
Compilation
Lecture 8

Optimizations
Noam Rinetzky

1

Basic Compiler Phases

2

Source program (string)

.EXE

lexical analysis

syntax analysis

semantic analysis

Code generation

Assembler/Linker

Tokens

Abstract syntax tree

Assembly

Frame managerControl Flow Graph

IR Optimization

3

Optimization points

source
code

Front
end IR

Code
generator

target
code

User
profile program

change algorithm

Compiler
intraprocedural IR
Interprocedural IR
IR optimizations

Compiler
register allocation

instruction selection
peephole transformations

now 4

IR Optimization

• Making code better

5

IR Optimization

• Making code “better”

6

Overview of IR optimization

• Formalisms and Terminology
– Control-flow graphs
– Basic blocks

• Local optimizations
– Speeding up small pieces of a procedure

• Global optimizations
– Speeding up procedure as a whole

• The dataflow framework
– Defining and implementing a wide class of

optimizations

7

Program Analysis

• In order to optimize a program, the
compiler has to be able to reason about the
properties of that program

• An analysis is called sound if it never
asserts an incorrect fact about a program

• All the analyses we will discuss in this class
are sound
– (Why?)

8

Soundness & Precision
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At this point in the
program, x is either 137,

42, or 271”

9

A formalism for IR optimization

• Every phase of the compiler uses some new
abstraction:
– Scanning uses regular expressions
– Parsing uses CFGs
– Semantic analysis uses proof systems and symbol

tables
– IR generation uses ASTs

• In optimization, we need a formalism that
captures the structure of a program in a way
amenable to optimization

10

Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 11

Basic blocks

• A basic block is a sequence of IR instructions
where
– There is exactly one spot where control enters the

sequence, which must be at the start of the
sequence

– There is exactly one spot where control leaves the
sequence, which must be at the end of the
sequence

• Informally, a sequence of instructions that
always execute as a group

12

Control-Flow Graphs

• A control-flow graph (CFG) is a graph of the
basic blocks in a function

• The term CFG is overloaded – from here on
out, we'll mean “control-flow graph” and not
“context free grammar”

• Each edge from one basic block to another
indicates that control can flow from the end of
the first block to the start of the second block

• There is a dedicated node for the start and
end of a function

13

Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b
…
v2 = a op b

• and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
v1 = a op b
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations

14

Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b [or: v1 = a]
…
v2 = a op b [or: v2 = a]

• and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
v1 = a op b [or: v1 = a]
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations

15

Copy Propagation

• If we have a variable assignment
v1 = v2
then as long as v1 and v2 are not
reassigned, we can rewrite expressions of
the form
a = … v1 …
as
a = … v2 …
provided that such a rewrite is legal

16

Dead Code Elimination

• An assignment to a variable v is called dead
if the value of that assignment is never
read anywhere

• Dead code elimination removes dead
assignments from IR

• Determining whether an assignment is
dead depends on what variable is being
assigned to and when it's being assigned

17

Live variables

• The analysis corresponding to dead code
elimination is called liveness analysis

• A variable is live at a point in a program if
later in the program its value will be read
before it is written to again

• Dead code elimination works by computing
liveness for each variable, then eliminating
assignments to dead variables

18

Computing live variables
• To know if a variable will be used at some point,

we iterate across the statements in a basic block
in reverse order

• Initially, some small set of values are known to be
live (which ones depends on the particular
program)

• When we see the statement a = b op c:
– Just before the statement, a is not alive, since its value

is about to be overwritten
– Just before the statement, both b and c are alive, since

we're about to read their values
– (what if we have a = a + b?) 19

Liveness analysis
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d } - given

Which statements are dead?

20

Dead Code Elimination
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }

Which statements are dead?

21

Dead Code Elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }
22

Formalizing local analyses

23

a = b + c

Output Value
Vout

Input Value
Vin

Vout = fa=b+c(Vin)

Transfer Function

Available Expressions

24

a = b + c

Output Value
Vout

Input Value
Vin

Vout = (Vin \ {e | e contains a}) ∪ {a=b+c}

Expressions of the forms
a=… and x=…a…

Live Variables

25

a = b + c

Output Value
Vout

Input Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout

Live Variables

26

a = b + c

Output Value
Vout

Input Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout

Information for a local analysis

• What direction are we going?
– Sometimes forward (available expressions)
– Sometimes backward (liveness analysis)

• How do we update information after
processing a statement?
– What are the new semantics?
– What information do we know initially?

