωω

′") = ∆P ("ω").

2. If ∆P ("ωω
′") ≥ |ω|, then ∆P ("ω") ≥ |ω|.

Proof. 1. Since P performs fewer than |ω| complete iterations, Definition 1 ensures

that P can only observe the prefix 0..(|ω| − 1) of its input buffer "ωω′",5 which are

all characters of ω. Moreover, all comparisons between integers 0, i, len or pointers

p0, p0 + i, p0 + len must return identical values whether len = |ω| or len = |ωω′|, since

i < |ω| (and thus i < |ωω′|) in all of these iterations. Therefore P behaves the same

when executing on ω and on ωω′, and thus it must be that JP K("ω") = JP K("ωω′").

2. Similarly, the first |ω| iterations are identical between JP K("ωω′") and JP K("ω").

Since the former carried these |ω| iterations to completion, so must the latter perform

at least as many iterations.

Note that if P is safe, that is, never reads past the end of the string buffer, then

∆P ("ω") ≥ |ω| in fact implies ∆P ("ω") = |ω|. At this point we make no such assump-

tions; later we will see that if P is tested against a specification which is itself safe,

then indeed it is guaranteed that P is also safe.

5When P performs k complete iterations, then it can read at most k+ 1 (rather than k) characters
from the input string. The last one occurs in the (incomplete) iteration that exits the loop.
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Let Q0(c) denote whether P completes (at least) the first iteration of the loop when

it executes on some single-character string "c", i.e., Q0(c) ≜ (∆P ("c") > 0) .

If Q0 = false, i.e., ∀c ∈ C.¬Q0(c), then obviously P never gets to the second

iteration of the loop. Otherwise, let a ∈ C be a character such that Q0(a) is true. We

can continue to define Q1 as:

Q1(c) ≜ (∆P ("ac") > 1) (3.1)

It is important to note that the choice of a does not affect the decisions made at the

second iteration: again, based on the restrictions imposed by Definition 1, the program

cannot record the current character in the first iteration and transfer this information

to the second iteration; hence (3.1) is well defined. When there is no corresponding a,

let Q1(c) = false.

We now define a family of predicates Qi over the domain of characters C0 (including

null) that describe the decision made at iteration i of the loop based on the current

character, c ∈ C0. We use these predicates to show that the decisions taken at iteration

i are always the same as those taken at iteration 1 (which is the second iteration), and

depend solely on the current character. The definition is done by induction on i:

Qi+1(c) ≜ (∆P ("ωc") > i+ 1)

for some ω = a0 · · · ai such that
∧

j=0..iQj(aj)

(3.2)

As before, the choice of ω is insignificant, and if no such ω exists, let Qi+1(c) = false.

Claim 1. Qi(c) = Q1(c) for any i ∈ N
+ and c ∈ C0.

Proof. The definition of Qi is based on the choice of P at iteration i when running on a

string of length i+1. At that point, the situation is that 0 < i < len. Therefore, again,

the observations of P at iteration i are no different from its observations at iteration

1, assuming the same current character c; therefore Qi(c) = Q1(c).

The reason Claim 1 states that Qi(c) = Q1(c) instead of Qi(c) = Q0(c) is that

according to our restrictions, the behaviour of P when operating on the first character

of the string might differ from its behaviour on all other characters (this is because

P can compare the iteration index to zero). Note that a similar issue does not occur

concerning the last character of the string as the latter is always null.
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Theorem 2 (Memoryless Squeeze). Let P be a memoryless forward loop. We construct

a buffer "aωb" where a, b ∈ C and ω ∈ C∗.

1. If ∆P ("aωb") = 1 + |ω|, then ∆P ("ab") = 1.

2. If ∆P ("aωb") > 1 + |ω|, then ∆P ("ab") > 1.

Proof of Theorem 2. Let aωb = a0a1 · · · a|ω|+1 be the characters of aωb (in particular,

a0 = a, a|ω|+1 = b).

1. Assume ∆P ("aωb") = 1 + |ω|, then Qi(ai) for all 0 ≤ i ≤ |ω|, and ¬Q|ω|+1.

Therefore, Q0(a) (since a0 = a), and ¬Q|ω|+1(b). From Claim 1, also ¬Q1(b). Hence

JP K("ab") completes the first iteration and exits the second iteration; so ∆P ("ab") = 1.

2. Assume ∆P ("aωb") > 1 + |ω|, then Qi(ai) for all 0 ≤ i ≤ |ω| + 1. In this case

we get Q0(a) and Q|ω|+1(b). Again from Claim 1, Q1(b). Hence JP K("ab") completes

at least two iterations, and ∆P ("ab") > 1.

Theorem 3 (Memoryless Equivalence). Let F be a memoryless specification with for-

ward traversal and character set X, and P a memoryless forward loop. If for every

character sequence ω ∈ C∗ of length |ω| ≤ 2 it holds that JP K("ω") = F ("ω"), then for

any string buffer s ∈ S (of any length), JP K(s) = F (s).

Proof. Assume by contradiction that there exists a string s ∈ S on which P and F

disagree, i.e., JP K(s) ̸= F (s). We show that we can construct a string s′ such that

JP K(s′) ̸= F (s′) and |s′| ≤ 2, which contradict our hypothesis.

We define ∆F (s) as the number of iterations the specification F performs before

returning. Definition 1 ensures that 0 ≤ ∆F (s) and ∆F (s) ≤ strlen(s). By assump-

tion, F is a forward loop, i.e., start = 0 and end = len. Thus, ∆F (s) is the length of

the longest prefix τ of s such that τ ∈ X
∗
.

Since JP K(s) ̸= F (s), we know that ∆P (s) ̸= ∆F (s). If strlen(s) ≤ 2, we already

have our small counterexample. Otherwise, we consider two cases.

Case 1: ∆P (s) < ∆F (s). If ∆P (s) = 0, let s′ = "a" where a is the first character of s.

According to Theorem 1, ∆P (s
′) = 0. However, a ̸∈ X (otherwise ∆F (s) = 0 = ∆P (s),

which we assumed is false), therefore ∆F (s
′) = 1. ◦

If ∆P (s) > 0, we decompose s into "aωbω′", such that ∆P (s) = |ω| + 1. We

have |aωb| > |ω|+ 1, hence by Theorem 1, ∆P ("aωb") = ∆P ("aωbω
′") = |ω|+ 1. Let

s′ = "ab"; by Theorem 2, we obtain ∆P (s
′) = 1. We know that ∆F ("aωbω

′") ≥ |ω|+2,

so aωb ∈ X∗, in particular a, b ∈ X. Therefore ∆F (s
′) = 2. ◦
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Case 2: ∆P (s) > ∆F (s). If ∆F (s) = 0, let s′ = "a" where a is the first character of s.

Since ∆P (s) ≥ |s′| = 1, and according to Theorem 1, we get ∆P (s
′) ≥ 1. ◦

If ∆F (s) > 0, we again decompose s into "aωbω′", this time such that ∆F (s) =

|ω|+1. From this construction we get aω ∈ X∗ (in particular a ∈ X) and b ̸∈ X. Since

∆P (s) ≥ |ω|+ 2 = |aωb|, and according to Theorem 1, we get ∆P ("aωb") ≥ |ω|+ 2 >

|ω| + 1. Let s′ = "ab", and we know from Theorem 2 that ∆P (s
′) > 1. In contrast,

from a ∈ X, b ̸∈ X established earlier, ∆F (s
′) = 1. ◦

In both cases (each with its two sub-cases, tagged with ◦), the end result is some

|s′| = {1, 2} for which ∆P (s
′) ̸= ∆F (s

′). This necessitates that JP K(s′) ̸= F (s′).

We note that it is easy to see that we can allow simple loops to start scanning the

string from the nth character of the string instead of the first one provided we test that

the program is memoryless for strings up to length of n+ 3.

Unterminated Loops. Some library functions (e.g. rawmemchr) do not terminate

on a null character, and even potentially perform unsafe reads. Still, we want to be

able to replace loops in the program with such implementations as long as they agree

on all safe executions and do not introduce new unsafe executions. This is done with

a small adjustment to Definition 3 which allows for unsafe specifications. The details

are mostly mundane and are therefore omitted.

3.4 Bounded Verification of Memorylessness

We implemented the bounded verification as an LLVMpass. The input LLVMbitcode

was instrumented with assert commands that check the memorylessness conditions.

The instrumented bitcode was then fed to KLEE, which verified no assertion violations

occur on strings of length three and under. For example, whenever two integer values

are compared, an instrumentation is inserted before the comparison to check that the

values compared are either i and len or i and zero.

It is routine to make sure that this bounded verification is sufficient to show a loop is

memoryless for all lengths provided that the program respects certain easily-check-able

syntactic properties. These condition pertains to the way live variables are used as well

as, effectively, that in every iteration a variable either increases its value by one or that

its value is not changed in any iteration. We show that if the program presents such
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Table 3.1: Loops remaining after each additional filter.
Initial loops Inner loops Pointer calls Array writes Multiple ptr reads

bash 1085 944 438 264 45

diff 186 140 60 40 14

awk 608 502 210 105 17

git 2904 2598 725 495 108

grep 222 172 72 42 9

m4 328 286 126 78 12

make 334 262 129 102 13

make 207 172 88 67 20

sed 125 104 35 19 1

ssh 604 544 227 84 12

tar 492 432 155 106 33

libosip 100 95 39 30 25

wget 228 197 115 83 14

Total 7423 6448 2419 1515 323

a uniform behaviour in its first three iterations, it is bound to do so in any iteration.

Thus, it suffices to check these properties on strings of length up to three.

Using our technique, we could prove that 85 loops out of the 115 meet the necessary

conditions, spending on average less than three seconds per loop. Invalid loops typically

contain constants other than zero, or change the read value by some constant offset

(e.g., in tolower and isdigit).

3.5 Loop Database

We perform our evaluation on loops from 13open-source programs: bash , diff, awk ,

git , grep, m4 , make, make, sed, ssh, tar, libosipand wget. These programs were chosen

because they are widely-used and operate mostly on strings.

The process for extracting loops from these programs was semi-automatic. First,

we used LLVMpasses to find 7,423 loops in these programs and filter them down to

323 candidate memoryless loops. Then we manually inspected each of these 323 loops

and excluded the ones still not meeting all the criteria for memoryless loops. The next

sections describe in detail these two steps.

3.5.1 Automatic Filtering

After compiling each of the programs to LLVMIR, we apply LLVM’s mem2reg pass.

This pass removes load and store instructions operating on local variables, and is needed

in our next step. LLVM’s LoopAnalysis was then used to iterate through all the loops
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in the program, and filter out loops which are not memoryless. We automatically prune

loops that have inner loops and then loops with calls to functions that take pointers as

arguments or return a pointer.

Then, we filter out loops containing writes into arrays. We assume that due to

mem2reg pass, any remaining store instructions write into arrays and not into local

variables. Therefore we miss loops where this assumption fails, as they get excluded

based on containing a store instruction. Finally, we remove loops with reads from

multiple pointer values. This ensures that we only keep loops with reads of the form

p0 + i as per Definitions 1 and 2 of memoryless loops.

Table 3.1 shows, for each application considered, how many loops are initially se-

lected (column Initial loops) and how many are left after each of the four filtering steps

described above (e.g., column Pointer calls shows how many loops are left after both

loops with inner loops and loops with calls taking or returning pointers are filtered

out). In the end, we were left with between 9 and 108 loops per application, for a total

of 323 loops.

3.5.2 Manual Filtering

We manually inspected the remaining 323 loops and manually excluded any loops that

still did not meet the memoryless loops criteria from §3.1.

Two loops had goto in them, which meant they jumped to some other part of the

function unrelated to the loops. Three loops had I/O side effects, such as outputting

characters with putc (note that the automatic pointer calls filter removed most of the

other I/O related loops).

A total of 74 loops did not return a pointer, and an additional 70 loops had a return

statement in their body. 28 loops had too many arguments. For example, incrementing

a pointer while it is smaller than another pointer would belong into this category, as

the other pointer is an “argument” to the loop. Finally, 31 loops had more than one

output, e.g. both a pointer and a length.

Note that some of these loops could belong into multiple categories, we just record

the reason for which they were excluded during our manual inspection. In total, we

manually excluded 208 loops, so we were left with 323 - 208 = 115 memoryless loops

on which to apply our synthesis approach.

As part of this manual step, we also extracted each loop into a function with a char*
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Figure 3.2: Mean time to execute all loops with str.KLEE and vanilla.KLEE, as we
increase the length of input strings.

loopFunction(char*) signature. While this could be automated at the LLVMlevel, we

felt it is important to be able to see the extracted loops at the source level.

3.6 Loop Summaries in Symbolic Execution

The next section discusses a scenario that can benefit from our loop summarisation

approach: symbolic execution. Kapus et al. also explore the benefits of refactoring and

compiler optimizations.

Recent years have seen the development of several efficient constraint solvers for

the theory of strings, such as CVC4 [16], HAMPI [88] and Z3str [18, 153, 154]. These

solvers can directly benefit symbolic execution, a program analysis technique that we

also use in our approach. However, to be able to use these solvers, constraints have

to be expressed in terms of the finite vocabulary that they support; standard string

functions can be easily mapped to this vocabulary, but custom loops cannot.

To measure the benefits of using a string solver instead of directly executing the

original loops, we wrote an extension to KLEE [27] (based on KLEE revision 9723acd)

that can translate our loop summaries into constraints over the theory of strings and

pass them to Z3 version 4.6.1. We refer to this extension as str.KLEE, and to the

unmodified version of KLEE as vanilla.KLEE.

Figure 3.2 shows the average time difference across all loops between these two

versions of KLEE when we grow the symbolic string length. We use a 240-second

timeout and show the average execution time across all loops. For small strings of up
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Figure 3.3: The speedup for each loop by str.KLEE over vanilla.KLEE for inputs of
length 13, sorted by speedup value.

to length 8 the difference is negligible, but then it skyrockets until we hit a plateau

where some loops start to time out with vanilla.KLEE. In contrast, str.KLEE’s average

execution time increases insignificantly, with an average execution time under 0.36s for

all string lengths considered.

Figure 3.3 shows the speedup achieved for each loop by str.KLEE over vanilla.KLEE

for symbolic input strings of length 13. For over half of the loops, str.KLEE achieves a

speedup of more than two orders of magnitude, with several loops experiencing speedups

of over 1000x (these include loops where str.KLEE times out, and where the actual

speedup might be even higher). For others, we see smaller but still significant speedups.

There is a single loop where str.KLEE does worse by a factor of 2.5x; this is a strlen

function where it takes 1.4s, compared to 0.5s for vanilla.KLEE.

Our approach, as presented, is limited by the single pointer input/output interface

to which loops have to conform. This restriction could be relaxed. For example,

allowing an integer output instead of a pointer could be achieved with minor engineering

effort. Allowing for loops that take two strings as input would be a larger effort. It

would require both moderate engineering effort and a new small-model theorem. The

synthesis will also require new gadgets conforming to the two-pointer interface. The

new small-model theorem could be difficult to prove because the loop traverses two

lists, but could exploit the fact that the loops are traversed in-sync.

We recognise that some of the loops we summarise could be recognised by more

lightweight approaches such as source code pattern matching or scalar evolution ap-

proaches such as the one used by LLVM’s LoopIdiomRecognize. However, it would be
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difficult to apply these approaches for complex loops that require additional modifica-

tions, such as conditionally incrementing a pointer after loop exit, setting it to the end

of the string etc. More generally, pattern matching approaches require great manual

effort in finding the patterns and then encoding them.

In §3.6, we show large increases in the scalability of symbolic execution with our

summaries. This does not directly imply the same speed-ups would be observed when

running whole programs with loops summaries, however we believe this work is an

important step towards scaling symbolic execution to large strings.

Similar to our work, S-Looper [150] automatically summarises loops with the aim

of improving program analysis. Their technique uses static analysis to enhance buffer-

overflow detection. Our work is more general in that it is applicable to any analysis

that operates on C directly, generating human-readable summaries that can even be

used for refactoring.

Godefroid and Luchaup [56] use partial loop summarisation to enable concolic exe-

cution to reason about multiple paths through a loop at once. Their summaries consist

of pre- and post-conditions, which they automatically infer during concolic execution.

Similarly, loop-extended symbolic-execution [126] uses a combination of symbolic exe-

cution and static analysis to summarise loops in order to speed up symbolic execution.

As for S-Looper, these two approaches are intertwined with their analysis, unlike our

approach which can be immediately used in any technique.

STOKE [127] is an assembly level superoptimizer that speeds up loop-free code

segments. With its recent extension to loops [31] their work is similar in spirit. They

also use bounded verification to aid synthesis, but instead of a small-world theorem

they use a sound verifier to generalise to arbitrary bounds. Their work focuses on

optimising libc functions, whereas our work focuses on summarising loops in arbitrary

programs, therefore we believe the work is complementary.

Srivastava et al. [136] present an approach synthesising loops from pre- and post-

conditions using a verifier. While more precise, they require user-specified annotations,

making it inapplicable as an automatic summarisation technique.

LLVM’s LoopIdiomRecognize pass attempts to replace loops that match memset

or memcpy patterns and is quite specific to these functions (other compilers, such as

GCC, have similar passes that recognise patterns). It detects induction variables from

which it can recognise stride load and store instructions. Their to-do includes functions
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like strlen for over 6 years, showing that such passes require significant expertise to

implement. By contrast, our approach is more general and can easily be extended.

Program equivalence may be considered one of the most important problems in

formal verification and has been the subject of decades of research [140]. Due to the

vast literature on the topic and space, we only briefly review the subject.

Proving program equivalence is useful in many domains ranging from translation

validation [93, 105, 113, 122, 130], regression verification [57, 58], automatic merg-

ing [135], semantic differencing [38], and cross-version verification [69, 95].

One common approach for attacking the problem, e.g., [148], is establishing a sim-

ulation invariant between the states of two programs. Tracking the simulation enables

defining a so-called correlating semantics which allows reasoning about correlated (in-

terleaved) execution of two programs [14, 38, 142]. In contrast to these techniques,

our approach focuses on establishing the equivalence of programs without co-executing

them, but instead examines their input/output behaviour on bounded examples using

symbolic execution.

Symbolic execution-based methods [27, 30, 32, 33, 112, 117] often focus on practi-

cal equivalence verification up to a certain input bound. In contrast, we speculatively

search for a synthesised program that agrees with the investigated loop on bounded in-

puts, and develop a small model theorem [115] which allows us to lift symbolic execution

validated bounded equivalence to full equivalence.



Chapter 4

Size reduction for safety

verification of Array

manipulating programs

This chapter is based on the results published in [79].

Automatic verification of array manipulating programs is a challenging problem

because it often amounts to the inference of inductive quantified loop invariants which,

in some cases, may not even be first-order expressible. In this paper, we suggest a novel

verification technique that is based on induction on user-defined rank of program states

as an alternative to loop-invariants. Our technique, dubbed inductive rank reduction,

works in two steps. Firstly, we simplify the verification problem and prove that the

program is correct when the input state contains an input array of length ℓB or less,

using the length of the array as the rank of the state. Secondly, we employ a squeezing

function ⋎ which converts a program state m with an array of length ℓ > ℓB to a state

⋎(m) containing an array of length ℓ−1 or less. We prove that when ⋎ satisfies certain

natural conditions then if the program violates its specification on m then it does so

also on ⋎(m). The correctness of the program on inputs with arrays of arbitrary lengths

follows by induction.

We make our technique automatic for array programs whose length of execution is

proportional to the length of the input arrays by (i) performing the first step using sym-

bolic execution, (ii) verifying the conditions required of ⋎ using Z3, and (iii) providing

a heuristic procedure for synthesizing ⋎. We implemented our technique and applied

57
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it successfully to several interesting array-manipulating programs, including a bidirec-

tional summation program whose loop invariant cannot be expressed in first-order logic

while its specification is quantifier-free.

4.1 Introduction

Automatic verification of array manipulating programs is a challenging problem be-

cause it often amounts to the inference of inductive quantified loop invariants. These

invariants are frequently quite hard to come up with, even for seemingly simple and

innocuous program, both automatically and manually. The purpose of this work is to

suggest an alternative kind of correctness witness, which is often simpler than inductive

invariants and hence more amenable to automated search.

Loop invariants, the basis of traditional verification approaches, offer an induction

scheme based on the time axis, i.e., on the number of loop iterations. We suggest an

alternative approach in which induction is carried out on the space axis, i.e. on a (user-

defined notion of the) rank (e.g., size) of the program state. This is particularly useful

in the setting of infinite-state systems, where the size of the state may be unbounded.

In this induction scheme, establishing the induction step relies on a squeezing function

⋎ : Σ → Σ (read ⋎ as squeeze) that maps program states to lower-ranked program

states (up to a given minima). Roughly speaking, the squeezing function should satisfy

the following conditions, described here intuitively and formalized in Definition 7:

• Initial anchor. ⋎ maps initial states to initial states.

• Simulation inducing. ⋎ induces a certain form of simulation between the

program states and their squeezed counterparts.

• Fault preservation. ⋎ maps unsafe states to unsafe states.

Our main theorem (Theorem 4) shows that if these conditions are satisfied then

P is correct, provided it is correct on its base, i.e., on the states with minimal rank.

The crux of the proof is that as a consequence of the aforementioned conditions, if P

violates its specification on a state m then it also violates it on ⋎(m). Hence, if P

satisfies the specification on the base states, by induction it satisfies it on any state.

The function ⋎ itself can be given by the user or, as we show in Section 4.4,

automatically obtained for a class of array programs which iterate over their input
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arrays looking for a particular element (e.g., strchr) or aggregating their elements (e.g.,

max). In our experiments, we utilized automatically synthesized squeezing functions to

verify natural specifications of several interesting array-manipulating programs, some

of which are beyond the capabilities of existing automatic techniques. Arguably, the

key benefit of our approach is that the squeezing functions are often rather simple, and

thus finding them and establishing that they satisfy the required properties is an easier

task than the inference of loop invariants. For example, in the next section we show a

program whose loop invariant cannot be expressed in first order logic but can be proven

correct using a squeezing function which is first-order expressible, in fact, the reasoning

about the automatically synthesized squeezing function is quantifier free.

The last point to discuss is the verification of the program on states in the base of ⋎.

Here, we apply standard verification techniques but to a simpler problem: we need to

establish correctness only on the base, a rather small subset of the entire state space.

For example, for the programs in our experiments it is possible to utilize symbolic

execution to verify the correctness of the programs on all arrays of length three or less.

This approach is effective because on the programs in our benchmarks, the bound on

the length of the input arrays also determines a bound on the length of the execution.

As this aspect of our technique is rather standard we do not discuss it any further.

Outline. The rest of the chapter is structured as follows: We first give an informal

overview of our approach (Section 4.2) which is followed by a formal definition of our

technique and a proof of its soundness (Section 4.3). We continue with a description

of our heuristic procedure for synthesizing squeezing functions (Section 4.4) and a

discussion about our implementation and experimental results (Section 4.5). We then

review closely related work (Section 4.6) and conclude (Section 4.7).

4.2 Overview

In this section, we give a high-level view of our technique.

Running example. Program sum_bidi, shown in Figure 4.1, computes the sum of

the input array a in two ways: One computation accumulates elements from left to

right, and the other — from right to left (assuming that indexes grow to the right).

Ignoring its dubious usefulness, sum_bidi possesses an intricate property: the variables
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void sum_bidi(int a[], int n)
{

int l = 0;
int r = 0;
for (int i = 0; i < n; i++)
{

l += a[i];
r += a[n - i - 1];

}
assert(l == r);

}

I =̂
(
l + sum(a[i : n]) =

r + sum(a[0 : n− i])
)

sum(a[j : k]) =̂

if j < k

then a[j] + sum(a[j + 1 : k])

else 0

Figure 4.1: A bidirectional sum example and a loop invariant for it.

l and r are both computed to be the sum of the input array a. A natural property one

expect to hold when the program terminates is that l = r.

The challenge. To verify the aforementioned postcondition when the length of the

array is not known and unbounded, a loop invariant is often employed. It is important

to remember, that a loop invariant must hold on all intermediate loop states — every

time execution hits the loop header. For this reason, the loop invariant needed in this

case is more involved than the mere assertion l = r that follows the loop. The right side

of Figure 4.1 shows a possible loop invariant for this scenario. Intuitively, the invariant

says that l and r differ by the sum of the elements that they have not yet, respectively,

accumulated. Notice that the invariant’s formulation relies on a function sum(·) for

arrays (and array slices), the definition of which is also included in the figure. This

definition is recursive; indeed, any definition of sum will require some form of recursion

or loop due to the unbounded sizes of arrays in program memory. This kind of “logical

escalation” (from quantifier-free l = r to a fixed-point logic) makes such verification

tasks challenging, since modern solvers are not particularly effective in the presence of

quantifiers and recursive definitions.

Moreover, a system attempting to automate discovery of such loop invariants is

prone to serious scalability issues since it has to discover the definition of sum(·) along

the way. The subject program sum_bidi effectively computes a sum, so this auxiliary

definition is at the same scale of complexity as the program itself.

Our approach. We suggest to leverage the semantics already present in the subject

program for a more compact proof of safety. Instead of having to summarize partial

executions of the program via a loop invariant, we show that the program is correct for

all arrays of size 0...r for some base rank r (the size of the array serves as the rank of
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7 2 9 1 4σ =

rank(σ) = 5
l=9 r=5i=2

2 9 1 4⋎(σ) =
rank(⋎(σ)) = 4

l=2 r=4i=1
⋎

⋎ : {
if (i > 0) {

remove(a,0);
i--;
l -= a[0];
r -= a[n - i];

} else {
remove(a,0);

}
}

Figure 4.2: A bidirectional sum example and its squeezing function.

the program state), and further show how to derive the correctness of the program for

arrays of size n > r, from its correctness for arrays of size n− 1. To achieve the latter,

we rely on a function that “squeezes” states in which the array length is n to states in

which the array length is n− 1, as we illustrate next.

Continuing with the example sum_bidi described above, we use the function ⋎ :

Σ → Σ, defined as a code block on the right side of Figure 4.2, to “squeeze” program

states. In this case, the state consists of the variables ⟨a, n, i, l, r⟩, and it is squeezed

by removing the first element of a and adjusting the indices and sums accordingly. The

base rank here is r = 0, since any non-empty array can be squeezed in this manner.

The bottom part of Figure 4.3 shows the effect of applying ⋎ to each of the states in

the execution trace of sum_bidi on the example input [7,2,9,1,4]. The first property

that is demonstrated by the diagram is the “initial anchor” property, stating that initial

states are “squeezed” into initial states. As is obvious from the diagram, the execution

on the squeezed array [2,9,1,4] is accordingly shorter, so ⋎ cannot be injective —

in this case, ⋎(σ0) = ⋎(σ1) = σ′
0. Still, the sequence σ′

0 → σ′
1 → σ′

2 → σ′
3 → σ′

4

constitutes a valid trace of sum_bidi. This is the second property required of ⋎, which

we refer to as simulation inducing and define it formally in the next section.

Now, draw attention to fault preservation, the third property required of ⋎: when-

ever a state σ falsifies the safety property φ, denoted σ ̸|= φ, it is also the case that

⋎(σ) falsifies the safety property, i.e. ⋎(σ) ̸|= φ. In our example, the safety property

can be formalized as φ =̂ (i = n → l = r). The reasoning establishing fault preservation

is not immediate but still quite simple: if σ ̸|= φ, it means that i = n but l ̸= r (at σ).

In that case, a[n − i] = a[0]; so l′ = l − a[0] ̸= r − a[n − i] = r′, where l′, r′ are the

values of l and r, respectively, at state ⋎(σ). Since i and n are both decremented1 we

get ⋎(σ) ̸|= φ.

In this manner, from the assumption that ⋎(σj), for j = 0..5, induces a safe trace,

1Notice that we assume a positive size (n > 0), otherwise the array cannot be squeezed in the first
place.
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7 2 9 1 4
a =

σ0 σ1 σ2 σ3 σ4 σ5
TR TR TR TR TR

a=a i=0

l=0 r=0

a=a i=1

l=7 r=4

a=a i=2

l=9 r=5

a=a i=3

l=18 r=14

a=a i=4

l=19 r=16

a=a i=5

l=23 r=23
|= φ

σ′
0 σ′

1 σ′
2 σ′

3 σ′
4

⋎ ⋎ ⋎ ⋎ ⋎ ⋎
TR TR TR TR

a=a′ i=0

l=0 r=0

a=a′ i=1

l=2 r=4

a=a′ i=2

l=11 r=5

a=a′ i=3

l=12 r=14

a=a′ i=4

l=16 r=16
|= φ

2 9 1 4a′ =

Figure 4.3: Example trace of sum_bidi, and the corresponding shrunken image.

we conclude that σj is safe as well. This lends the notion of constructing a proof by

induction on the size of the initial state σ0, provided that ⋎ cannot “squeeze forever”

and that we can verify all the minimal cases more easily, e.g. with bounded verification.

This is definitely true for sum_bidi, since the minimal case would be an empty array,

in which the loop is never entered. In some situations the minima contains states

with small but not empty arrays. In general, if one can verify that the program is

correct when started with a minimal initial state, thus establishing the base case of the

induction, our technique would lift this proof to hold for unbounded initial states. In

particular, if the length of the program’s execution trace can be bounded based on the

size of the initial state then bounded model checking and symbolic execution can be

lifted to obtain unbounded correctness guarantee.

It is worth mentioning at this point that ⋎ is in no sense “aware” that it is, in fact,

reasoning about sums. It only has to handle scalar operations, in this case subtraction

(as the counterpart of addition that occurs in sum_bidi; the same will be true for any

other commutative, invertible operation.) The folding semantics arises spontaneously

from the induction over the size of the array.

Recap. We suggest a novel verification technique that is based on induction on the

size of the input states as an alternative to loop-invariants. The technique is based on

utilizing a squeezing function which converts high-ranked states into low-ranked ones,

and then applying a standard verification technique to establish the correctness of the

program on the minimally-ranked states. In a manner analogous to that which is carried

out with “normal” verification using loop invariants, the squeezer has to uphold the

three properties described in Section 4.1, namely initial anchor, simulation inducing,
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and fault preservation. (See Section 4.3 for a formal definition.) These properties ensure

that the mapping induces a valid reduction between the safety of any trace and that of

its squeezed counterpart.

Why bother. The attentive readers may ask themselves, given that both loop invari-

ants and squeezers incur some proof obligations for them to be employed for verification,

what benefit may come of favoring the latter over the former. While the verification

condition scheme proposed here is not inherently simpler (and arguably less so) than

its Floyd-Hoare counterpart, we would like to point out that the squeezer itself, at least

in the case of sum_bidi, is indeed simpler than the loop invariant that was needed to

verify the same specification. It is simpler in a sense that it resides in a weaker logical

fragment : while the invariant relies on having a definition of (partial) sums, itself a

recursive definition, the squeezer ⋎ can be axiomatized in a quantified-free formula

using a theory of strings (sequences) [19] and linear arithmetic. In Section 4.4 we

take advantage of the simplicity if the squeezing function, and show that it is feasible

to generate it automatically using a simple enumerative synthesis procedure.

On top of that, it is quite immediate to see that the induction scheme outlined

above is still sound even if the properties of ⋎ (initial anchor, simulation, and fault

preservation) only hold for reachable states. Obviously, the set of reachable states

cannot be expressed directly — otherwise we would have just used its axiomatization

together with the desired safety property, making any use of induction superfluous.

Even so, if we can acquire any known property of reachable states, e.g. through a

preliminary phase of abstract interpretation [35], then this property can be added

as an assumption, simplifying ⋎ itself. A keen reader may have noticed that the

specification of sum_bidi has been written down as φ =̂ (i = n → l = r), while a

completely honest translation of the assertion would in fact produce a slightly stronger

form, φ′ =̂ (i ≥ n → l = r). This was done for presentation purposes; in an actual

scenario the “proper” specification φ′ is used, and a premise 0 ≤ i ≤ n is assumed.

Such range properties are prevalent in programs with arrays and indexes, and can be

discovered easily using static analysis, e.g., using the Octagon domain [102].

This final point is encouraging because it gives rise to a hybrid approach, where a

partial loop invariant is used as a baseline — verified via standard techniques — and is

then stengthened to the desired safety property via squeezer-based verification. Or, the
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order could be reversed. There can even be alternating strengthening phases each using

a different method. These extended scenarios are potentialities only and are matter for

future work.

4.3 Verification by Induction over State Size

In this section we formalize our approach for verifying programs that operate over

states (inputs) with an unbounded size. The approach mimics induction over the

state size. The base case of the induction is discharged by verifying the program for

executions over “small” low-ranked states (to be formalized later). For the induction

step, we need to deduce correctness of executions over “larger” higher-ranked states

from the correctness of executions over “smaller” states. This is facilitated by the use

of a simulation-inducing squeezing function ⋎. Intuitively, the function transforms a

state m into a corresponding “smaller” state ⋎(m) such that executions starting from

the latter simulate executions starting from the former. The simulation ensures that

correctness of the executions starting from the smaller state, ⋎(m), implies correctness

of the executions starting from the larger one, m.

Transition systems and safety properties. To formalize our technique, we first

define the semantics of programs using transition systems. The is quite standard.

Definition 5 (Transition Systems). A transition system TS = (Σ, Init,Tr,P) is a

quadruple comprised of a universe (a set of states) Σ, a set of initial states Init ⊆ Σ,

a transition relation Tr ⊆ Σ× Σ, and a set of good states P ⊆ Σ.

A trace of TS is a (finite or infinite) sequence of states τ = σ0, σ1, . . . such that

for every 0 ≤ i < |τ |, (σi, σi+1) ∈ Tr. In the following, we write Trk, for k ≥ 0 to

denote k self compositions of Tr, where Tr0 = Id denotes the identity relation. That

is, (σ, σ′) ∈ Trk if and only if σ′ is reachable from σ by a trace of length k (where the

length of a trace is defined to be the number of transitions along the trace).

A transition system TS = (Σ, Init,Tr,P) is safe if all its reachable states are good

(or “safe”), where the set of reachable states is defined, as usual, to be the set of all

states that reside on traces that start from the initial states. A counterexample trace is

a trace that starts from an initial state and includes a “bad” state, i.e., a state that is

not in P. The transition system is safe if and only if it has no counterexample traces.
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Simulation-inducing squeezer. To present our technique, we start by formalizing

the notion of a simulation-inducing squeezing function (squeezer for short).

Definition 6 (Squeezing function). Let X be a set and ⪯ a well-founded partial order

over X. Let B ⊇ min(X) be a base for X, where min(X) is the set of all the minimal

elements of X w.r.t. ⪯, and let ρ : Σ → X be a rank on the program states. A function

⋎ : Σ → Σ is a squeezing function, or squeezer for short, with base B if for every

state σ ∈ Σ such that ρ(σ) ∈ X \B, it holds that ρ(⋎(σ)) ≺ ρ(σ).

That is, ⋎ must strictly decrease the rank of any state unless its rank is in the base,

B. We refer to states whose size is in B as base states, and denote them ΣB = {σ ∈ Σ |

ρ(σ) ∈ B}. We denote by ΣB = Σ \ ΣB the remaining states. Since ⪯ is well-founded

and all the minimal elements of X w.r.t. ⪯ must be in B (additional elements may be

included as well), any maximal strictly decreasing sequence of elements from X will

reach B (i.e., will include at least one element from B). Hence, the requirement of a

squeezer ensures that any state will be transformed into a base state by a finite number

of ⋎ applications.

Example 2. In our examples, we use (N,≤) as a well-founded set, and define the

base as an interval [0, k] for some (small) k ≥ 0. While it suffices to define B =

min(N) = {0}, it is sometimes beneficial to extend the base to an interval since it

excludes additional states from the squeezing requirement of ⋎ (see Section 4.5). For

array-manipulating programs, the rank used is often (but not necessarily) the size of the

underlying array, in which case, the “squeezing” requirement is that whenever the array

size is greater than k, the squeezer must remove at least one element from the array.

For example, for sum_bidi (Figure 4.2), we consider k = 0, i.e., the base consists of

arrays of size 0, and, indeed, whenever the array size is greater than 0, it is decremented

by ⋎. For arrays of size 0, ⋎ behaves as the identity function (this case is omitted from

the figure). In addition, whenever the state contains more than one array, we will use

the sum of lengts of all arrays as a rank.