27

Formalizing local analyses

• Define an analysis of a basic block as a
quadruple (D, V, F, I) where
– D is a direction (forwards or backwards)
– V is a set of values the program can have at any

point
– F is a family of transfer functions defining the

meaning of any expression as a function f : V à V
– I is the initial information at the top (or bottom) of

a basic block

28

Liveness Analysis

• Direction: Backward
• Values: Sets of variables
• Transfer functions: Given a set of variable assignments V

and statement a = b + c:
• Remove a from V (any previous value of a is now dead.)
• Add b and c to V (any previous value of b or c is now live.)
• Formally: Vin = (Vout \ {a}) ∪ {b,c}
• Initial value: Depends on semantics of language

– E.g., function arguments and return values (pushes)
– Result of local analysis of other blocks as part of a

global analysis 29

Running local analyses

• Given an analysis (D, V, F, I) for a basic block
• Assume that D is “forward;” analogous for the

reverse case
• Initially, set OUT[entry] to I
• For each statement s, in order:

– Set IN[s] to OUT[prev], where prev is the previous
statement

– Set OUT[s] to fs(IN[s]), where fs is the transfer
function for statement s

30

Global analysis

• A global analysis is an analysis that works
on a control-flow graph as a whole

• Substantially more powerful than a local
analysis
– (Why?)

• Substantially more complicated than a local
analysis
– (Why?)

31

Why global analysis is hard

• Need to be able to handle multiple
predecessors/successors for a basic block

• Need to be able to handle multiple paths
through the control-flow graph and may need
to iterate multiple times to compute the final
value (but the analysis still needs to
terminate!)

• Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

32

Global dead code elimination

• Local dead code elimination needed to
know what variables were live on exit from
a basic block

• This information can only be computed as
part of a global analysis

• How do we modify our liveness analysis to
handle a CFG?

33

CFGs without loops

34Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

CFGs without loops

35Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

?

Which variables may
be live on some
execution path?

CFGs without loops

36Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

CFGs without loops

37Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

CFGs without loops

38Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

Major changes – part 1

• In a local analysis, each statement has
exactly one predecessor

• In a global analysis, each statement may
have multiple predecessors

• A global analysis must have some means of
combining information from all
predecessors of a basic block

39

CFGs without loops

40Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{b, c, d}

{c, d} Need to combine
currently-
computed value
with new value

Need to combine
currently-
computed value
with new value

CFGs without loops

41Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{c, d}

CFGs without loops

42Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

Major changes – part 2

• In a local analysis, there is only one possible
path through a basic block

• In a global analysis, there may be many paths
through a CFG

• May need to recompute values multiple times
as more information becomes available

• Need to be careful when doing this not to loop
infinitely!
– (More on that later)

• Can order of computation affect result?
43

CFGs with loops
• Up to this point, we've considered loop-free CFGs,

which have only finitely many possible paths
• When we add loops into the picture, this is no longer

true
• Not all possible loops in a CFG can be realized in the

actual program

44

IfZ x goto Top

x = 1;

Top:

x = 0;

x = 2;

CFGs with loops
• Up to this point, we've considered loop-free CFGs,

which have only finitely many possible paths
• When we add loops into the picture, this is no longer

true
• Not all possible loops in a CFG can be realized in the

actual program
• Sound approximation: Assume that every possible

path through the CFG corresponds to a valid execution
– Includes all realizable paths, but some additional paths as

well
– May make our analysis less precise (but still sound)
– Makes the analysis feasible; we'll see how later

45

CFGs with loops

46Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;
IfZ ...

Entry

{a}

?

Major changes – part 3

• In a local analysis, there is always a well
defined “first” statement to begin
processing

• In a global analysis with loops, every basic
block might depend on every other basic
block

• To fix this, we need to assign initial values
to all of the blocks in the CFG

47

CFGs with loops - initialization

48Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

CFGs with loops - iteration

49Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

{a}

CFGs with loops - iteration

50Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

CFGs with loops - iteration

51Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}

CFGs with loops - iteration

52Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

CFGs with loops - iteration

53Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}

CFGs with loops - iteration

54Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

55Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

56Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

57Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

58Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

59Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

60Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

61Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs with loops - iteration

62Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs with loops - iteration

63Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

Summary of differences

• Need to be able to handle multiple
predecessors/successors for a basic block

• Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value
– But the analysis still needs to terminate!

• Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

64

Global liveness analysis
• Initially, set IN[s] = { } for each statement s
• Set IN[exit] to the set of variables known to be

live on exit (language-specific knowledge)
• Repeat until no changes occur:

– For each statement s of the form a = b + c, in any
order you'd like:

• Set OUT[s] to set union of IN[p] for each successor p of s
• Set IN[s] to (OUT[s] – a) ∪ {b, c}.

• Yet another fixed-point iteration!

65

Global liveness analysis

66

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2] ∪ IN[s3]

IN[s]=(UT[s] – {a}) ∪ {b, c}

Why does this work?
• To show correctness, we need to show that

– The algorithm eventually terminates, and
– When it terminates, it has a sound answer

• Termination argument:
– Once a variable is discovered to be live during some point of the

analysis, it always stays live
– Only finitely many variables and finitely many places where a

variable can become live
• Soundness argument (sketch):

– Each individual rule, applied to some set, correctly updates
liveness in that set

– When computing the union of the set of live variables, a variable
is only live if it was live on some path leaving the statement

67

Abstract Interpretation

• Theoretical foundations of program
analysis

• Cousot and Cousot 1977

• Abstract meaning of programs
– Executed at compile time

68

Another view of local
optimization

• In local optimization, we want to reason
about some property of the runtime
behavior of the program

• Could we run the program and just watch
what happens?

• Idea: Redefine the semantics of our
programming language to give us
information about our analysis

69

Properties of local analysis

• The only way to find out what a program will
actually do is to run it

• Problems:
– The program might not terminate
– The program might have some behavior we didn't

see when we ran it on a particular input
• However, this is not a problem inside a basic

block
– Basic blocks contain no loops
– There is only one path through the basic block

70

Assigning new semantics

• Example: Available Expressions
• Redefine the statement a = b + c to mean

“a now holds the value of b + c, and any
variable holding the value a is now invalid”

• Run the program assuming these new
semantics

• Treat the optimizer as an interpreter for
these new semantics

71

Theory to the rescue

• Building up all of the machinery to design this
analysis was tricky

• The key ideas, however, are mostly independent of
the analysis:
– We need to be able to compute functions describing

the behavior of each statement
– We need to be able to merge several subcomputations

together
– We need an initial value for all of the basic blocks

• There is a beautiful formalism that captures many
of these properties

72

Join semilattices

• A join semilattice is an ordering defined on a set of
elements

• Any two elements have some join that is the smallest
element larger than both elements

• There is a unique bottom element, which is smaller
than all other elements

• Intuitively:
– The join of two elements represents combining information

from two elements by an overapproximation
• The bottom element represents “no information yet” or

“the least conservative possible answer”

73

Join semilattice for liveness

74

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom
element

What is the join of {b} and {c}?

75

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {b} and {c}?

76

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {b} and {a,c}?

77

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {b} and {a,c}?

78

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {a} and {a,b}?

79

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {a} and {a,b}?

80

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Formal definitions

• A join semilattice is a pair (V, ⨆), where
• V is a domain of elements
• ⨆ is a join operator that is

– commutative: x ⨆ y = y ⨆ x
– associative: (x ⨆ y) ⨆ z = x ⨆ (y ⨆ z)
– idempotent: x ⨆ x = x

• If x ⨆ y = z, we say that z is the join
or (least upper bound) of x and y

• Every join semilattice has a bottom element
denoted ⊥ such that ⊥ ⨆ x = x for all x

81

Join semilattices and ordering

82

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Greater

Lower

Join semilattices and ordering

83

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least precise

Most precise

Join semilattices and orderings

• Every join semilattice (V, ⨆) induces an
ordering relationship ⊑ over its elements

• Define x ⊑ y iff x ⨆ y = y
• Need to prove

– Reflexivity: x ⊑ x
– Antisymmetry: If x ⊑ y and y ⊑ x, then x = y
– Transitivity: If x ⊑ y and y ⊑ z, then x ⊑ z

84

An example join semilattice

• The set of natural numbers and the max function
• Idempotent

– max{a, a} = a
• Commutative

– max{a, b} = max{b, a}
• Associative

– max{a, max{b, c}} = max{max{a, b}, c}
• Bottom element is 0:

– max{0, a} = a
• What is the ordering over these elements?

85

A join semilattice for liveness

• Sets of live variables and the set union operation
• Idempotent:

– x ∪ x = x
• Commutative:

– x ∪ y = y ∪ x
• Associative:

– (x ∪ y) ∪ z = x ∪ (y ∪ z)
• Bottom element:

– The empty set: Ø ∪ x = x
• What is the ordering over these elements?

86

Semilattices and program
analysis

• Semilattices naturally solve many of the
problems we encounter in global analysis

• How do we combine information from
multiple basic blocks?

• What value do we give to basic blocks we
haven't seen yet?

• How do we know that the algorithm always
terminates?

87

Semilattices and program
analysis

• Semilattices naturally solve many of the problems
we encounter in global analysis

• How do we combine information from multiple
basic blocks?
– Take the join of all information from those blocks

• What value do we give to basic blocks we haven't
seen yet?
– Use the bottom element

• How do we know that the algorithm always
terminates?
– Actually, we still don't! More on that later

88

Semilattices and program
analysis

• Semilattices naturally solve many of the problems
we encounter in global analysis

• How do we combine information from multiple
basic blocks?
– Take the join of all information from those blocks

• What value do we give to basic blocks we haven't
seen yet?
– Use the bottom element

• How do we know that the algorithm always
terminates?
– Actually, we still don't! More on that later

89

A general framework

• A global analysis is a tuple (D, V, ⊑, F, I), where
– D is a direction (forward or backward)

• The order to visit statements within a basic block, not the
order in which to visit the basic blocks

– V is a set of values
– ⨆ is a join operator over those values
– F is a set of transfer functions f : V à V
– I is an initial value

• The only difference from local analysis is the
introduction of the join operator

90

Running global analyses

• Assume that (D, V, ⨆, F, I) is a forward analysis
• Set OUT[s] = ⊥ for all statements s
• Set OUT[entry] = I
• Repeat until no values change:

– For each statement s with predecessors
p1, p2, … , pn:

• Set IN[s] = OUT[p1] ⨆ OUT[p2] ⨆ … ⨆ OUT[pn]
• Set OUT[s] = fs (IN[s])

• The order of this iteration does not matter
– This is sometimes called chaotic iteration

91

For comparison
• Set OUT[s] = ⊥ for all

statements s
• Set OUT[entry] = I

• Repeat until no values
change:
– For each statement s

with predecessors
p1, p2, … , pn:

• Set IN[s] = OUT[p1] ⨆
OUT[p2] ⨆ … ⨆ OUT[pn]

• Set OUT[s] = fs (IN[s])

• Set IN[s] = {} for all
statements s

• Set OUT[exit] = the set of
variables known to be live
on exit

• Repeat until no values
change:
– For each statement s of the

form a=b+c:
• Set OUT[s] = set union of IN[x]

for each successor x of s
• Set IN[s] = (OUT[s]-{a}) ∪ {b,c}

92

The dataflow framework

• This form of analysis is called the dataflow
framework

• Can be used to easily prove an analysis is
sound

• With certain restrictions, can be used to
prove that an analysis eventually
terminates
– Again, more on that later

93

Global constant propagation

• Constant propagation is an optimization
that replaces each variable that is known to
be a constant value with that constant

• An elegant example of the dataflow
framework

94

Global constant propagation

95

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global constant propagation

96

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global constant propagation

97

exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry

Constant propagation analysis

• In order to do a constant propagation, we need to
track what values might be assigned to a variable at
each program point

• Every variable will either
– Never have a value assigned to it,
– Have a single constant value assigned to it,
– Have two or more constant values assigned to it, or
– Have a known non-constant value.
– Our analysis will propagate this information

throughout a CFG to identify locations where a value is
constant

98

Properties of constant
propagation

• For now, consider just some single variable x
• At each point in the program, we know one of three

things about the value of x:
– x is definitely not a constant, since it's been assigned two

values or assigned a value that we know isn't a constant
– x is definitely a constant and has value k
– We have never seen a value for x

• Note that the first and last of these are not the same!
– The first one means that there may be a way for x to have

multiple values
– The last one means that x never had a value at all

99

Defining a join operator
• The join of any two different constants is Not-a-Constant

– (If the variable might have two different values on entry to a
statement, it cannot be a constant)