Definition 7 (Simulation-inducing squeezer). Given a transition system TS =

(Σ, Init,Tr,P), a squeezer ⋎ : Σ → Σ is simulation-inducing if the following three

conditions hold for every σ ∈ Σ:

• Initial anchor: if σ ∈ Init then ⋎(σ) ∈ Init as well.
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• Simulation inducing: there exist nσ ≥ 1 and mσ ≥ 0 such that if (σ, σ′) ∈ Trnσ

then (⋎(σ),⋎(σ′)) ∈ Trmσ , i.e., if σ reaches σ′ in nσ steps, then the same holds

for their ⋎-images, except that the number of steps may be different.

• Fault preservation: if σ ̸∈ P then ⋎(σ) ̸∈ P as well.

The definition implies that {(σ,⋎(σ)) | σ ∈ Σ} is a form of a “skipping” simulation

relation, where steps taken both from the simulated state, σ, and from the simulating

state, ⋎(σ), may skip over some states. This allows the simulated and the simulating

execution to proceed in a different pace, but still remain synchronized. In fact, to ensure

that we obtain a “skipping” simulation, it suffices to consider a weaker simulation

inducing requirement where the parameter mσ that determines the number of steps

in the simulating trace depends not only on σ but also on σ′ and may be different

for each σ′. Note that for deterministic programs (as we use in our experiments) these

requirements are equivalent. Another possible, yet stronger, relaxation is to weaken the

requirement that (⋎(σ),⋎(σ′)) ∈ Trmσ into (⋎(σ),⋎(σ′)) ∈ Tri for some 0 ≤ i ≤ mσ.

Example 3. To illustrate the simulation inducing requirement, recall the program

sum_bidi from Example 2. For the base states (n = 0), ⋎ behaves as the identity

function. Hence, for such states the skipping parameters nσ and mσ are both 1 (let-

ting each step be simulated by itself). For non-base states, nσ, the “skipping” parameter

of σ, is still 1, while mσ, the “skipping” parameter of ⋎(σ), is 0 if σ is an initial state,

and 1 otherwise. This accounts for the fact that ⋎ truncates the head of the array;

hence, the first step in an execution is skipped in the corresponding “squeezed” execu-

tion, while the rest of the steps are synchronized in both executions (see Figure 4.3 for

an illustration).

Intuitively, one may conjecture that given a loop that iterates over an array, it

will essentially perform fewer iterations when run on ⋎(σ) than it does on σ, always

resulting in mσ ≤ nσ. The following example shows that this is not necessarily the

case.

Example 4. The program is_sorted (Figure 4.4) checks whether the input array

elements are ascending by comparing all consecutive pairs. Our squeezer (for n >

3) checks whether the last three elements form an ascending sequence; if so, removes

the last element, otherwise it removes the forth element from the right. Consider the
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bool is_sorted(int a[],int n) {

for (int i=1;i<n;i++)

if (a[i] < a[i-1])

return false;

return true;

}

⋎:

if (a[n-3] <= a[n-2] &&

a[n-2] <= a[n-1])

remove(a,n-1);

else

remove(a,n-4);

Figure 4.4: Another program with ⋎ demonstrating a scenario where nσ < mσ.

σ0 σ1 σ2 · · · σk · · ·Tr
nσ0 Tr

nσ1 Tr
nσ2 Tr
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σ′
0 σ′

1 σ′
2 · · · σ′

j · · ·

⋎ ⋎ ⋎ ⋎

Tr
mσ0 Tr

mσ1 Tr
mσ2 Tr

mσj−1 Tr
mσj

|= φ

σ†
0 σ†

1 σ†
2 · · · σ†

r · · ·
Tr

m
†
0 Tr

m
†
1 Tr

m
†
2 Tr

m
†
r−1 Trm

†
r

...
...

...
...

⋎

⋎

⋎

⋎

⋎

⋎

⋎

⋎

∈
Σ
B

|= φ

⇑

⇑

Figure 4.5: Soundness proof sketch; an arbitrary trace can be reduced to a low-ranked
trace by countable applications of ⋎. Since ranks form a well-founded set, a base ele-
ment is encountered after finitely many such reductions. Arrows with vertical ellipses
indicate alternating applications of ⋎ and Tr∗, except for initial states where Defini-
tion 7(1) ensures straight applications of ⋎ alone.

input a=1,0,2,3,1 and the squeezed a’=1,2,3,1. is_sorted(a) terminates after one

iteration, but is_sorted(a’) after three iterations. Let σ =
[
a, i 7→ 1

]
. The simulation

inducing requirement can only be satisfied with nσ = 1 and mσ = 3. Since Trnσ(σ) =
[
a, ret = false

]
, no smaller value of mσ can satisfy the requirement that Trmσ

(
⋎ (σ)

)
=

⋎
(
Trnσ(σ)

)
.

Checking if a squeezer is simulation-inducing. The initial anchor and fault

preservation requirements are simple to check. To facilitate checking the simulation

inducing requirement, we do not allow arbitrarily large numbers nσ,mσ but, rather,

determine a bound N on the value of nσ and a boundM on the value ofmσ. This makes

the simulation inducing requirement stronger than required for soundness, but avoids

the need to reason about pairs of states that are reachable by traces of unbounded

lengths (nσ and mσ).
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Using simulation-inducing squeezer for safety verification. Roughly, the ex-

istence of a simulation-inducing squeezer ensures that any counterexample to safety,

i.e., an execution starting from an initial state and ending in a bad state (a state that

falsifies the safety property), can be “squeezed” into a counterexample that starts from

a “smaller” initial state. In this sense, the squeezer establishes the induction step for

proving safety by induction over the state rank. To ensure the correctness of this argu-

ment, we need to require that a “bad” state may not be “skipped” by the simulation

induced by the squeezer.

Formally, this is captured by the following definition.

Definition 8. A transition system TS = (Σ, Init,Tr,P) is recidivist if no “bad” state

is a dead-end, i.e., σ ̸∈ P =⇒ ∃σ′. (σ, σ′) ∈ Tr, and that transitions leaving “bad”

states lead to “bad” states, i.e., σ ̸∈ P ∧ (σ, σ′) ∈ Tr =⇒ σ′ ̸∈ P.

Recidivism can be obtained by removing any outgoing transition of a bad state and

adding a self loop instead. Importantly, this transformation does not affect the safety

of the underlying program. In our examples, terminal states of the program are treated

as self loops, thus ensuring recidivism.

Lemma 4. Let ⋎ : Σ → Σ be a simulation-inducing squeezer for a recidivist transition

system TS = (Σ, Init,Tr,P). For every σ0 ∈ Σ, if there exists a counterexample that

starts from σ0, then there also exists a counterexample that starts from ⋎(σ0).

The proof is constructive: given a counterexample trace from σ0, we use the

simulation-inducing parameters nσ of the states σ along the trace to divide it into

segments such that the first and last state of each segment are the ones used as syn-

chronization points for the simulation and the inner ones are the ones “skipped” over.

We then match each segment (σ, σ′) with the corresponding trace of length mσ from

⋎(σ) to ⋎(σ′), whose existence is guaranteed by the simulation inducing requirement.

The concatenation of these traces forms a counterexample trace from ⋎(σ0). Formally:

Proof. Let τ = σ0, σ1, . . . , σn be a counterexample trace starting from an initial state

σ0 ∈ Init. If the counterexample is of length 0, then ⋎(σ0) is also a counterexample of

length 0 (by the initial anchor and fault preservation requirements). Consider a coun-

terexample of length n > 0. We show how to construct a corresponding counterexample

from ⋎(σ0). We first split the indices 0, . . . , n into (overlapping) intervals I0, . . . , Ik,
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where I0 = 0, . . . , nσ, and for every i ≥ 1, if the last index in Ii−1 is j for j < n, then

Ii = j, . . . , j + nσj
. If j + nσj

≥ n, then k := i. Since TS is recidivist, we may assume,

without loss of generality, that j + nσj
= n (otherwise, because TS is recidivist and

σn ̸∈ P, we can exploit one of the transitions leaving σn, which necessarily exists and

leads to a bad state, to extend the counterexample trace as needed.) We denote by

first(Ii), respectively last(Ii), the smallest, respectively largest, index in Ii. By the def-

inition of the intervals, for every 0 ≤ i ≤ k, we have that last(Ii) = first(Ii)+nσfirst(Ii)
.

Hence, the simulation inducing requirement for σfirst(Ii) ensures that there exists a trace

of mσfirst(Ii)
steps from ⋎(σfirst(Ii)) to ⋎(σlast(Ii)). Since σfirst(I0) = σ0 and for every

0 < i ≤ k, σfirst(Ii) = σlast(Ii−1), we can glue these traces together to obtain a trace from

⋎(σ0) to ⋎(σlast(Ii)). Finally, it remains to show that ⋎(σlast(Ik)) ̸∈ P. This follows from

the fault preservation requirement, since last(Ik) = n, hence σlast(Ik) = σn ̸∈ P.

Ultimately, the existence of a simulation-inducing squeezer implies that a coun-

terexample can be “squeezed” to one that starts from a base initial state. Hence, to

establish that the transition system is safe, it suffices to check that it is safe when the

initial states are restricted to the base states, i.e., to Init ∩ ΣB.

Theorem 4 (Soundness). Let ⋎ : Σ → Σ be a simulation-inducing squeezer with base

B for a recidivist transition system TS = (Σ, Init,Tr,P). If TSB = (Σ, Init∩ΣB,Tr,P)

is safe then TS is safe.

Proof. Suppose for the sake of contradiction, that {σi}
d
i=0 is a counterexample trace

with minimal rank for σ0 (such a state with a minimal rank exists since ⪯ is well-

founded). Since TSB is safe, it must be that σ0 ∈ ΣB (since σ0 ∈ Init, while safety of

TSB ensures that no counterexample trace can start from Init∩ΣB). By Lemma 4, we

have that ⋎(σ0) also has an outgoing counterexample trace. However, since σ0 ∈ ΣB,

we get that ρ(⋎(σ0)) ≺ ρ(σ0), in contradiction to the minimality of σ0.

In all of our examples, the transitions of TS do not increase the rank of the state.

In such cases, we can also restrict the state space of TSB (and accordingly Tr) to the

base states in ΣB. Furthermore, in these examples, the size of the state (array) also

determines the length of the executions up to a terminal state. Hence, bounded model

checking suffices to determine (unbounded) safety of TSB, and together with ⋎, also

of TS.
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As evident from the proof of Theorem 4, it suffices to require that ⋎ decreases the

rank of the initial non-base states, and not of all the non-base states.

4.4 Synthesizing Squeezing Functions

So far we have assumed that the squeezer ⋎ is readily available, in much the same

way that loop invariants are available — typically, as user annotations — in standard

unbounded loop verification. As demonstrated by the examples in Sections 4.2 and 4.3,

⋎ is specific to a given program and safety property. Thus, it might be tedious to

provide a different squeezer every time we wish to check a different safety property. In

this section we show how to lighten the burden on the user by automating the process

of obtaining squeezing functions for a class of typical programs that loop over arrays.

The solution for the squeezer-inference problem we take in this paper is to utilize

a rather standard enumerative synthesis technique of multi-phase generate-and-test:

We take advantage of the relative simplicity of ⋎ and provide a synthesis loop where

we generate grammatically-correct squeezing functions and test whether they induce

simulation.

4.4.1 Generate

First we note that while ⋎ is applied to arbitrary states in Definition 7, it is only

required to reduce the rank of non-base states σ ∈ B. For states σ ∈ B it is trivial

to satisfy all the requirements by defining ⋎(σ) = σ. In the sequel, we therefore only

consider squeezing functions whose restriction to B is the identity, and synthesize code

for squeezing non-base states.

A central insight is that squeezing functions ⋎ for different programs still have some

structure in common: for programs with arrays, squeezing amounts to removing an ele-

ment from the array, and adjusting the index variables accordingly. Some more detailed

treatment may be needed for general purpose variables, such as the accumulators l and

r of sum_bidi (recall Figure 4.1), but the resulting expressions are still small.

We have found that, for the set of programs used in our experiments, ⋎ can be char-

acterised by the grammar in Figure 4.6. The grammar allows for functions comprised

of a single if statement, where in each branch an array is squeezed using the remove

function, and several integer variables are set. Conditions are generated by composing
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body ::= if ( cond )

remove( arr, expindex )
[
varint = expint

]∗

else

remove( arr, expindex )
[
varint = expint

]∗

cond ::= elemτ ⋄(elemτ | constτ )

| varindex ⋄(varindex | constindex) ⋄ ::= == | != | <= | >=

| cond && cond | cond || cond

expindex ::= constindex | varindex | len(arr) - (constindex | varindex)

expint ::= varint (+ | -) elemint

elemτ ::= arr [ expindex ]

constindex ::= 0 | 1 | 2

constτ ::= 0 | other constants occurring in the program

arr, varindex, varint, varchar — identifiers occurring in the program

Figure 4.6: Program space for syntax-guided synthesis of ⋎. Expressions are split into
three categories: index, int, and char as described in Section 4.4. τ ∈ {int, char}.

array elements, local variables and a fixed set of constants based on the given pro-

gram, with standard comparison operators and boolean connectives. The semantics of

remove(arr, position) are such that a single element is removed from the array at the

specified position, and all index variables are adjusted by decrementing them if they

are larger from the index of the element being removed. This behavior is hard-coded

and is specific to array-based loops. Our experience has shown that a single conditional

statement is indeed sufficient to cover many different cases (see Section 4.5).

To bound the search space, expressions and conditions have bounded sizes (in terms

of AST height) imposed by the generator and the user selects the set of basic predicates

from which the condition of the if statement is constructed. The resulting space,

however, is still often too large to be explored efficiently. To reduce it, some type-

directed pruning is carried out so that only valid functions are passed to the checker.

Moreover, our synthesis procedure distinguishes between variables that are used as

indices to the array (varindex) and regular integer variables (varint), and does not mix

between them. We further assume that we can determine, from analyzing the program’s

source code, which index variable is used with which array(s). So when generating

expressions of the form arr[ i ] etc., only relevant index variables are used. Also, we

note that generated squeezers preserve in bounds access by construction.
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4.4.2 Test

The test step checks whether a candidate squeezer that is generated by the synthesizer

satisfies the requirements of Definition 7. For the simulation-inducing requirement, we

restrict nm = 1..2 and mm = 0..1. The step is divided into three phases. In the first

phase, candidates are checked against a bank of concrete program states (both reachable

and unreachable). In the second phase, candidates are verified for a bounded array

size, but with no restrictions on the values of the elements. Those that pass bounded

verification enter the third phase where full, unbounded verification is performed.

The second and third phases of the test step require the use of an SMT solver.

The second phase is useful since incorrect candidates may cause the solver to diverge

when queried for arbitrary array sizes. Limiting the array size to a small number

(we used 6) enables to rule out these candidates in under a second. To simplify the

satisfiability checks, we found it beneficial to decompose the verification task. To do so,

we take advantage of the structure of the squeezer, and split each satisfiability query

(that corresponds to one of the requirements in Definition 7) into two queries, where in

each query we make a different assumption regarding the branch the squeezer function

takes. We note in this context that the capabilities of the underlying solver direct (or

limit in some sense) the expressive power of the squeezer. In this aspect, it is also

worth mentioning that sequence theory support for element removal helped to define

squeezers format.

For the simulation inducing check, we further exploit the property that for the

kind of programs and squeezers we consider, the transitions of the program usually

do not change the truth value of the condition of the if statement in the definition of

the squeezer. Namely, if m makes a transition to m′ then either both of them satisfy

the condition or both of them falsify it; either way, their definition of ⋎ follows the

same branch. This form of preservation can be checked automatically using additional

queries. When it holds, we can consider the same branch of the squeezer program

in both the pre- and post-states, thus simplifying the query for checking simulation.

Similarly, we can opportunistically split the transition relation of the program into

branches (e.g., one that executes an iteration of the loop and one that exits the loop).

In most cases, the same branch that was taken for m is also the one that needs to be

taken from ⋎(m) to establish simulation. This leads to another simplification of the

queries, which is sound (i.e., never concludes that the simulation-inducing requirement
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holds when it does not), but potentially incomplete. We can therefore use it as a

“cheaper” check and resort to the full check if it fails.

4.4.3 Filtering out unreachable states

For soundness, a squeezer needs to satisfy Definition 7 only on the reachable states. As

we do not have a description of this set, for otherwise the verification task would be

essentially voided, we need to ensure that the requirements of simulation-inducement

on a safe over-approximation of this set. A simple over-approximation would be the set

of all states. However, this over-approximation might be too coarse, indeed we noticed

in our experiments that in some cases, unreachable states have caused phases 1, 2 and

3 to produce false negatives,i.e. , disqualify squeezers which can be used safely to verify

the program. Therefore we used an over-approximation of reachable states using

1. Bound constraints on the index variables: the index is expected to be within

bounds of the traversed array. This property can be easily verified using other

verifiers or by applying our verifier in stages, first proving this property and then

proving the actual specification of the verified procedure under the assumption

that the property hold.

2. 2-step bounded reachability: We found out that for our examples, looking only

at states that are reachable from another state in at most two steps is a general

enough inclusion criterion. Note that we do not require 2-step reachability from

an initial state, but rather from any state, hence this set over-approximates the

set of reachable states.

4.5 Implementation and Experimental Results

We implemented an automatic verifier for array programs based on our approach,

and applied it successfully to verify natural properties of a few interesting array-

manipulating programs.

Base case. We discharged the base case of the induction (the verification on the

base states) using KLEE [27]—a state-of-the-art symbolic execution [25] engine. It

took KLEE less than one tenth of a second to verify the correctness of each program

in our benchmarks on the states in its base. This part of our verification approach
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is standard, and we discuss it no further; in the rest of this section we focus on the

generation of the squeezing functions.

4.5.1 Implementation

The generate step and phase 1 of the test step of the squeezer synthesizer were im-

plemented using a standalone C++ application that generates all ⋎ candidates with

an AST of depth three. Each squeezer was tested on a pre-prepared state bank and

every time a squeezer passed the tests it was immediately passed on to phase 2. The

state bank contained states with arrays of length five or less. For each benchmark,

we used up to 24,386 states with randomly selected array contents. The number of

states was determined as follows: Suppose the program state is comprised of k vari-

ables and an array of size n. We randomly selected p elements that can populate the

array: p = {′a′,′ b′, 0} for string manipulating procedures and p = {−4,−2, 9, 100, 200}

for programs that manipulate integer arrays. We determined the number of test states

according to the following formula: |p|n·k/df , where df is an arbitrary dilution factor

used to reduce the number of states from thousands to hundreds. (In our experiments,

df = 17.)

The second and third phases were implemented using Z3 [39], a state of the art

SMT solver. We chose to use the theory of sequences, since its API allows for a

straightforward definition of the operation remove(arr,i) (see Figure 4.6). In practice,

the sequence solver proved to be overall more effective than a corresponding encoding

using the more mature array solver. In that aspect, it is worth mentioning that verifying

fault preservation on its own is faster with the theory of arrays. We conjecture that

this is because the specification has quantifiers while the other requirements can be

verified using quantifier-free reasoning.

The transition relation was manually encoded in SMT-LIB2 format. However, it

should be straightforward to automate this step.

4.5.2 Experimental Evaluation

We evaluated our technique by verifying a few array-manipulating programs against

their expected specifications. The experiments were executed on a laptop with Intel

i7-8565 CPU (4 cores) with 16GB of RAM running Ubuntu 18.04.
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Phase 1 Phase 2 Phase 3 Total Time Quic3

Program B #Cand |Bank| Test Time BMC Time Time G&T+KLEE Time

strnchr 2 80 356 29 0.004 1 0.12 0.16 0.28 + 0.07 0.32

strncmp 2 980 76 196 0.02 1 7.2 154.48 161.70 + 0.05 0.19

max_ind 2 8000 368 10 0.18 2 1.86 4.44 4.73 + 0.05 0.11

min_ind 2 8000 257 9 0.26 2 2.1 16.86 17.21 + 0.05 0.09

sum_bidi 2 6328125 4602 1200 2.18 1 0.57 0.61 3.36 + 0.05 t.o.

is_sorted 4 900 25736 764 4.37 1 0.59 0.67 5.63 + 0.06 0.15

long_pref 3 6480 24386 4696 22.93 1 1.25 0.89 25.07 + 0.05 t.o.

Table 4.1: Experimental results (end-to-end). Time in seconds. G&T is a shorthand
for Generate&Test

Benchmarks. We ran our experiments on seven array-manipulating programs:

strnchr looks for the first appearance of a given character in the first n characters

of a string buffer. strncmp compares whether two strings are identical up to their first

n characters or the first zero character. max_ind (resp. min_ind) looks for the index

of the maximal (resp. minimal) element in an integer array. sum_bidi is our running

example. is_sorted checks if the elements of an array are sorted in an increasing

order. long_pref is looking for the longest prefix of an array comprised of either a

monotonically increasing or a monotonically decreasing sequence.

The user supplies predicates that are used when synthesizing each squeezer. These

were selected based on understanding what the program does and the operations it uses

internally. E.g., for strncmp equality comparisons between same-index elements of the

two input arrays are used (s1[0]==s2[0] etc.), as well as comparison with constant 0;

for long_pref, order comparisons (s1[1]<=s1[2] etc.) between different elements of

the same array are used instead.

Results. Table 4.1 describes the end-to-end running times of our verifier, i.e., the

time it took our tool to establish the correctness of each example. In this experiment,

every candidate squeezer was tested before the next squeezer was generated. The table

shows the time it took the synthesizer to find the first simulation-inducing squeezer plus

the time it took to establish the correctness of the programs on the states in the base

using KLEE (Total Time). The table also compares our verifier to Quic3 [68], an

automatic synthesizer of loop invariants. In general, when both tools where able to

prove that the analyzed procedure is correct, Quic3 was somewhat faster, and in the

case of strncmp much faster. However, on two of our benchmarks Quic3 timed out (1

hour) whereas our tool was able to prove them correct in less than 30 seconds.
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Phase 1 Phase 2 Phase 3

Program |Pos.| Time |Neg.| Time |Pos.| Time Time|Neg.| |Pos.| Time Time|Neg.|

strnchr 1 ϵ 9 ϵ 1 0.94 − 1 0.98 −

strncmp 3 ϵ 36 ϵ 3 14.29 − 3 154.48 −

max_ind 11 ϵ 3 ϵ 2 0.78 1.08 1 31.00 0.41

min_ind 11 ϵ 7 ϵ 2 0.91 1.19 1 16.00 0.43

sum_bidi 12 ϵ 1 0.05 1 0.56 0.69 1 0.61 −

is_sorted 1 ϵ 18 ϵ 1 0.59 − 1 0.67 −

long_pref 2 ϵ 74 ϵ 1 1.03 1.22 1 0.89 −

Table 4.2: Experimental results. Time in seconds. ϵ ≤ 0.0001

Table 4.1 also provides more detailed statistics regarding the experiments: The rank

of the base states (B), the total number of possible candidates based on the supplied

predicates and the bound on the depth of the AST (#Cand), and a more detailed view

of each phase in the testing step. For phase 1, it reports the number of states in the

pre-prepared state bank (|Bank|), the number of squeezers tested until a simulation-

inducing one was found (Test), and the total time spent to test these squeezers (Time).

For phase 2, it reports the number of candidates which passed phase 1 and survived

bounded verification (BMC) and the time spent in this phase (Time). For phase 3, we

report how many simulation-inducing squeezers were found, and the time it took to

apply full verification.

In all our experiments except of max/min_ind only the simulation-inducing squeez-

ers passed bounded verification. In the latter case, a squeezer passed BMC due to the

use of arrays of size at most five where the cells a[2] and a[n− 2] are adjacent. Had we

increased the array bound to six, these false positives would have been eliminated by

the bounded verification.

Table 4.2 provides average times required to pass all the generated squeezers through

the testing pipeline. For phase 1, it reports the number of squeezers which passed (Pos)

resp. failed (Neg) testing against the randomly generated states and the average time

it took to test the squeezers in each category (Time). The table reports the statistics

pertaining to phase 2 and 3 in a similar manner, except that it omits the number of

squeezers which failed the phase as this number can be read off the number of squeezers

which reached this phase.

Table 4.3 shows some of the automatically generated squeezers. We obtained a

single simulation-inducing squeezer in all of our tests except for strncmp where three
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Program Squeezer

strchr(c) if ( s[0] == c || s[0]==0 ) remove(s,1) else remove(s,0)

strncmp (1) if (s1[0] == s2[0] && s1[0] != 0) remove(s1,0); remove(s2,0)

else remove(s1,1); remove(s2,1)

(2) if (s1[0] == s2[0] && s2[0] != 0) remove(s1,0); remove(s2,0)

else remove(s1,1); remove(s2,1)

(3) if (s1[0] != s2[0]) || (s1[0] == 0 && s2[0] == 0))

remove(s1,1); remove(s2,1)

else remove(s1,0); remove(s2,0)

max_ind if (s[n-2] <= s[n-1]) remove(s,n-2) else remove(s,n-1)

is_sorted if (s[n-3]<=s[n-2]<=s[n-1]) remove(s,n-1) else remove(s,n-4)

long_pref if ((s[0]<=s[1]<= s[2]) || (s[0]>s[1]>s[2])) remove(s,0)

else remove(s,n-1)

Table 4.3: Syntesized squeezers. n is the size of the input array

squeezers were synthesized. The three differ only syntactically by the condition of the

if statements. However, semantically, the three conditions are equivalent. Thus, im-

proving the symmetry-detection optimizations to include equivalence up-to-de morgan

rules would have filtered out two of the three squeezers.

4.6 Related Work

Automatic verification of infinite-state systems, i.e. , systems where the size of an

individual state is unbounded such as numerical programs (where data is considered

unbounded), array manipulating programs (where both the length of the array and the

data it contains may be unbounded), programs with dynamic memory allocation (with

unbounded number of dynamically-allocatable memory objects), and parameterized

systems (where, in most cases, there is an unbounded number of instances of finite

subsystems) is a long standing challenge in the realm of formal methods.

Well structured transition systems. Well structured transition systems

(WSTS) [2, 3, 47] are a class of infinite-state transition systems for which safety veri-

fication is decidable, with a backward reachability analysis being a decision procedure.

In these transitions systems, the set of states is accompanied by a well-quasi order that

induces a simulation relation: a state is simulated by those that are “larger” than it.

As a result, the set of backward-reachable states is upward closed. The simulation-

inducing well-quasi order used in WSTS resembles our condition of a simulation-
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inducing squeezer. However, there are several fundamental differences:

• The order underlying our technique is required to be well-founded, which is a

strictly weaker requirement than that of a well-quasi order;

• The simulation-inducing requirement requires each state to be simulated by its

squeezed version, which has a lower rank rather than greater; further, a state

need not be simulated by every state with a lower rank; accordingly, the set of

backward-reachable states need not be upward (nor downward) closed.

• Our procedure is not based on backward (or any other form of) reachability

analysis.

Reductions. Cutoff-based techniques, e.g., [42], reduce model checking of unbounded

parameterized systems to model checking for systems of size (up to) a small predeter-

mined cutoff size. Verification based on dynamic cut-offs [4, 83] also considers param-

eterized systems but employs a verification procedure which can dynamically detect

cut-off points beyond which the search of the state space need not continue. Invisible

invariants [114, 155] are used to verify unbounded parameterized systems in a bounded

way. The idea is to use the standard deductive invariance rule for proving invariance

properties but consider only bounded systems for discharging the verification condi-

tions, while ensuring that they hold for the unbounded system. The approach provides

(i) a heuristic to generate a candidate inductive invariant for the proof rule, and (ii) a

method to validate the premises of the proof rule once a candidate is generated [155].

Similar reductions were applied to array programs–a particular form of parame-

terized systems but with unbounded data–as we consider in this work. For example,

in [92], shrinkable loops are identified as loops that traverse large or unbounded arrays

but may be soundly replaced by a bounded number of nondeterministically chosen it-

erations; and in [104], abstraction is used to replace reasoning about unbounded arrays

and quantified properties by reasoning about a bounded number of array cells.

A fundamental difference between our approach and these works is that we do not

reduce the problem to a bounded verification problem. Instead, we generate verification

conditions which amount to a proof by induction on the size of the system. In fact,

from the perspective of deductive verification, our work can be seen as introducing a

new induction scheme.



4.6. RELATED WORK 79

Loop invariant inference. Arguably, inference of loop invariants is the ubiquitous

approach for automatic verification of infinite-size systems. Recent research efforts in

the area have concentrated around inference of quantified invariants, in particular, the

search for universal loop invariants is a central issue.

Classical predicate abstraction [15, 59] has been adapted to quantified invariants

by extending predicates with skolem (fresh) variables [48, 94]. This is sufficient for

discovering complex loop invariants of array manipulating programs similar to the

simpler programs used in our experiments.

A research avenue that has received ongoing popularity is the use of constrained

Horn clauses (CHCs) to model properties of transition systems which have been used

for inference of universally quantified invariants [20, 67, 103] by limiting the quantifier

nesting in the loop invariant being sought. In [44], universally quantified solutions

(inductive invariants) to CHCs are inferred via syntax-guided synthesis.

Another active research area is Model-Checking Modulo Theories (MCMT) [53]

which extends model checking to array manipulating programs and has been used

for verifying heap manipulating programs and parameterized systems (e.g., [34]) using

quantifier elimination techniques. For example, in Safari [9] (and later Booster [10]),

the theory of arrays [24] is used to construct a QF proof of bounded safety which is

generalized by universally quantifying out some terms.

IC3 [21] extends predicate abstraction into a framework in which the predicate dis-

covery is directed by the verification goal and heuristics are used to generalize proofs of

bounded depth execution to inductive invariants. UPDR [86] and Quic3 [68] extend

IC3 to quantified invariants. UPDR focuses on programs specified using the Effectively

PRopositional (EPR) fragment of uninterpreted first order logic (e.g., without arith-

metic) for which quantified satisfiability is decidable. As such, UPDR does not deal

with quantifier instantiation. Quic3 uses model based projection and generalizations

based on bounded exploration.

Like these techniques we also use heuristics to overcome the unavoidable undecid-

ability barrier. In our case, this amounts to the selection of the squeezing function.

In contrast to all the aforementioned approaches, our technique does not rely on the

inference of loop invariant but rather proves programs correct by induction on the size

(rank) of their states.
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We note that we do not position our technique as a replacement to automatic in-

ference of loop invariants but rather as a complementary approach. Indeed, while

some tricky properties can be easily verified by our approach, e.g., the postcondition of

sum_bidi, a property which we believe no other automatic technique can deduce, other

properties which are simple to establish using loop invariants, e.g., that variable i is

always in the range 0..n−1, are surprisingly challenging for our technique to establish.

Recurrences. Other approaches represent the behavior of loops in array-programs

via recurrences defined over an explicit loop counter, and use these recurrences to

directly verify post-conditions with universal quantification over the array indices.

In [116] this is done by customized instantiation schemes and explicit induction when

necessary. In [28], verification is done by identifying a relation between loop itera-

tions (characterized by the loop counter) and the array indices that are affected by

them, and verifying that the post-condition holds for these indices. Similarly to our

approach, these works do not rely on loop invariants, but they do not allow to verify

global properties over the arrays, such as the postcondition of sum_bidi.

Program synthesis. The inference we use for ⋎ is indeed a form of program synthe-

sis, as was alluded to in Section 4.2 by representing ⋎ via pseudo-code. In particular,

syntax-guided synthesis (SyGuS) [13] is the domain of program synthesis where the

target program is derived from a programming language according to its syntax rules.

[43, 81, 144, 146] all fall within this scope.

Sketching is a common feature of SyGuS. The term is inspired by Sketch [134],

referring to the practice of giving synthesizers a program skeleton with a missing piece

or pieces. This uses domain knowledge to reduce the size of the candidate space. It

is quite common to use a domain-specific language (DSL) for this purpose [76, 133,

137, 139, 147]. [111] restricts programs by typing rules in addition to just syntax.

[64] develops it further by restricting how operators may be composed. Our synthesis

procedure (Section 4.4) follows the same guidelines: the domain of array-scanning

programs dictates the constructed space of squeezer functions, and moreover, inspecting

the analyzed program allows for more pruning by (i) matching index variables to array

variables and (ii) focusing on operators and literal values occurring in the program.

This early pruning is responsible for the feasibility of our synthesis procedure, which

apart from that is rather naive and does not facilitate clever optimizations such as
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equivalence reduction [45, 111].

4.7 Conclusions

At the current state of affairs in automatic software verification of infinite state sys-

tems, the scene is dominated by various approaches with a common aim: computing

over-approximations of unbounded executions by means of inferring loop invariants. In-

deed, abstract interpretation [35], property-directed reachability [21], unbounded model

checking [99], or template-based verification [138] can be seen as different techniques

for computing such approximations by finding inductive loop invariants which are tight

enough not to intersect with the set of bad behaviors. Experience has shown that

these invariants are frequently quite hard to come by, even for seemingly simple and

innocuous program, both automatically and manually. The purpose of this chapter is

to suggest an alternative kind of correctness witness, which may be more amenable to

automated search. We successfully applied our novel verification technique to array

programs and managed to prove programs and properties which are beyond the ability

of existing automatic verifiers. We believe that our approach can be combined with

standard techniques to give rise to a new kind of hybrid techniques, where, e.g., a par-

tial loop invariant is used as a baseline — verified via standard techniques — and is

then strengthened to the desired safety property via squeezer-based verification.



Chapter 5

Size reduction for complexity

analysis

This chapter is based on the results published in [80].

5.1 Introduction

Cost analysis is the problem of estimating the resource usage of a given program, over

all of its possible executions. It complements functional verification—of safety and

liveness properties—and is an important task in formal software certification. When

used in combination with functional verification, cost analysis ensures that a program

is not only correct, but completes its processing in a reasonable amount of time, uses

a reasonable amount of memory, communication bandwidth, etc. In this work we

focus on run-time complexity analysis. While the area has been studied extensively,

e.g., [7, 11, 22, 37, 40, 49, 65, 73, 149], the general problem of constraining the number of

iterations in programs containing loops with arbitrary termination conditions remains

hard.

A prominent approach to computing upper bounds on the time complexity of a

program identifies a well-founded numerical measure over program states that decreases

in every step of the program, also called a ranking function. In this case, an upper

bound on the measure of the initial states comprises an upper bound on the program’s

time complexity. Finding such measures manually is often extremely difficult. The cost

relations approach, dating back to [149], attempts to automate this process by using

the control flow graph of the program to extract recurrence formulas that characterize

82
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void binary_counter(unsigned int n) {

unsigned int c[n];

memset(c,0,n*sizeof(unsigned int ));

int i=0;

while (i<n) {

if (c[i]==1) /*scan 1-prefix */{c[i]=0;i++; }

else /* increment */{c[i]=1;i=0; print(c);}

}}

Figure 5.1: A program that produces all combinations of n bits.

this measure. Roughly speaking, the recurrences relate the measures (costs) of adjacent

nodes in the graph, taking into account the cost of the step between them. In this way,

the cost relations track the evolution of the measure between every pair of consecutive

states along the executions of the program.

One limitation of cost relations is the need to capture the number of steps remaining

for execution in every state, that is, all intermediate states along all executions. If

the structure of the state is complex, this may require higher order expressions, e.g.,

summing over an unbounded number of elements. As an example, consider the program

in Figure 5.1 that implements a binary counter represented by an array of bits.

In this case, a ranking function that decreases between every two consecutive iter-

ations of the loop, or even between two iterations that print the value of the counter,

depends on the entire content of the array. Attempting to express a ranking func-

tion over the scalar variables of this program is analogous to abstracting the loop as a

finite-state system that ignores the content of the array, and as such contains transition

cycles (e.g. the abstract state ⟨n 7→ n0, i 7→ 0⟩, obtained by projecting the state to the

scalar variables only, repeats multiple times in any trace)—meaning that no strictly

decreasing function can be defined in this way. Similarly, any attempt to consider a

bounded number of bits will encounter the same difficulty.

In this paper, we propose a novel approach for extracting recurrence relations cap-

turing the time complexity of an imperative program, modeled as a transition system,

by relating whole traces instead of individual states. The key idea is to relate a trace

to (one or more) shorter traces. This allows to formulate a recurrence that resolves to

the length of the trace and recurs over the values at the initial states only. We sidestep

the need to take into account the more complex parts of the state that change along

the trace (e.g., in the case of the binary counter, the array is initialized with zeros).
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Our approach relies on the notion of state squeezers [78], previously used exclusively

for the verification of safety properties. We present a novel aspect where the same

squeezers can be used to determine complexity bounds, by replacing the safety property

check with trace length judgements.