• The join of Not a Constant and any other value is Not-a-
Constant
– (If on some path the value is known not to be a constant, then on

entry to a statement its value can't possibly be a constant)
• The join of Undefined and any other value is that other value

– (If x has no value on some path and does have a value on some
other path, we can just pretend it always had the assigned value)

100

A semilattice for constant propagation
• One possible semilattice for this analysis is

shown here (for each variable):

101

Undefined

0-1-2 1 2

Not-a-constant

The lattice is infinitely wide

A semilattice for constant propagation
• One possible semilattice for this analysis is

shown here (for each variable):

102

Undefined

0-1-2 1 2

Not-a-constant

• Note:
• The join of any two different constants is Not-a-Constant
• The join of Not a Constant and any other value is Not-a-Constant
• The join of Undefined and any other value is that other value

Global constant propagation

103

exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry

Global constant propagation

104

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

x=Undefined
y=Undefined
z=Undefined
w=Undefined

Global constant propagation

105

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

Global constant propagation

106

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
Undefined

entry
Undefined

Global constant propagation

107

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined

Global constant propagation

108

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined

Global constant propagation

109

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

110

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

111

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

y=6 ⨆ y=Undefined
gives what?

Global constant propagation

112

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

113

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

114

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

115

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

116

exit x = 4;
Undefined

x=y=w=6
z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

117

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

118

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

119

exit
x=y=w=z=6
x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

120

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

121

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

122

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

123

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

124

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

125

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

x=6 ⨆ x=4 gives
what?

Global constant propagation

126

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6, x=⊤
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

127

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

128

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

129

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

130

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global analysis
reached fixpoint

Global constant propagation

131

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

132

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

133

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Why y=6?

Dataflow for constant
propagation

• Direction: Forward
• Semilattice: Varsà {Undefined, 0, 1, -1, 2, -2, …, Not-a-

Constant}
– Join mapping for variables point-wise

{x↦1,y ↦ 1,z ↦ 1} ⨆ {x ↦ 1,y ↦ 2,z ↦ Not-a-Constant} =
{x ↦ 1,y ↦ Not-a-Constant,z ↦ Not-a-Constant}

• Transfer functions:
– fx=k(V) = V|x ↦ k (update V by mapping x to k)
– fx=a+b(V) = V|x ↦ Not-a-Constant (assign Not-a-Constant)

• Initial value: x is Undefined
– (When might we use some other value?)

134

Proving termination

• Our algorithm for running these analyses
continuously loops until no changes are
detected

• Given this, how do we know the analyses
will eventually terminate?
– In general, we don‘t

135

Terminates?

136

Liveness Analysis

• A variable is live at a point in a program if
later in the program its value will be read
before it is written to again

137

Join semilattice definition

• A join semilattice is a pair (V, ⨆), where
• V is a domain of elements
• ⨆ is a join operator that is

– commutative: x ⨆ y = y ⨆ x
– associative: (x ⨆ y) ⨆ z = x ⨆ (y ⨆ z)
– idempotent: x ⨆ x = x

• If x ⨆ y = z, we say that z is the join
or (Least Upper Bound) of x and y

• Every join semilattice has a bottom element
denoted ⊥ such that ⊥ ⨆ x = x for all x

138

Partial ordering induced by join

• Every join semilattice (V, ⨆) induces an
ordering relationship ⊑ over its elements

• Define x ⊑ y iff x 7 y = y
• Need to prove

– Reflexivity: x ⊑ x
– Antisymmetry: If x ⊑ y and y ⊑ x, then x = y
– Transitivity: If x ⊑ y and y ⊑ z, then x ⊑ z

139

A join semilattice for liveness

• Sets of live variables and the set union operation
• Idempotent:

– x ∪ x = x
• Commutative:

– x ∪ y = y ∪ x
• Associative:

– (x ∪ y) ∪ z = x ∪ (y ∪ z)
• Bottom element:

– The empty set: Ø ∪ x = x
• Ordering over elements = subset relation

140

Join semilattice example for liveness

141

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom
element

Dataflow framework

• A global analysis is a tuple (D, V, ⨆, F, I),
where
– D is a direction (forward or backward)

• The order to visit statements within a basic block,
NOT the order in which to visit the basic blocks