Squeezers provide a means to perform induction on the “size” of (initial) states to

prove that all reachable states adhere to a given specification. This is accomplished

by attaching ranks from a well-founded set to states, and defining a squeezer function

that maps states to states of a lower rank. Note that the notion of a rank used in our

work is distinct from that of a ranking function, and the two should not be confused; in

particular, a rank is not required to decrease on execution steps. In chapter 4, squeezers

were utilized for safety verification: the ability to establish safety is achieved by having

the squeezer map states in a way that forms a (relaxed form of) a simulation relation,

ensuring that the traces of the lower-rank states simulate the traces of the higher rank

states. Due to the simulation property, which is verified locally, safety over states with

a base rank, carries over (by induction over the rank) to states of any higher rank.

In this chapter, we use the construction of well-founded ranks and squeezers to

define a recurrence formula representing (an upper bound on) the time complexity

of the procedure being analyzed. We do so by expressing the complexity (length) of

traces in terms of the complexity of lower-rank traces. This new setting raises addi-

tional challenges: it is no longer sufficient to relate traces to lower-rank traces; we also

need to quantify the discrepancy between the lengths of the traces, as well as between

their ranks. This is achieved by a certain form of simulation that is parameterized

by stuttering shapes (for the lengths) and by means of a rank bounding function (for

the ranks). Furthermore, while [78] limits each trace to relate to a single lower-rank

trace, we have found that it is sometimes beneficial to employ a decomposition of the

original trace into several consecutive trace segments, so that each segment corresponds

to some (possibly different) lower-rank trace.The segmentation simplifies the analysis

of the length of the entire trace, since it creates sub-analyses that are easier to carry

out, and the sum of which gives the desired recurrence formula. This also enables a

richer set of recurrences to be constructed automatically, namely non-single recurrences

(meaning that the recursive reference may appear more than once on the right hand

side of the equation).

The base case of the recurrence is obtained by computing an upper bound on the
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time complexity of base-rank states. This is typically a simpler problem that may be

addressed, e.g., by symbolic execution due to the bounded nature of the base. The solu-

tion to the recurrence formula with the respective base case soundly overapproximates

the time complexity of the procedure.

We show that, conceptually, the classical approach for generating recurrences based

on ranking functions can be viewed as a special case of our approach where the squeezer

maps a state to its immediate successor. The real power of our approach is in the

freedom to define other squeezers, producing simpler recursions, and avoiding the need

for complex ranking functions.

Our use of squeezers for extracting recurrences that bound the complexity of imper-

ative programs is related to the way analyses for functional programs (e.g. [74]) use the

term(s) in recursive function calls to extract recurrences. The functional programming

style coincidentally provides such candidate terms. The novelty of our approach is in

introducing the concept of a squeezer explicitly, leading to a more flexible analysis as

it does not restrict the squeezer to follow specific terms in the program. In particular,

this allows reasoning over space in imperative programs as well.

The main results of this work can be summarized as follows:

• We propose a novel technique for run-time complexity analysis of imperative pro-

grams based on state squeezers. Squeezers, together with rank-bounding func-

tions, are used for extracting recurrence relations whose solutions overapproxi-

mate the length of executions of the input program.

• We formalize the notions of state squeezers, partitioned simulation and rank

bounding functions that underlie the approach, and establish conditions that en-

sure soundness of the recurrence relations.

• We demonstrate that squeezers and rank bounding functions can be efficiently

synthesized and verified, due to their compactness, especially relative to explicit

ranking functions.

• We implemented our approach and applied it successfully to several small but

intricate programs, some of which could not have been handled by existing tech-

niques.
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5.2 Overview

In this section we give a high level description of our technique for complexity analysis

using the binary counter example in Figure 5.1.

Example: Binary counter The procedure in Figure 5.1 receives as an input a

number n of bits and iterates over all their possible values in the range 0...2n − 1. The

“current” value is maintained in an array c which is initialized to zero and whose length

is n. c[0] represents the least significant bit. The loop scans the array from the least

significant bit forward looking for the leftmost 0 and zeroing the prefix of 1s. As soon

as it encounters a 0, it sets it to 1 and starts the scan from the beginning. The program

terminates when it reaches the end of the array (i = n), all array entries are zeros, and

the last value was 111 . . .; at this point all the values have been enumerated.

Existing analyses All recent methods that we are aware of (such as [6, 49, 74])

fail to analyze the complexity of this procedure (in fact, most methods will fail to

realize that the loop terminates at all). One reason for that is the need to model

the contents of the array whose size in unknown at compile time. However, even if

data were modeled somehow and taken into account, finding a ranking function, which

underlies existing approaches, is hard since this function is required to decrease between

any two consecutive iterations along any execution. Here for instance, to the best of

our knowledge, such a function would depend on an unbounded number of elements

of the array; it would need to extract the current value as an integer, along the lines

of
∑n−1

j=0 c[j] · 2
j . The use of a ranking function for complexity analysis is somewhat

analogous to the use of inductive invariants in safety verification. Both are based

on induction over time along an execution. This work is inspired by the technique

presented in chapter 4, showing that verification can also be done when the induction

is performed on the size (rank) of the state rather than on the number of iterations,

where the size of the state may correspond, e.g., to the size of an unbounded data

structure. We argue that similar concepts can be applied in a framework for complexity

classification. That is, we try to infer a recurrence relation that is based on the rank

of the state and correlates the lengths of complete executions—executions that start

from an initial state—of different ranks. This sidesteps the need to express the length

of partial executions, which start from intermediate states. While the approach applies



5.2. OVERVIEW 87

to bounded-state systems as well, its benefits become most apparent when the program

contains a-priori unbounded stores, such as arrays.

Our approach. Roughly speaking, our approach for computing recurrence formulas

that provide an upper bound on the complexity of a procedure is based on the following

ingredients:

• A rank function r : init → X that maps initial states to ranks from a well

founded set (X,≺) with base B. Intuitively, the rank of the initial state governs

the time complexity of the entire trace, and we also consider it to be the rank

of the trace. As we shall soon see, this rank can be significantly simpler than a

ranking function.

• A squeezer ⋎ : Σ → Σ that maintains (some variant of) a simulation relation,

thus ensuring a bona fide correspondence between higher-rank traces and lower-

rank traces through correspondence between states.

• A trace partition pd : Σ → [1..d] that maps each state to a segment-identifier

i ∈ [1..d], and induces a decomposition of a trace into segments, allowing ⋎ to

map each of them to a separate, lower-rank mini-trace.

• A rank-bounding function ⋎̂ : X × [1..d] → X that provides an upper bound

on the rank of the initial states of the d mini-traces based on the rank of the

higher-rank trace. (The rank is not required to be uniform across mini-traces).

All of these ingredients are synthesized automatically, as we discuss in Section 5.4. Next,

we elaborate on each of these ingredients, and illustrate them using the binary counter

example. We further demonstrate how we use these ingredients to find recurrence

formulas describing (an upper bound on) the complexity of the program.

Some notations We adopt a standard encoding of a program as a transition system

over a state space Σ, with a set of initial states init ⊆ Σ and transition function

tr : Σ → Σ, where a transition corresponds to a loop iteration. We use reach ⊆ Σ to

denote the set of reachable states, reach = {σ | ∃σ0, k. tr
k(σ0) = σ ∧ σ0 ∈ init}.

Defining the rank of a state Ranks are taken from a well founded set (X,≺)

with a basis B ⊆ X that contains all the minimal elements of X. The rank function,
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r : init → X, aims to abstract away irrelevant data from the (initial) state that does not

effect the execution time, and only uses state “features” that do. When proper ranks are

used, the rank of an initial state is all that is needed to provide a tight bound on its trace

length. Since ranks are taken from a well founded set, they can be recursed over. In

the binary counter example, the chosen rank is n, namely, the rank function maps each

state to the size of the array. (Notice that the rank does not depend on the contents of

the array; in contrast, bounding the trace length from any intermediate state, and not

just initial states, would have required considering the content of the array). Given the

rank function, our analysis extracts a recurrence formula for the complexity function

compx : X → N ∪ {∞} that provides an upper bound on the number of iterations of

tr based on the rank of the initial states. In our exposition, we sometimes also refer

to a time complexity function over states, comps : init → N ∪ {∞}, which is defined

directly on the (initial) states, as the number of iterations in an execution that starts

with some σ0 ∈ init .

Defining a squeezer The squeezer ⋎ : Σ → Σ is a function that maps states to

states of lower-rank traces (where the rank of a trace is determined by the rank of its

initial state), down to the base ranks B. Its importance is in defining a correspon-

dence between higher-rank traces and lower-rank ones that can be verified locally, by

examining individual states rather than full traces. The kind of correspondence that

the squeezer is required to ensure affects the flexibility of the approach and the kind

of recurrence formulas that it may yield. To start off, consider a rather naive squeezer

that satisfies the following local properties:

• rank decrease of non-base initial states: σ0 ∈ init ∧ r(σ0) /∈ B ⇒ r(⋎(σ0)) ≺

r(σ0), and

• initial anchor: σ0 ∈ init ⇒ ⋎(σ0) ∈ init ,

• k-step: σ ∈ reach ⇒ ∃k. tr(⋎(σ)) = ⋎(trk(σ)).

As an example, the squeezer we consider for the binary counter program is rather

intuitive: it removes the least significant bit (c[0]), and adjusts the index i accordingly.

Doing so yields a state with rank r(⋎(σ0)) = r(σ0) − 1. Figure 5.2 shows the corre-

spondence between a 4-bit binary counter, and a 3-bit one. The figure illustrates the
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tr tr tr tr tr tr tr
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0 0 1 0

i

σ′
0 σ′

1 σ′
2 σ′

3tr tr tr
· · ·

⋎

0 0 0

i

1 0 0

i

0 0 0

i

0 1 0

i

r(σ0) = 4

r(σ′
0
) = 3

⋎̂

⋎
(
⟨n, i, c⟩

)
= ⟨n −̇ 1, i −̇ 1, c[1:]⟩ ⋎̂(n) = n −̇ 1

(
x −̇ y = max{0, x− y}

)

Figure 5.2: Correspondence between two traces of the binary counter program.
Squeezer removes the leftmost array entry, that represents the least significant bit.
The rank is the array size, i.e., four on the upper trace and three on the lower one. The
simulation includes only 1-,2- and 3-steps, so the length of the upper trace is at most
three times that of the lower trace, yielding an overall complexity bound of O(3n).

simulation k-step property for k = 1, 2, 3: σ0 and σ3 are (3, 1)-stuttering, σ1 and σ4 are

(2, 1)-stuttering, and σ2, σ5 and σ6 are (1, 1)-stuttering.

The simulation property induces a correlation between a higher rank trace τ and

a lower rank one τ ′, such that every step of τ ′ is matched by k steps in τ . Whenever

a state σ satisfies the k-step property, we will refer to it as being (k, 1)-stuttering.

(We usually only care about the smallest k that satisfies the property for a given σ.)

Now suppose that there exists some k̂ ∈ N
+ such that for every trace τ(σ0) and every

state σ ∈ τ(σ0), σ is (k, 1)-stuttering with 1 ≤ k ≤ k̂. This would yield the following

complexity bound:

comps(σ0) ≤ k̂ · comps(⋎(σ0)). (5.1)

Base case What should happen if we repeatedly apply ⋎ to some initial state σ0,

each time obtaining a new, lower-rank trace? Since r(⋎(σ0)) ≺ r(σ0), and since (X,≺)

is well-founded, we will eventually hit some state of base rank :

⋎(⋎(. . . (σ0)) . . .) = σ◦
0 such that r(σ◦

0) ∈ B

Hence, if we know the complexity of the initial states with a base rank, we can apply

Equation (5.1) iteratively to compute an upper bound of the complexity of any initial

state.

How many steps will be needed to get from an arbitrary initial state σ0 to σ◦
0?

Clearly, this depends on the rank, and the way in which ⋎ decreases it.
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Consider the binary counter program again, with the rank r(σ) = n. (N, <) is

well-founded, with a single minimum 0. If we define, e.g., B = {0, 1}, we know that

the length of any trace with n ∈ B is bounded by a constant, 2. (Bounding the length

of traces starting from an initial state σ0 where r(σ0) ∈ B can be done with known

methods, e.g., symbolic execution). Since the rank decreases by 1 on each “squeeze”,

we get the following exponential bound:

comps(σ0) ≤ 2 · 3n−1 = O(3n) (5.2)

The last logical step, going from (5.1) to (5.2), is, in fact, highly involved: since

Equation (5.1) is a mapping of states, solving such a recurrence for arbitrary ⋎ cannot

be carried out using known automated methods. Instead, we implicitly used the rank

of the state, n, to extract a recurrence over scalar values and obtain a closed-form

expression. Let us make this reasoning explicit by first expressing Equation (5.1) in

terms of compx instead of comps:

compx(n) ≤ k̂ · compx(n− 1)

Here, n−1 denotes the rank obtained when squeezing an initial state of rank n. Unlike

Equation (5.1), this is a recurrence formula over (N, <) that may be solved algorithmi-

cally, leading to the solution compx(n) = O(3n).

Surplus analysis Assuming the worst k for all the states in the trace can be too

conservative; in particular, if there are only a few states that satisfy the k̂-step property,

and all the others satisfy the 1-step property. In the latter case, if we know that at

most b states in any one trace have k > 1, we can formulate the tighter bound:

comps(σ0) ≤ comps(⋎(σ0)) + k̂ · b (5.3)

Incidentally, in the current setting of the binary counter program, the number of

k̂-steps (3-steps) is not bounded. So we cannot apply the inequality (5.3) repeatedly

on any trace, as the number of 3-steps depends on the initial state. However, we can

improve the analysis by partitioning the trace to two parts, as we explain next.

Segments and mini-traces Note that both (5.1) and (5.3) “suffer” from an inherent
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restriction that the right hand side contains exactly one recursive reference. As such,

they are limited in expressing certain kinds of complexity classes.

In order to get more diverse recurrences, including non-single recurrences, we pro-

pose an extension of the simulation property that allows more than one lower-rank

trace:

• partitioned simulation

• initial anchor: σ0 ∈ init ⇒ ⋎(σ0) ∈ init (same as before),

• k-step: σ ∈ reach ⇒ ∃k. tr
(
⋎ (σ)

)
= ⋎

(
trk(σ)

)
(same as before) or

⋎
(
tr(σ)

)
∈ init (switch)

This definition allows a new mini-trace to start at any point along a higher-rank

trace τ , thus marking the beginning of a new segment of τ . When this occurs, we

call tr(σ) a switch state. For the sake of uniformity, we also refer to all initial states

σ0 ∈ init as switch states. Hence, each segment of τ starts with a switch state, and the

mini-traces are the lower-level traces that correspond to the segments (these are the

traces that start from ⋎(σs), where σs is a switch state). The length of τ can now be

expressed as the sum of lower-level mini-traces.

However, there are two problems remaining. First, we need to extend the “rank

decrease of non-base initial states” requirement to any switch state in order to ensure

that the ranks of all mini-traces are indeed lower. Namely, we need to require that if

σs is any switch state in a trace from σ0, then r
(
⋎ (σs)

)
≺ r(σ0).

Second, even if we extend the rank decrease requirement, this definition does not

suggest a way to bound the number of correlated mini-traces and their respective ranks,

and therefore suggests no effective way to produce an equation for comps as before.

To sidestep the problem of a potentially unbounded number of mini-traces, we

augment the definition of simulation with a trace partition function; to address the

challenge of the rank decrease we use a rank-bounding function, which is responsible

both for ensuring that the rank of the mini-traces decreases and for bounding their

ranks.

Defining a partition We define a function pd : Σ → {1, . . . , d}, parameterized by

a constant d, called a partition function, that is weakly monotone along any trace



92 CHAPTER 5. SIZE REDUCTION FOR COMPLEXITY ANALYSIS
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= ⟨n −̇ 1, (i < n) ? i : i−1, c[:n−1]⟩ ⋎̂(n) = n −̇ 1

Figure 5.3: An execution trace of the binary counter program that corresponds to two
mini-traces of lower rank.

(pd(σ) ≤ pd(tr(σ))). This function induces a partition of any trace τ into (at most) d

segments by grouping states based on the value of pd(σ). To ensure the segments and

mini-traces are aligned, we require that switch states only occur at segment boundaries.

• d-partitioned simulation:

• initial anchor: σ0 ∈ init ⇒ ⋎(σ0) ∈ init (same as before),

• k-step: σ ∈ reach ⇒ ∃k. tr
(
⋎ (σ)

)
= ⋎(trk

(
σ)
)

(same as before) or

⋎
(
tr(σ)

)
∈ init ∧ pd(σ) < pd

(
tr(σ)

)
(segment switch)

In our running example, let us change ⋎ so that it shrinks the state by removing

the most significant bit instead of the least. This leads to a partition of the execution

trace for r(σ0) = n into two segments, as shown in Figure 5.3. The partition function

is pd = (i ≥ n || c[n− 1]) ? 2 : 1 (essentially, c[n− 1] + 1, except that the final state is

slightly different). As can be seen from the figure, each segment simulates a mini-trace

of rank n− 1, with k = 1 for all the steps except for the last step (at σ28) where k = 2.

In this case, it would be folly to use the recurrence (5.1) with k̂ = 2, since all the steps

are 1:1 except one. Instead, we can formulate a tighter bound:

comps(σ0) ≤ comps(σ
′
0) + comps(σ

′′
0) + 2

Where: comps(σ
′
0), comps(σ

′′
0) are the lengths of the mini-traces, and 2 is the surplus

from the switch transition σ14 → σ15 plus the 2-step at σ28. In the case of this program,

we know that r(σ′
0) = r(σ′′

0) = r(σ0)− 1, for any initial state σ0, therefore, turning to
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compx, we can derive and solve the recurrence compx(n) = 2 · compx(n− 1)+ 2, which

together with the base yields the bound:

compx(n) = 2n+1 − 2

Clearly, a general condition is required in order to identify the ranks of the corre-

sponding initial states of the (lower-rank) mini-traces (and at the same time, ensure

that they decrease).

Bounding the ranks of squeezed switch states This is not a trivial task, since as

previously noted, the squeezed ranks could be different, and may depend on properties

present in the corresponding switch states. To achieve this goal, once a partition

function pd is defined, we also define a rank-bounding function ⋎̂ : X×{1, . . . , d} → X,

where for any σ0 ∈ init and switch state σs, ⋎̂ provides a bound for the rank of ⋎(σs)

based on that of σ0:

r(⋎(σs)) ⪯ ⋎̂
(
r(σ0), pd(σs)

)
≺ r(σ0) (5.4)

The rightmost inequality ensures that a mini-trace that starts from ⋎(σs) is of

lower-rank than σ0, and as such extends the “rank decrease” requirement to all mini-

traces. Based on this restriction, we can formulate a recurrence for compx based on

the initial rank rank = r(σ0), as follows:

compx(rank) ≤
d∑

i=1

compx
(
⋎̂(rank, i)

)
+ (d− 1) + k̂ · b (5.5)

Where b, as before, is the number of k-steps for which k > 1, and k̂ is the bound on

k (k ≤ k̂). The expression (d−1) represents the transitions between segments, and k̂ · b

represents the surplus of the rank-rank trace over the total lengths of the mini-traces.

It should be clear from the definition above, that ⋎̂ is quite intricate. How would we

compute it effectively? The rank decrease of the initial states and the simulation prop-

erties were local by nature, and thus amenable to validation with an SMT solver. The

⋎̂ function is inherently global, defined w.r.t. an entire trace. This makes the property

(5.4) challenging for verification methods based on SMT. To render this check more

feasible with first-order reasoning, we introduce two special cases where the problem of

checking (5.4) becomes easier: rank preservation and a single segment, explained next.
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Taming ⋎̂ with rank preservation To obtain rank preservation, we extend the

rank function to all states (instead of just the initial states), and require that the

rank is preserved along transitions. This is appropriate in some of the scenarios we

encountered. For example, the binary counter illustration satisfies the property that

along any execution {σi}
∞
i=0, the rank is preserved: r(σi) = r(σi+1). Rank preservation

means that given a switch state σs of an arbitrary segment i, we know that r(σs) =

r(σ0). Once this is set, ⋎̂ only needs to overapproximate the rank of ⋎(σ) in terms of

the rank of the same state σ.

Taming ⋎̂ with a single segment In this case, checking (5.4) reduces to a single

check of the initial state, which is the only switch state. It turns out that the restriction

to a single segment is still expressive enough to handle many loop types.

Putting it all together Theoretically, r , ⋎, pd, and ⋎̂ can be manually written

by the user. However, this is a rather tedious task, that is straightforward enough to

be automated. We observed that all the aforementioned functions are simple enough

entities, that can be expressed through a strict syntax using first order logic. Similar

to the analysis in chapter 4, we apply a generate-and-test synthesis procedure to enu-

merate a space of possible expressions representing them. This process is explained in

Section 5.4.

5.3 Complexity Analysis based on Squeezers

In this section we develop the formal foundations of our approach for extracting recur-

rence relations describing the time complexity of an imperative program based on state

squeezers. We present the ingredients that underly the approach, the conditions they

are required to satisfy, and the recurrence relations they induce. In the next section,

we explain how to extract the recurrences automatically. Given the recurrence relation,

a dedicated (external) tool may be applied to end up with a closed formula, similar to

[7].

We use transition systems to capture the semantics of a program.

Definition 9 (Transition Systems). A transition system is a tuple (Σ, init , tr), where

Σ is a set of states, init ⊆ Σ is a set of initial states and tr : Σ → Σ is a transition
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function (rather than a transition relation, since only deterministic procedures are con-

sidered). The set of terminal states F ⊆ Σ is implicitly defined by tr(σ) = σ. An exe-

cution trace (or a trace in short) is a finite or infinite sequence of states τ = σ0, σ1, . . .

such that σi+1 = tr(σi) for every 0 ≤ i < |τ |. A state σ ∈ Σ defines an execution

trace τ(σ) = {tr i(σ)}i∈N. Whenever there exists an index 0 ≤ k ≤ |τ | s.t. σk ∈ F ,

we truncate τ(σ) into a finite trace {tr i(σ)}ki=0, where k is the minimal such index.

The trace is initial if it starts from an initial state, i.e., σ ∈ init. Unless explic-

itly stated otherwise, all traces we consider are initial. The set of reachable states is

reach = {σ ∈ Σ | ∃σ0 ∈ init . σ ∈ τ(σ0)}.

Roughly, to represent a program by a transition system, we translate it into a single

loop program, where init consists of the states encountered when entering the loop, and

transitions correspond to iterations of the loop.

In the sequel, we fix a transition system (Σ, init , tr) with a set F of terminal states

and a set reach of reachable states.

Definition 10 (Complexity over states). For a state σ ∈ Σ, we denote by comps(σ)

the number of transitions from σ to a terminal state along τ(σ) (the trace that starts

from σ). Formally, if τ(σ) does not include a terminal state, i.e., the procedure does

not terminate from σ, then comps(σ) = ∞. Otherwise:

comps(σ) = min{k ∈ N | trk(σ) ∈ F}.

The complexity function of the program maps each initial state σ0 ∈ init to its time

complexity comps(σ0) ∈ N ∪ {∞}.

Our complexity analysis derives a recurrence relation for the complexity function

by expressing the length of a trace in terms of the lengths of traces that start from

lower rank states. This is achieved by

• attaching to each initial state a rank from a well-founded set that we use as the

argument of the complexity function and that we recur over, and

• defining a squeezer that maps each state from the original trace to a state in

a lower-rank trace; the mapping forms a partitioned simulation according to a

partition function that decomposes a trace to segments; each segment is simulated
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by a (separate) lower-rank trace, allowing to express the length of the former in

terms of the latter, and finally,

• defining a rank bounding function that expresses (an upper bound on) the ranks

of the lower-rank traces in terms of the rank of the higher-rank trace.

We elaborate on these components next.

5.3.1 Time complexity as a function of rank

We start by defining a rank function that allows us to express the time complexity of

an initial state by means of its rank. This is to make this chapter self contained, and

emphasize that in contrast to chapter 4, here the rank has a more important role - it

should not only decrease, but the rank decrease should be well understood.

Definition 11 (Rank). Let X be a set, and ≺ be a well-founded partial order over X.

Let B ⊇ min(X) be a base for X, where min(X) is the set of all the minimal elements

of X w.r.t. ≺. A rank function r : init → X maps each initial state to a rank in

X. We extend the notion of a rank to initial traces as follows. Given an initial trace

τ = τ(σ0), we define its rank to be the rank of σ0. We refer to states σ0 such that

r(σ0) ∈ B as the base states. Similarly, (initial) traces whose ranks are in B are called

base traces.

In our analysis, ranks range over X = N
m (for some m ∈ N

+), with ≺ defined by

the lexicographic order. Ranks let us abstract away data inside the initial execution

states which does not affect the worst-case bound on the trace length. For example,

the length of traces of the binary counter program (Figure 5.1) is completely agnostic

to the actual content of the array at the initial state. The only parameter that affects

its trace length is the array size, and not which integers are stored inside it. Hence, a

suitable rank function in this example maps an initial state to its array length. This

is despite the fact that the execution does depend on the content of the array, and, in

particular, the number of remaining iterations from an intermediate state within the

execution depends on it. The partial order ≺ and the base set B will be used to define

the recurrence formula as we explain in the sequel.

We will assume from now on that (X,≺, B), as well as the rank function, are fixed,

and can be understood from context. The rank function r induces a complexity function

compx : X → N ∪ {∞} over ranks, defined as follows.
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Definition 12 (Complexity over ranks). The complexity function over ranks, compx :

X → N ∪ {∞}, is defined by:

compx(rank) = max{comps(σ0) | r(σ0) ⪯ rank ∧ σ0 ∈ init}

The definition ensures that for every initial state σ0 ∈ init , we can compute (an

upper bound on) its time complexity based on its rank, as follows: comps(σ0) ≤

compx(r(σ0)). The complexity of rank takes into account all states with r(σ) ⪯ rank

and not only those with rank exactly rank, to ensure monotonicity of compx in the

rank (i.e., if rank1 ⪯ rank2 then compx(rank1) ≤ compx(rank2)). Our approach is

targeted at extracting a recurrence relation for compx.

5.3.2 Complexity decomposition by partitioned simulation

In order to express the length of a trace in terms of the lengths of traces of lower ranks,

we use a squeezer that maps states from the original trace to states of lower-rank traces

and (implicitly) induces a correspondence between the original trace and the lower-rank

trace(s). For now, we do not require the squeezer to decrease the rank of the trace; this

requirement will be added later. The squeezer is accompanied by a partition function

to form a partitioned simulation that allows a single higher-rank trace to be matched

to multiple lower-rank traces such that their lengths may be correlated.

Definition 13 (Squeezer, ⋎). A squeezer is a function ⋎ : Σ → Σ.

Definition 14. A function pd : Σ → {1, . . . , d}, where d ∈ N
+ is called a d-partition

function if for every trace τ = σ0, σ1, . . . it holds that pd(σi+1) ≥ pd(σi) for every

0 ≤ i < |τ |.

The partition function partitions a trace into a bounded number of segments, where

each segment consists of states with the same value of pd. We refer to the first state

of a segment as a switch state, and to the last state of a finite segment as a last state

(note that if τ is infinite, its last segment has no last state). In particular, this means

that the initial state of a trace is a switch state. (Note that a state may be a switch

state in one trace but not in another, while a last state is a last state in any trace, as

long as the same partition function is considered.)

Our complexity analysis requires the squeezer to form a partitioned simulation with

respect to pd. Roughly, this means that the squeezer maps each segment of a trace to
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a (lower-rank) trace that “simulates” it. To this end, we require all the states σ within

a segment of a trace to be (h, ℓ)-“stuttering”, for some h ≥ ℓ ≥ 1. Stuttering lets

h consecutive transitions of σ be matched to ℓ consecutive transitions of its squeezed

counterpart. If h = ℓ, the state σ contributes to the complexity the same number of

steps as the squeezed state. Otherwise, σ contributes h−ℓ additional steps, resulting in a

longer trace. Recall that terminal states also have outgoing transitions (to themselves),

however these transitions do not capture actual steps; they do not contribute to the

complexity. Hence, stuttering also requires that “real” transitions of σ are matched to

“real” transitions of its squeezed counterpart, namely, if the latter encounter a terminal

state, so must the former. For the last states of segments the requirement is slightly

different as the simulation ends at the last state, and a new simulation begins in the

next segment. In order to account for the transition from the last state of one segment

to the first (switch) state of the next segment, last states are considered (2, 1)-stuttering

if they are squeezed into terminal states, unless they are terminal themselves1. In any

other case, they are considered (1, 1)-stuttering. The formal definitions follow.

Definition 15 (Stuttering States). A non-last state σ ∈ Σ is called a (h, ℓ)-stuttering

state, for h ≥ ℓ ≥ 1, if:

• tr ℓ(⋎(σ)) = ⋎(trh(σ));

• for every i < ℓ, tr i(⋎(σ)) ̸∈ F ;

• tr ℓ(⋎(σ)) ∈ F implies that ⋎(trh(σ)) ∈ F .

A last state σ ∈ Σ is (1, 1)-stuttering if σ ∈ F or ⋎(σ) ̸∈ F . Otherwise, it is (2, 1)-

stuttering.

To obtain a partitioned simulation, switch states (along any trace), which start new

segments, are further required to be squeezed into initial states (since our complexity

analysis only applies to initial states). We denote by Spd(τ) the switch states of trace

τ according to partition pd and by Spd the switch states of all traces according to the

partition pd. Namely, Spd = init ∪
{
tr(σ)

∣∣ σ ∈ reach ∧ pd(σ) < pd
(
tr(σ)

)}
.

1Considering a non-terminal last state that is squeezed into a terminal state as (1, 0)-stuttering may
have been more intuitive than (2, 1)-stuttering, but both properly capture the discrepancy between the
number of transitions in the higher and lower rank traces, and (2, 1) better fits the rest of the technical
development, which assumes that hi, ℓi ≥ 1.
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Definition 16 (Partitioned Simulation). We say that a squeezer ⋎ : Σ → Σ forms a

{(hi, ℓi)}
n
i=1-partitioned simulation according to pd and denote ⋎ ∼ PSpd({(hi, ℓi)}

n
i=1)

if for every reachable state σ we have that:

• σ is (hi, ℓi)-stuttering for some 1 ≤ i ≤ n, and

• σ ∈ Spd ⇒ ⋎(σ) ∈ init.

Note that Definition 15 implies that a non-terminal state may only be squeezed into

a terminal state if it is the last state in its segments. When {(hi, ℓi)}
n
i=1 is irrelevant

or clear from the context, we omit it from the notation and simply write ⋎ ∼ PSpd .

A trace squeezed by ⋎ ∼ PSpd

(
{(hi, ℓi)}

n
i=1

)
may have an unbounded number of

(hi, ℓi)-stuttering states, which hinders the ability to define a recurrence relation based

on the simulation. To overcome this, our complexity decomposition may use k̂ ≥ 1 to

capture a common multiplicative factor of all the stuttering pairs, with the target of

leaving only a bounded number of states whose stuttering exceeds k̂ and needs to be

added separately. This will become important in Theorem 5.

Observation 1 (Complexity decomposition). Let ⋎ ∼ PSpd

(
{(hi, ℓi)}

n
i=1

)
, and k̂ ≥ 1.

Let E
k̂
⊆ {1, . . . , n} be the set of indices such that hi

ℓi
> k̂. Then for every σ0 ∈ init we

have that

comps(σ0) ≤
∑

σ∈Spd (τ(σ0))

k̂ · comps(⋎(σ)) +
∑

i∈E
k̂

∑

σ∈Ki(τ(σ0))

hi − ℓi·k̂

where Ki

(
τ(σ0)

)
is the multiset of (hi, ℓi)-stuttering states in τ(σ0).

In the observation, the first addend summarizes the complexity contributed by

all the lower-rank traces, while using k̂ as an upper bound on the “inflation” of the

traces. However, the states that are (hi, ℓi)-stuttering with hi

ℓi
that exceeds k̂ contribute

additional hi − (ℓi · k̂) steps to the complexity, and as a result, need to be taken into

account separately. This is handled by the second addend, which adds the steps that

were not accounted for by the first addend. While we use the same inflation factor k̂

across the entire trace, a simple extension of the decomposition property may consider

a different factor k̂ in each segment. Note that the first addend always sums over a

finite number of elements since the number of switch states is at most d – the number

of segments. If τ(σ0) is finite, the second addend also sums over a finite number of

elements.
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Observation 1 considers the complexity function over states, and is oblivious to the

rank. In particular, it does not rely on the squeezer decreasing the rank of states.

Next, we use this observation as the basis for extracting a recurrence relation for the

complexity function over ranks, in which case, decreasing the rank becomes important.

5.3.3 Extraction of recurrence relations over ranks

Based on the complexity decomposition, we define recurrence relations that capture

compx — the time complexity of the initial states as a function of their ranks. To

go from the complexity as a function of the actual states (as in Observation 1) to the

complexity as a function of their ranks, we need to express the rank of ⋎(σs) for a

switch state σs as a function of the rank of σ0. To this end, we define ⋎̂:

Definition 17. Given r, ⋎ and pd such that ⋎ ∼ PSpd, a function ⋎̂ : X×{1, . . . , d} →

X is a rank bounding function if for every rank ∈ X − B and 1 ≤ i ≤ d, if τ(σ0) is

an initial trace such that r(σ0) = rank, and σs ∈ Spd(τ(σ0)) is a switch state such that

pd(σs) = i, the following holds:

(i) upper bound: r
(
⋎(σs)

)
⪯ ⋎̂(rank, i) and (ii) rank decrease: ⋎̂(rank, i) ≺ rank

In other words, Definition 17 requires that for every non-base initial state σ0 ∈ init

and switch state σs at segment i of τ(σ0), we have that r(⋎(σs)) ⪯ ⋎̂(r(σ0), i) ≺ r(σ0).

Recall that r(⋎(σs)) is well defined since ⋎(σs) is required to be an initial state. The

definition states that ⋎̂(rank, i) provides an upper bound on the rank of squeezed

switch states in a non-base trace of rank rank. Monotonicity of compx ensures that

compx(r(⋎(σ))) ≤ compx(⋎̂(rank, i)). This definition also requires the rank of non-

base traces to strictly decrease when they are squeezed, as captured by the “rank

decrease” inequality.

Obtaining a rank bounding function, or even verifying that a given ⋎̂ satisfies this

requirement, is a challenging task. We return to this question later in this section.

These conditions allow to substitute the states for ranks in the first addend of

Observation 1, and hence obtain recurrence relations for compx over the (decreasing)

ranks. To handle the second addend, we also need to bound the number of states whose

stuttering, hi

ℓi
, exceeds k̂. This is summarized by the following theorem:
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Theorem 5. Let r : init → X be a rank function, ⋎ : Σ → Σ a squeezer and

pd : Σ → {1, . . . , d} a partition function such that ⋎ ∼ PSpd

(
{(hi, ℓi)}

n
i=1

)
. Let ⋎̂ :

X×{1, . . . , d} → X be a rank bounding function w.r.t. r, ⋎ and pd. If, for some k̂ ≥ 1,

the number of (hi, ℓi)-stuttering states that appear along any non-base initial trace is

bounded by a constant bi ∈ N whenever i ∈ E
k̂
, then

compx(rank) ≤
d∑

i=1

k̂ · compx
(
⋎̂(rank, i)

)
+

∑

i∈E
k̂

bi ·
(
hi − ℓi·k̂

)
. (5.6)

Note that a state may be (hi, ℓi)-stuttering for several i’s, in which case, it is sound

to count it towards any of the bi’s; in particular, we choose the one that minimizes

hi − ℓi·k̂.

Corollary 1. Under the premises of Theorem 5, if f : X → N∪{∞} satisfies f(rank) =
∑d

i=1 k̂·f(⋎̂(rank, i))+
∑

i∈E
k̂
bi·(hi−ℓi·k̂) for every rank ∈ X−B, and compx(rank) ≤

f(rank) for every rank ∈ B, then compx(rank) ≤ f(rank) for every rank ∈ X. We

conclude that comps(σ0) ≤ f(r(σ0)) for every σ0 ∈ init.

Base-case complexity In order to apply Corollary 1, we need to accompany Equa-

tion (5.6) with a bound on compx(ρ) for the base ranks, ρ ∈ B. Fortunately, this is

usually a significantly easier task. In particular, the running time of the base cases is

often constant, because intuitively, the following are correlated:

• the rank,

• the size of the underlying data structure, and

• the number of iterations.

In this case, symbolic execution may be used to obtain bounds for base cases (as we do

in our work). In essence, any method that can yield a closed-form expression for the

complexity of the base cases is viable. In particular, we can apply our technique on the

base case as a subproblem.