– V is a set of values (sometimes called domain)
– ⨆ is a join operator over those values
– F is a set of transfer functions fs : V à V

(for every statement s)
– I is an initial value

142

Running global analyses
• Assume that (D, V, ⨆, F, I) is a forward analysis
• For every statement s maintain values before - IN[s] - and after

- OUT[s]
• Set OUT[s] = ⊥ for all statements s
• Set OUT[entry] = I
• Repeat until no values change:

– For each statement s with predecessors
PRED[s]={p1, p2, … , pn}

• Set IN[s] = OUT[p1] ⨆ OUT[p2] ⨆ … ⨆ OUT[pn]
• Set OUT[s] = fs(IN[s])

• The order of this iteration does not matter
– Chaotic iteration

143

Proving termination

• Our algorithm for running these analyses
continuously loops until no changes are
detected

• Problem: how do we know the analyses will
eventually terminate?

144

A non-terminating analysis

• The following analysis will loop infinitely on
any CFG containing a loop:

• Direction: Forward
• Domain: ℕ
• Join operator: max
• Transfer function: f(n) = n + 1
• Initial value: 0

145

A non-terminating analysis

146

start

end

x ++

Initialization

147

start

end

x ++0

0

Fixed-point iteration

148

start

end

x ++0

0

Choose a block

149

start

end

x ++0

0

Iteration 1

150

start

end

x ++0

0

0

Iteration 1

151

start

end

x ++1

0

0

Choose a block

152

start

end

x ++1

0

0

Iteration 2

153

start

end

x ++1

0

0

Iteration 2

154

start

end

x ++1

0

1

Iteration 2

155

start

end

x ++2

0

1

Choose a block

156

start

end

x ++2

0

1

Iteration 3

157

start

end

x ++2

0

1

Iteration 3

158

start

end

x ++2

0

2

Iteration 3

159

start

end

x ++3

0

2

Why doesn’t this terminate?
• Values can increase without bound
• Note that “increase” refers to the lattice

ordering, not the ordering on the natural
numbers

• The height of a semilattice is the length of the
longest increasing sequence in that semilattice

• The dataflow framework is not guaranteed to
terminate for semilattices of infinite height

• Note that a semilattice can be infinitely large
but have finite height
– e.g. constant propagation

160

0

1

2

3

4

...

Height of a lattice

• An increasing chain is a sequence of elements
⊥⊑ a1 ⊑ a2 ⊑ … ⊑ ak
– The length of such a chain is k

• The height of a lattice is the length of the maximal
increasing chain

• For liveness with n program variables:
– {}⊆{v1} ⊆ {v1,v2} ⊆ … ⊆ {v1,…,vn}

• For available expressions it is the number of
expressions of the form a=b op c
– For n program variables and m operator types:mn3

161

Another non-terminating
analysis

• This analysis works on a finite-height
semilattice, but will not terminate on
certain CFGs:

• Direction: Forward
• Domain: Boolean values true and false
• Join operator: Logical OR
• Transfer function: Logical NOT
• Initial value: false

162

A non-terminating analysis

163

start

end

x = !x

A non-terminating analysis

164

start

end

x = !x

Initialization

165

start

end

x = !xfalse

false

Fixed-point iteration

166

start

end

x = !xfalse

false

Choose a block

167

start

end

x = !xfalse

false

Iteration 1

168

start

end

x = !xfalse

false

false

Iteration 1

169

start

end

x = !xtrue

false

false

Iteration 2

170

start

end

x = !xtrue

false

true

Iteration 2

171

start

end

x = !xfalse

false

true

Iteration 3

172

start

end

x = !xfalse

false

false

Iteration 3

173

start

end

x = !xtrue

false

false

Why doesn’t it terminate?
• Values can loop indefinitely
• Intuitively, the join operator keeps pulling

values up
• If the transfer function can keep pushing

values back down again, then the values
might cycle forever

174

false

true

false

true

false

...

Why doesn’t it terminate?
• Values can loop indefinitely
• Intuitively, the join operator keeps pulling

values up
• If the transfer function can keep pushing

values back down again, then the values
might cycle forever

• How can we fix this?

175

false

true

false

true

false

...