5.3.4 Establishing the requirements of the recurrence relations ex-

traction

Theorem 5 defines a recurrence relation from which an upper bound on the complexity

function, compx, can be computed (Corollary 1). However, to ensure correctness, the
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premises of Theorem 5 must be verified. The requirement that ⋎ ∼ PSpd({(hi, ℓi)}
n
i=1)

(see Definition 16) may be verified locally by examining individual (reachable) states:

for any (reachable) state σ, the check for (hi, ℓi)-stuttering and switch states can, and

should, be done in tandem, and require only observing at most maxi hi transition steps

from σ and maxi ℓi from ⋎(σ). In contrast, the property required of ⋎̂ is global : it

requires ⋎̂(rank, i) to provide an upper bound on the rank of any squeezed switch

state that may occur in any position along any non-base initial trace whose initial

state has rank rank. Similarly, the property required of the bounds bi is also global :

that the number of (hi, ℓi)-stuttering states along any non-base initial trace is at most

bi. It is therefore not clear how these requirements may be verified in general. We

overcome this difficulty by imposing additional restrictions, as we discuss next.

5.3.4.1 Establishing bounds on the number of occurrences of stuttering

states

Bounds on the number of occurrences per trace that are sound for every trace are

difficult to obtain in general. While clever analysis methods exist that can do this kind

of accounting, we found that a stronger, simpler condition applies in many cases:

• For every σ ∈ reach, either:

• σ is (hi, ℓi)-stuttering with hi

ℓi
≤ k̂; or

• σ is (hi, ℓi)-stuttering (with hi

ℓi
> k̂), and either σ is a switch state or trhi(σ) is a

last state.

This restricts these cases to occur only at the beginnings and ends of segments. It

implies a total bound of 2d·maxi(hi− ℓi·k̂) on the “surplus” of any trace, therefore, we

substitute this expression for the rightmost sum in Equation (5.6).

5.3.4.2 Validating a rank bounding function

The definition of a rank bounding function (Definition 17) encapsulates two parts.

Part (ii) ensures that the rank decreases: ⋎̂(rank, i) ≺ rank for every rank ∈ X − B.

Verifying that this requirement holds does not involve any reasoning about the states,

nor traces, of the transition system. Part (i) ensures that ⋎̂ provides an upper bound

on the rank of squeezed switch states. Formally, it requires that r(⋎(σs)) ⪯ ⋎̂(r(σ0), i)
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for every switch state σs in segment i ∈ {1, . . . , d} along a trace that starts from a non-

base initial state σ0. Namely, it relates the rank of the squeezed switch state, ⋎(σs),

to the rank of the initial state, σ0, where no bound on the length of the trace between

the initial state σ0 and the switch state σs is known apriori. As such, it involves global

reasoning about traces. We identify two cases in which such reasoning may be avoided:

• The partition pd consists of a single segment (i.e., d = 1); or

• The rank function extends to any state (and not just the initial states), while

being preserved by tr .

In both of these cases, we are able to verify the correctness of ⋎̂ locally.

A single segment. In this case, the only switch state along a trace is the initial

state, and hence the upper-bound requirement of ⋎̂ boils down to the requirement that

for every σ0 ∈ init such that r(σ0) ∈ X −B, we have that r(⋎(σ0)) ⪯ ⋎̂(r(σ0), 1).

Lemma 5. Let r, ⋎ and p1 : Σ → {1} such that ⋎ ∼ PSp1. Then ⋎̂ : X × {1} →

X satisfies the upper-bound requirement of a rank bounding function if and only if

r(⋎(σ0)) ⪯ ⋎̂(r(σ0), 1) for every σ0 ∈ init such that r(σ0) ∈ X −B.

Rank preservation. Another case in which the upper-bound property of ⋎̂ may be

verified locally is when the r can be extended to all states while being preserved by tr :

Definition 18. A function r̂ : Σ → X extends the rank function r : init → Σ if r̂

agrees with r on the initial states, i.e., r̂(σ0) = r(σ0) for every initial state σ0 ∈ init.

The extended rank function r̂ is preserved by tr , if for every reachable state σ, we have

that r̂(tr(σ)) = r̂(σ).

Preservation of r̂ by tr ensures that all states along a (reachable) trace share the

same rank. In particular, for a reachable switch state σs that lies along τ(σ0), rank

preservation ensures that r̂(σs) = r̂(σ0) = r(σ0) (the last equality is due to the exten-

sion property), allowing us to recover the rank of σ0 from the rank of σs. Therefore,

the upper-bound requirement of ⋎̂ simplifies into the local requirement that for every

reachable switch state σs such that r̂(σs) ∈ X−B, we have that r̂(⋎(σs)) ⪯ ⋎̂(r̂(σs), i),

for every i ∈ {1, . . . , d}.
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Lemma 6. Let r, ⋎ and pd : Σ → {1, . . . , d} such that ⋎ ∼ PSpd. Suppose that

r̂ : Σ → X extends r and is preserved by tr . Then ⋎̂ : X × {1, . . . , d} → X satisfies

the upper-bound requirement of a rank bounding function if and only if r̂(⋎(σs)) ⪯

⋎̂(r̂(σs), i) for every reachable switch state σs such that r̂(σs) ∈ X − B and for every

i ∈ {1, . . . , d}.

Remark 1. The notion of a partitioned simulation requires a switch state σs to be

squeezed into an initial state. This requirement may be relaxed into the requirement

that σs is squeezed into a reachable state ⋎(σs), provided that we are able to still

ensure that the rank of (some) initial state σ′
0 leading to ⋎(σs) is smaller than the rank

of the trace on which σs lies, and that the rank of σ′
0 is properly captured by ⋎̂. One

case in which this is possible, is when r is extended to r̂ that is preserved by tr , as in

this case r̂(⋎(σs)) = r̂(σ′
0) = r(σ′

0).

This subsection described local properties that ensure that a given program satisfies

the requirements of Theorem 5. The locality of the properties facilitates the use of SMT

solvers to perform these checks automatically. This is a key step for effective application

of the method.

5.3.5 Trace-length vs. state-size recurrences with squeezers

A plethora of work exists for analyzing the complexity of programs (see Section 5.6 for a

discussion of related works). Most existing techniques for automatic complexity analysis

aim to find a recurrence relation on the length of the execution trace, relating the length

of a trace from some state to the length of the remaining trace starting at its successor.

These are recurrences on time, if you will, whereas our approach generates recurrences

on the state size (captured by the rank). Is our approach completely orthogonal to

preceding methods? Not quite. It turns out that from a conceptual point of view, our

approach can formulate a recurrence on time as well, as we demonstrate in this section.

Obtaining trace-length recurrences based on state squeezers The key idea

is to use tr itself as a squeezer that squeezes each state into its immediate successor.

Putting aside the initial-anchor requirement momentarily, such a squeezer forms a

partitioned simulation with a single segment (i.e., pd ≡ 1), in which all the states along

a trace are (1, 1)-stuttering, except for the last one (if the trace is finite), which is (2, 1)-

stuttering. Recall that squeezers must also preserve initial states (see Definition 16), a
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property that may be violated when ⋎ = tr , as the successor of an initial state is not

necessarily an initial state. We restore the initial-anchor property by setting înit = Σ,

i.e., every state is considered an initial state2.

A consequence of this definition is that compx will now provide an upper bound

on the time complexity of every state and not only of the initial states, in terms of a

rank that needs to be defined. If we further define a rank-bounding function ⋎̂ we may

extract a recurrence relation of the form

compx(rank) = compx(⋎̂(rank)) + 1

(we use ⋎̂(rank) as an abbreviation of ⋎̂(rank, 1), since this is a special case where

d = 1).

Defining the rank and the rank bounding function Recall that the rank r :

Σ → X captures the features of the (initial) states that determine the complexity. To

allow maximal precision, especially since all states are now initial, we set X to be the

set of states Σ, and define r to be the identity function, r(σ) = σ. With this definition,

compx and comps become one. Next, we need to define ≺ and B, while ensuring that

⋎ squeezes the (non-base) initial states, which are now all the states, into states of

a lower rank according to ≺. Since squeezers act like transitions now, having that

⋎ = tr , they have the effect of decreasing the number of transitions remaining to reach

a terminal state (provided that the trace is finite). We use this observation to define

≺ ⊆ Σ×Σ. Care is needed to ensure that (Σ,≺) is well-founded, i.e., every descending

chain is finite, even though the program may not terminate. Here is the definition that

achieves this goal:

σ1 ≺ σ2 ⇔ comps(σ1) < comps(σ2) (5.7)

Since ⋎ = tr does not decrease comps for states that belong to infinite (non-

terminating) traces (comps(⋎(σ)) = comps(σ) = ∞, hence ⋎(σ) ̸≺ σ), they must be

included in B, together with the terminal states, which are minimal w.r.t. ≺. Namely,

B = F ∪ {σ | comps(σ) = ∞}. Technically, this means that the base of the recurrence

needs to define compx for these states.

The final piece in the puzzle is setting ⋎̂ = tr . Since ⋎ ∼ PSpd

(
{(1, 1), (2, 1)}

)

2In fact, it suffices to consider înit = reach, in which case we may be able to take advantage of
information from static analyses
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(when înit = Σ), where the number of (2, 1)-stuttering states that appear along any

non-base initial trace is bounded by 1, we may use Theorem 5, setting k̂ = 1, to derive

the following recurrence relation, which reflects induction over time:

compx(σ) = compx(tr(σ)) + 1.

The formulation above represents a degenerate, näıve, choice of ingredients for the

sake of a theoretical construction, whose purpose is to lay the foundation for a general

framework that takes its strengths from both induction over time and induction over

rank. This construction does not exploit the full flexibility of our framework. In

particular, ranking functions obtained from termination proofs, as used in [8], may

be used to augment the rank in this setting. Further, invariants inferred from static

analysis can be used to refine the recurrences.

5.4 Synthesis

So far we have assumed that the rank function r, partition function pd, squeezer ⋎

and a rank bounding function ⋎̂ are all readily available. Clearly, they are specific to

a given program. It would be too tedious for a programmer to provide these functions

for the analysis of the underlying complexity. In this section we show how to automate

the process of obtaining (r , pd,⋎, ⋎̂) for a class of typical looping programs. We take

advantage of the fact that these components are much more compact than other kinds

of auxiliary functions commonly used for resource analysis, such as monotonically de-

creasing measures used as ranking functions. For example, a ranking function for the

binary counter program shown in Figure 5.1 is:

m(n, i, c) =


n ·

n−1∑

j=0

2j · c[j]


+ (2i − 1) + (n− i)

whereas the rank, partition, ⋎ and ⋎̂ are

r(n, i, c) = n ⋎(n, i, c) =
(
n− 1, (i ≥ n) ? i− 1 : i, c[:n− 1]

)

⋎̂(rank) = rank − 1 pd(n, i, c) = (i ≥ n || c[n− 1]) ? 2 : 1
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This enables the use of a relatively näıve enumerative approach of multi-phase generate-

and-test, employing some early pruning to discard obviously non-qualifying candidates.

5.4.1 SyGuS

The generation step of the synthesis loop applies syntax guided synthesis (SyGuS [12]).

Like any other SyGuS method, defining the underlying grammars is more art than

science. It should be expressive enough to capture the desired terms, but strict enough

to effectively bound the search space.

Ranks are taken from N
m wherem ∈ {1, 2, 3} and ≺ is the usual lexicographic order.

The rank function r comprises of one expression for each coordinate, constructed by

adding / subtracting integer variables and array sizes. Boolean variables are not used

in rank expressions.

Partition functions pd. Our implementation currently supports a maximum num-

ber of two segments. This means that the partition function only assigns the values

1 and 2, and we synthesize it by generating a condition over the program’s variables,

cond , that selects between them: pd(σ) = cond(σ) ? 2 : 1. Handling up to two segments

is not an inherent limitation, but we found that for typically occurring programs, two

segments are sufficient.

Squeezers ⋎ are the only ingredient that requires substantial synthesis effort. We

represent squeezers as small loop-free imperative programs, which are natural for repre-

senting state transformations. We use a rather standard syntax with ‘if-then-else’ and

assignments, plus a remove-adjust operation that removes array entries and adjusts

indices relating to them accordingly. .

Rank bounding functions ⋎̂. With a well-chosen squeezer ⋎, it suffices to consider

quite simple rank bounds for the mini-traces. Hence, the rank-bounds defined by ⋎̂

are obtained by adding, subtracting and multiplying variables with small constants

(for each coordinate of the rank). Similar to the choice of ranks, targeting simple

expressions for ⋎̂ helps reduce the complexity of the final recurrence that is generated

from the process.

5.4.2 Verification

For the sake of verifying the synthesized ingredients, we fix a set {hi, ℓi} of stuttering

shapes, and check the requirements of Theorem 5 as discussed in Section 5.3.4. In
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particular, we check that pd is weakly monotone, i.e., that cond cannot change from

true to false in any step of tr . Note that some of the properties may be used to discrim-

inate some of the ingredients independent of the others. For example, the simulation

requirement only depends on ⋎ and pd.

Unbounded verification Once candidates pass a preliminary screening phase, they

are verified by encoding the program and all the components r , pd,⋎, ⋎̂ as first-order

logic expressions, and using an SMT solver (Z3 [39]) to verify that the requirements

are fulfilled for all traces of the program.

As mentioned in Section 5.3.4, all the checks are local and require observing a

bounded set of steps starting from a given σ. The only facet of the criteria that

is difficult to encode is the fact they are required of the reachable states (and not

any state). Of course, if we are able to ascertain that these are met for all σ ∈ Σ,

including unreachable states, then the result is sound. However, for some programs

and squeezers, the required properties (esp., simulation) do not hold universally, but

are violated by unreachable states. To cope with this situation without having to

manually provide invariants that capture properties of the reachable states, we use a

CHC solver, Spacer [90], which is part of Z3, to check whether all the reachable states

in the unbounded-state system induced by the input program satisfy these properties.

This can be seen as a reduction from the problem of verifying the premises of Theorem 5

to that of verifying a safety property.

5.5 Empirical Evaluation

We implemented our complexity analyzer as a publicly available tool, SqzComp, that

receives a program in a subset of C and produces recurrence relations. SqzComp is

written in C++, using the Z3 C++ API [39], and using Spacer [90] via its SMTLIB2-

compatible interface. Since our squeezers may remove elements from arrays, we initially

encoded arrays as SMT sequences. However, we found that it is beneficial to restrict

squeezers to only remove the first or last elements of an array, resulting in a more

efficient encoding with the theory of arrays. For the base case of generated recurrences,

we use the symbolic execution engine KLEE [27] to bound the total number of iterations

by a constant.
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Description Real Inferred bound SqzComp

complexity CoFloCo SqzComp Time d

array: max value O(|A|) O(|A|) O(|A|) < 1 sec 1

array: min value O(|A|) O(|A|) O(|A|) < 1 sec 1

array: find first O(|A|) O(|A|) O(|A|) < 1 sec 1

array: find last O(|A|) O(|A|) O(|A|) < 1 sec 1

array: is-sorted O(|A|) O(|A|) O(|A|) < 1 sec 1

array: longest asc. prefix O(|A|) O(|A|) O(|A|) < 1 sec 1

array: binary search O(log(|A|)) O(log(|A|)) O(log(|A|)) < 1 sec 1

gcd max(x, y) O(x+ y) O(x+ y) < 1 sec 1

two-phase loop 1 O(2n− 2x+ y) O(2n− 2x+ y) O(2n+ 2y) < 1 sec 1

two-phase loop 2 O(n− x+m− y) O(n− x+m− y) O(n− x+m− y) < 1 sec 1

two-phase loop 3 O(n) O(n) O(n) < 1 sec 1

two-phase loop 4 O(2n− x− z) O(2n− x− z) O(2n) < 1 sec 1

multi-path loop 1 O(n) O(3n) O(n) < 1 sec 1

multi-path loop 2 O(n) O(n) O(n) < 1 sec 1

multi-path loop 3 O(n) O(n) O(n) < 1 sec 1

tricky init loop O(z) O(z) O(z) 4 min 1

nested loop 1 O(|x− y|) O(|x− y|) O(x+ y) < 1 sec 1

nested loop 2 O(a2) O(a2) O(a2) 16 min 1

context sensitive loop O(max(n−m,m)) O(max(n−m,m)) O(n) 7 min 1

binary counter O(2n+1) ∞ O(2n+1) 34 min 2

subsets O(
(
n−m
k

)
) ∞ O(

(
n−m
k

)
) 50 min 2

monotone sequences O(
(
n
k

)
) ∞ O(

(
n
k

)
) 50 min 2

Table 5.1: Experimental results. In array programs, A denotes an array.
x, y, z, n,m, k, a are integer variables.

5.5.1 Experiments

We evaluated our tool, SqzComp, on a variety of benchmark programs taken from [49],

as well as three additional programs: the binary counter example from Section 5.2,

a subsets example, described in Section 5.5.2, and an example computing monotone

sequences. These examples exhibit intricate time complexities. From the benchmark

suite of [49] we filtered out non-deterministic programs, as well as programs that failed

syntactic constraints that our frontend cannot currently handle. We compared Sqz-

Comp to CoFloCo [49]—the state of the art tool for complexity analysis of imperative

programs.

Table 5.1 summarizes the results of our experiments. The first column presents the

name of the program, which describes its characteristics (each of the “two-phase loop”

programs consists of a loop with an if statement, where the branch executed changes

starting from some iteration). The second column specifies the real complexity, while

the following two columns present the bounds inferred by SqzComp and by CoFloCo,

respectively. (For SqzComp, the reported bounds are the solutions of the recurrences
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1 void subsets(uint n, uint k, uint m) {

2 uint I[k]; int j = 0; bool f = true;

3 while (j >= 0) {

4 if (j >= k) /* start left scan*/{f=false; j--;}

5 else if (j==0 && f) /*init*/{f=true;I[0]=m;j++;}

6 else if (f) /*right fill*/{f=true;I[j]=I[j -1]+1;j++;}

7 else if (I[j]>=n-k+j)/*left scan*/{f=false; j--;}

8 else /*start right fill*/{f=true; I[j]=I[j]+1;j++;}

9 }}

squeezer(uint I[], uint n, uint k, uint m, int j, bool f) {

if (I[0]==m && j>0) { m++; remove I[0]; k--; j--; }

else if (I[0]==m) { m++; remove I[0]; k--; }

else { m++; }

}

Figure 5.4: An example program that produces all subsets of {m, . . . , n− 1} of size k;
below is the synthesized squeezer.

output by the tool.) The fourth and fifth columns present the analysis running time,

respectively the number of segments used in the analysis, of SqzComp.

CoFloCo’s analysis time is always in the order of magnitude of 0.1 second, whether

it succeeds to find a complexity bound or not. Our analysis is considerably slower,

mostly due to the näıve implementation of the synthesizer. When both CoFloCo and

SqzComp succeed, the bounds inferred by CoFloCo are sometimes tighter.

However, SqzComp manages to find tight complexity bounds for the new examples,

which are not solved by CoFloCo, and to the best of our knowledge, are beyond reach

of existing tools. (We also encoded the new examples as OCaml programs and ran the

tool of [74] on them, and it failed to infer bounds.)

5.5.2 Case study: Subsets example

This subsection presents the Subsets example—one challenging example from our

benchmarks— and the details of its complexity analysis. Notably, our method is able

to infer a binomial bound, which is asymptotically tight.

The code, shown in Figure 5.4, iterates over all the subsets of {m,...,n-1} of size k.

The “current” subset is maintained in an array I whose length is k, and which is always

sorted, thus avoiding generating the same set more than once. The first k iterations of

the loop fill the array with values {m,m+1,...,m+k-1}, which represent the first subset

generated. This is taken care of by the branches at lines 5, 6 that perform a “right
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fill” phase, filling in the array with an ascending sequence starting from m at I[0].

Once the first k iterations are done, j reaches the end of the array (j=k) and so the

next iteration will execute line 4, turning off the flag f, signifying that the array should

now be scanned leftwards. In each successive iteration, j is decreased, looking for the

rightmost element that can be incremented. For example, if n = 8, I = [2, 6, 7], this

rightmost element is I[0] = 2. After that element is incremented, the flag f is turned

on again, completing the “left scan” phase and starting a “right fill” phase.

A univariate recurrence Consider the rank function r(I, n, k,m, j, f) = n − m,

defined with respect to (N, <), and the squeezer shown below the program in Figure 5.4.

The squeezer observes the first element of the array: if it is equal to m (the lower bound

of the range), it removes it from the array, shrinking its size (k) by one. It then adjusts

the index j to keep pointing to the same element; unless j = 0, in which case that

element is removed. This squeezer forms a 2-partitioned simulation, as illustrated by

the traces in Figure 5.5. All states are (1, 1)-stuttering, except for σ0, which is (2, 1)-

stuttering, as caused by the removal of I[0] when j = 0. The rank bounding function

is ⋎̂(i, rank) = rank − 1 for i ∈ {1, 2}. We therefore obtain the following recurrence

relation:

compx(rank) ≤ 1 + compx(rank − 1) + compx(rank − 1).

The base of the recurrence is compx(0) = 1, leading to the solution compx(rank) ≤

2rank+1−1. This means that for an initial state, comps(I, n, k,m, 0, true) ≤ compx(n−

m) ≤ 2n−m+1 − 1.

A multivariate recurrence Consider an alternative rank definition

r(I, n, k,m, j, f) = (n−m, k) defined with respect to (N×N, <), where ‘<’ denotes the

lexicographic order, together with the same squeezer and partition as before. The rank

bounding function is now ⋎̂
(
(rank1, rank2), i

)
=




(rank1 − 1, rank2 − 1) i = 1

(rank1 − 1, rank2) i = 2

. The

corresponding recurrence relation is:

compx(rank1, rank2) ≤ 1 + compx(rank1 − 1, rank2 − 1) + compx(rank1 − 1, rank2)

with base compx(0, ) = 1, resulting in the solution compx(rank1, rank2) ≤
(
rank1+2
rank2

)
.

That is, for an initial state, comps(I, n, k,m, 0, true) ≤ compx(n−m, k) ≤
(
n−m+2

k

)
.
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Figure 5.5: An illustration of the 2-partitioned simulation for the subsets example. In
the univariate case, the rank of the upper trace is n−m and that of the lower traces is
n−m− 1. In the multivariate case, the upper trace is of rank (n−m, k), lower traces
of ranks (n−m− 1, k − 1), (n−m− 1, k).

Interestingly, this example demonstrates that the same squeezer may yield different

recurrences, when different ranks (and rank bounding functions) are considered. It also

demonstrates a case where different segments of a trace are mapped to mini-traces of

a different rank.

5.6 Related Work

This section focuses on exploring existing methods for static complexity analysis of

imperative programs. Dynamic profiling and analysis [100] are a separate research area,

more related to testing, and generally do not provide formal guarantees. We further

focus on works that determine asymptotic complexity bounds, and use the number of

iterations executed as their cost model; we refrain from thoroughly covering previous

techniques that analyze complexity at the instruction level.

Static cost analysis The seminal work of [149] defined a two steps meta-framework

where recurrence relations are extracted from the underlying program, and then an-

alyzed to provide closed-form upper bounds. Broadly speaking, cost relations are a

generalized framework that captures the essence of most of the works mentioned in this

section.

[6] and [49] infer cost relations of imperative programs written in Java and C respec-

tively. Cost relations resemble somewhat limited C procedures: They are capable of

recursive calls to other cost relations, and they can handle non-determinism that arises
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either as a consequence of direct nondet() in the program, or as a result of inherent

imprecision of static analysis. They define for every basic block of the program its own

cost relation function, and then form chains according to the control flow graph of the

program. They use numerical abstract domains to support a context sensitive analysis

of whether a chain of visits to specific basic blocks is feasible or not. Once all infeasible

chains are removed, disjunctive analysis determines an overall approximation of the

heaviest chain, representing the max number of iterations.

[65] uses multiple counter instrumentation that are automatically inserted in various

points in the code, initialized and incremented. These ghost counters enable to infer

an overall complexity bound by applying appropriate abstract interpretation handling

numeric domains. [66] and [61] apply code transformations to represent multi-path

loops and nested loops in a canonical way. Then, paths connecting pairs of “interest-

ing” code points π1, π2 (loop headers etc.) are identified, in a way that satisfies some

properties. For instance, π1 is reached twice without reaching π2. The path property

induces progress invariants, which are then analyzed to infer the overall complexity

bound.

[97] define an abstraction of the program to a size-change-graph, where transition

edges of the control flow graph are annotated to capture sound over-approximation

relations between integer variables. The graph is then searched for infinitely decreasing

sequences, represented as words in an ω-regular language. This representation concisely

characterizes program termination. [156] then harnesses the size-change abstraction

from [97] to analyze the complexity of imperative programs. First, they apply standard

program transformations like pathwise analysis to summarize inner nested loops. Then,

they heuristically define a set of scalar rank functions they call norms. These norms

are somewhat similar to our rank function in the sense that they help to abstract away

program parts that do not effect its complexity. The program is then represented as a

size-change graph, and multi-path contextualization [98] prunes subsequent transitions

which are infeasible.

[17] introduces difference constraints in the context of termination, to bound vari-

ables x′ in current iteration with some y in previous iteration plus some constant c:

x′ ≤ y + c. [132] extends difference constraints to complexity analysis. Indeed, it is

quite often the case that ideas from the area of program termination are assimilated

in the context of complexity analysis and vice versa. They exploit the observation
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that typical operations on loop counters like increment, decrement and resets are es-

sentially expressible as difference constraints. They design an abstraction based on the

domain of difference constraints, and obtain relevant invariants which are then used in

determining upper bounds. [23] is very similar, only that it represents a program as

an integer transition system and allows nonlinear numerical constraints and ranking

functions.

As we mentioned earlier, all of these approaches are based on identifying the progress

of executions over time, characterizing the progress between two given points in the

program. In contrast, our approach allows to reason over state size and compares whole

executions.

Squeezers. The notion of squeezers was introduced by [78] for the sake of safety

verification. As discussed in Section 5.1, the challenges in complexity analysis are

different, and require additional ingredients beyond squeezers. [2, 3, 46] introduce well

structured transition systems, where a well-quasi order (wqo) on the set of states induces

a simulation relation. This property ensures decidability of safety verification of such

systems (via a backward reachability algorithm). Our use of squeezers that decrease

the rank of a state and induce a sort of a simulation relation may resemble the wqo

of a well structured transition system. However, there are several key differences: we

do not require the order (which is defined on ranks) to be a wqo. Further, we do not

require a simulation relation between any states whose ranks are ordered, only between

a state and its squeezed counterpart. Notably, our work considers complexity analysis

rather than safety verification.
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Discussion

Automatic inversion of programs was first studied by Dijkstra who manually inverted

simple array-manipulating programs [41]. Follow up works looked at inverting (i) simple

programs whose semantics is given as logic programs [120], (ii) tree-traversal programs

using relational calculus and deductive methods [29, 128], (iii) array transformers

using techniques based on LR-parsing [55, 87] or testing [84], and (iv) bijective string-

manipulating procedures [75, 101]. To the best of our knowledge, we are the first to

apply machine learning tools to invert programs. We also note that the programs we

invert are not necessarily injective. Recent advances in machine learning lead re-

searchers to explore its capabilities in helping challenging program analysis tasks, e.g.,

specification inference [118, 124], speed up abstraction refinement [60], invariant gener-

ation [52, 108, 123], setting up parameters for parametrized static analyses [110], and

infer clustering of variables in partially relational static analyses [70]. In our work, we

address a dual question–how can machine learning technique help program analyses.

To the best of our knowledge the question has not been widely addressed, with the

notable exception of [107] which also argues that a combination of machine learning

and program analysis can be a win-win situation. Another active research area is the

use of input/output examples to learn computer programs. Often, this is done in the

context of synthesis, where examples guide a search-based synthesis process [63]. For

example, in [62], a learning procedure is used to synthesize string manipulating proce-

dures which appears in the context of spreadsheets based on syntactic manipulation.

Another attack on this problem was taken in [131], where the procedures were synthe-

sized using database-like lookup operations. In these works, the focus is on designing

a language in which programs can be synthesized and an efficient search heuristics. In

115
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this work we too focus on string manipulating procedures (SMPs), which are abundant

in almost all software packages. However, instead of asking the user for input/out-

put examples, we analyze the code of one procedure and its behavior, as expressed by

input-output pairs, to synthesize another procedure. In [152], the authors suggest to

learn the behavior of a procedure by inspecting its code and input-output examples.

Their technique applies to a class of procedures which accepts their input character by

character, e.g., multi-digit addition. They use recurrent neural network models with

long short-term memory to accurately learn a model of the procedure behavior as a

sequence-to-sequence transformer [141]. It can be interesting to see if a preliminary

phase of program analysis, as we do in this work, can help improve the accuracy of

their technique. String solvers, e.g., [16, 39, 88], can reason about constraints involving

operations on strings. For example, HAMPI [88], can reason about constraints express-

ing membership in regular languages and fixed-size context-free languages. In contrast,

we provide a technique based on a combination of machine learning and static analysis

that can help invert string manipulating procedures written in a restricted program-

ming language. Similar to our work, S-Looper [150] automatically summarises loops

with the aim of improving program analysis. Their technique uses static analysis to

enhance buffer-overflow detection. Our work is more general in that it is applicable to

any analysis that operates on C directly, generating human-readable summaries that

can even be used for refactoring. Godefroid and Luchaup [56] use partial loop sum-

marisation to enable concolic execution to reason about multiple paths through a loop

at once. Their summaries consist of pre- and post-conditions, which they automati-

cally infer during concolic execution. Similarly, loop-extended symbolic-execution [126]

uses a combination of symbolic execution and static analysis to summarise loops in

order to speed up symbolic execution. As for S-Looper, these two approaches are inter-

twined with their analysis, unlike our approach which can be immediately used in any

technique. STOKE [127] is an assembly level superoptimizer that speeds up loop-free

code segments. With its recent extension to loops [31] their work is similar in spirit.

They also use bounded verification to aid synthesis, but instead of a small-world the-

orem they use a sound verifier to generalise to arbitrary bounds.Srivastava et al. [136]

present an approach synthesising loops from pre- and post-conditions using a verifier.

While more precise, they require user-specified annotations, making it inapplicable as

an automatic summarisation technique. LLVM’s LoopIdiomRecognize pass attempts
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to replace loops that match memset or memcpy patterns and is quite specific to these

functions (other compilers, such as GCC, have similar passes that recognise patterns).

It detects induction variables from which it can recognise stride load and store instruc-

tions. Their to-do includes functions like strlen for over 6 years, showing that such

passes require significant expertise to implement. By contrast, our approach is more

general and can easily be extended. Program equivalence may be considered one of the

most important problems in formal verification and has been the subject of decades of

research [140]. Due to the vast literature on the topic and space, we only briefly re-

view the subject. Proving program equivalence is useful in many domains ranging from

translation validation [93, 105, 113, 122, 130], regression verification [57, 58], automatic

merging [135], semantic differencing [38], and cross-version verification [69, 95]. One

common approach for attacking the problem, e.g., [148], is establishing a simulation

invariant between the states of two programs. Tracking the simulation enables defining

a so-called correlating semantics which allows reasoning about correlated (interleaved)

execution of two programs [14, 38, 142]. In contrast to these techniques, our approach

focuses on establishing the equivalence of programs without co-executing them, but

instead examines their input/output behaviour on bounded examples using symbolic

execution. Symbolic execution-based methods [27, 30, 32, 33, 112, 117] often focus on

practical equivalence verification up to a certain input bound. In contrast, we spec-

ulatively search for a synthesised program that agrees with the investigated loop on

bounded inputs, and develop a small model theorem [115] which allows us to lift sym-

bolic execution validated bounded equivalence to full equivalence. At the current state

of affairs in automatic software verification of infinite state systems, the scene is dom-

inated by various approaches with a common aim: computing over-approximations

of unbounded executions by means of inferring loop invariants. Indeed, abstract in-

terpretation [35], property-directed reachability [21], unbounded model checking [99],

or template-based verification [138] can be seen as different techniques for computing

such approximations by finding inductive loop invariants which are tight enough not to

intersect with the set of bad behaviors. Experience has shown that these invariants are

frequently quite hard to come by, even for seemingly simple and innocuous program,

both automatically and manually. The purpose of this chapter is to suggest an alterna-

tive kind of correctness witness, which may be more amenable to automated search. We

successfully applied our novel verification technique to array programs and managed
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to prove programs and properties which are beyond the ability of existing automatic

verifiers. We believe that our approach can be combined with standard techniques

to give rise to a new kind of hybrid techniques, where, e.g., a partial loop invariant

is used as a baseline — verified via standard techniques — and is then strengthened

to the desired safety property via squeezer-based verification. Dynamic profiling and

analysis [100] are a separate research area, more related to testing, and generally do

not provide formal guarantees. We further focus on works that determine asymptotic

complexity bounds, and use the number of iterations executed as their cost model; we

refrain from thoroughly covering previous techniques that analyze complexity at the

instruction level. The seminal work of [149] defined a two steps meta-framework where

recurrence relations are extracted from the underlying program, and then analyzed to

provide closed-form upper bounds. Broadly speaking, cost relations are a generalized

framework that captures the essence of most of the works mentioned in this section.

[6] and [49] infer cost relations of imperative programs written in Java and C respec-

tively. Cost relations resemble somewhat limited C procedures: They are capable of

recursive calls to other cost relations, and they can handle non-determinism that arises

either as a consequence of direct nondet() in the program, or as a result of inherent

imprecision of static analysis. They define for every basic block of the program its

own cost relation function, and then form chains according to the control flow graph

of the program. They use numerical abstract domains to support a context sensitive

analysis of whether a chain of visits to specific basic blocks is feasible or not. Once all

infeasible chains are removed, disjunctive analysis determines an overall approximation

of the heaviest chain, representing the max number of iterations. [65] uses multiple

counter instrumentation that are automatically inserted in various points in the code,

initialized and incremented. These ghost counters enable to infer an overall complexity

bound by applying appropriate abstract interpretation handling numeric domains. [66]

and [61] apply code transformations to represent multi-path loops and nested loops in

a canonical way. Then, paths connecting pairs of “interesting” code points π1, π2 (loop

headers etc.) are identified, in a way that satisfies some properties. For instance, π1

is reached twice without reaching π2. The path property induces progress invariants,

which are then analyzed to infer the overall complexity bound. [97] define an abstrac-

tion of the program to a size-change-graph, where transition edges of the control flow

graph are annotated to capture sound over-approximation relations between integer
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variables. The graph is then searched for infinitely decreasing sequences, represented

as words in an ω-regular language. This representation concisely characterizes program

termination. [156] then harnesses the size-change abstraction from [97] to analyze the

complexity of imperative programs. First, they apply standard program transforma-

tions like pathwise analysis to summarize inner nested loops. Then, they heuristically

define a set of scalar rank functions they call norms. These norms are somewhat sim-

ilar to our rank function in the sense that they help to abstract away program parts

that do not effect its complexity. The program is then represented as a size-change

graph, and multi-path contextualization [98] prunes subsequent transitions which are

infeasible. [17] introduces difference constraints in the context of termination, to bound

variables x′ in current iteration with some y in previous iteration plus some constant

c: x′ ≤ y + c. [132] extends difference constraints to complexity analysis. Indeed, it is

quite often the case that ideas from the area of program termination are assimilated

in the context of complexity analysis and vice versa. They exploit the observation

that typical operations on loop counters like increment, decrement and resets are es-

sentially expressible as difference constraints. They design an abstraction based on the

domain of difference constraints, and obtain relevant invariants which are then used in

determining upper bounds. [23] is very similar, only that it represents a program as

an integer transition system and allows nonlinear numerical constraints and ranking

functions. As we mentioned earlier, all of these approaches are based on identifying

the progress of executions over time, characterizing the progress between two given

points in the program. In contrast, our approach allows to reason over state size and

compares whole executions. The notion of squeezers was introduced by [78] for the sake

of safety verification. As discussed in Section 5.1, the challenges in complexity analysis

are different, and require additional ingredients beyond squeezers. [2, 3, 46] introduce

well structured transition systems, where a well-quasi order (wqo) on the set of states

induces a simulation relation. This property ensures decidability of safety verification

of such systems (via a backward reachability algorithm). Our use of squeezers that

decrease the rank of a state and induce a sort of a simulation relation may resemble the

wqo of a well structured transition system. However, there are several key differences:

we do not require the order (which is defined on ranks) to be a wqo. Further, we do not

require a simulation relation between any states whose ranks are ordered, only between

a state and its squeezed counterpart. Notably, our work considers complexity analysis
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rather than safety verification.
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