Monotone transfer functions

• A transfer function f is monotone iff
if x ⊑ y, then f(x) ⊑ f(y)

• Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

• Many transfer functions are monotone, including
those for liveness and constant propagation

• Note: Monotonicity does not mean that x ⊑ f(x)
– (This is a different property called extensivity)

176

Liveness and monotonicity

• A transfer function f is monotone iff
if x ⊑ y, then f(x) ⊑ f(y)

• Recall our transfer function for a = b + c is
– fa = b + c(V) = (V – {a}) ∪ {b, c}

• Recall that our join operator is set union
and induces an ordering relationship

X ⊑ Y iff X ⊆Y
• Is this monotone?

177

Is constant propagation monotone?
• A transfer function f is monotone iff

if x ⊑y, then f(x) ⊑ f(y)
• Recall our transfer functions

– fx=k(V) = V[x↦k] (update V by mapping x to k)
– fx=a+b(V) = V[x↦Not-a-Constant] (assign Not-a-

Constant)

• Is this monotone?

178Undefined

0-1-2 1 2

Not-a-constant

The grand result

• Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone
transfer functions always terminates

• Proof sketch:
– The join operator can only bring values up
– Transfer functions can never lower values back

down below where they were in the past
(monotonicity)

– Values cannot increase indefinitely (finite height)

179

An “optimality” result

• A transfer function f is distributive if
f(a ⨆ b) = f(a) ⨆ f(b)

for every domain elements a and b
• If all transfer functions are distributive then

the fixed-point solution is the solution that
would be computed by joining results from all
(potentially infinite) control-flow paths
– Join over all paths

• Optimal if we ignore program conditions

180

An “optimality” result

• A transfer function f is distributive if
f(a ⨆ b) = f(a) ⨆ f(b)

for every domain elements a and b
• If all transfer functions are distributive then the

fixed-point solution is equal to the solution
computed by joining results from all (potentially
infinite) control-flow paths
– Join over all paths

• Optimal if we pretend all control-flow paths can be
executed by the program

• Which analyses use distributive functions?

181

Loop Optimizations

182

Loop optimizations

• Most of a program’s computations are done inside
loops
– Focus optimizations effort on loops

• The optimizations we’ve seen so far are independent of
the control structure

• Some optimizations are specialized to loops
– Loop-invariant code motion
– (Strength reduction via induction variables)

• Require another type of analysis to find out where
expressions get their values from
– Reaching definitions

• (Also useful for improving register allocation)

183

Loop invariant computation

184

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

Loop invariant computation

185

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

t*4 and y+z
have same value on
each iteration

Code hoisting

186

x < w

endx = x + 1

start

y = …
t = …
z = …
y = t * 4
w = y + z

What reasoning did we use?

187

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

y is defined inside loop but it
is loop invariant since t*4 is
loop-invariant

Both t and z are defined
only outside of loop

constants are trivially
loop-invariant

What about now?

188

y = t * 4
x < y + z

endx = x + 1
t = t + 1

start
y = …
t = …
z = …

Now t is not loop-invariant
and so are t*4 and y

Loop-invariant code motion

• d: t = a1 op a2
– d is a program location

• a1 op a2 loop-invariant (for a loop L) if computes the
same value in each iteration
– Hard to know in general

• Conservative approximation
– Each ai is a constant, or
– All definitions of ai that reach d are outside L, or
– Only one definition of of ai reaches d, and is loop-invariant

itself
• Transformation: hoist the loop-invariant code outside

of the loop

189

Reaching definitions analysis
• A definition d: t = … reaches a program location if there is a

path from the definition to the program location, along which
the defined variable is never redefined

190

Reaching definitions analysis
• A definition d: t = … reaches a program location if there is a

path from the definition to the program location, along which
the defined variable is never redefined

• Direction: Forward
• Domain: sets of program locations that are definitions `
• Join operator: union
• Transfer function:

fd: a=b op c(RD) = (RD - defs(a)) ∪ {d}
fd: not-a-def(RD) = RD

– Where defs(a) is the set of locations defining a (statements of the
form a=...)

• Initial value: {}

191

Reaching definitions analysis

192

d4: y = t * 4

d4:x < y + z

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end
{}

Reaching definitions analysis

193

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end
{}

Initialization

194

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

Iteration 1

195

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

{}

Iteration 1

196

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{}

{}

{}

Iteration 2

197

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration 2

198

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration 2

199

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}

Iteration 2

200

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration 3

201

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration 3

202

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration 4

203

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration 4

204

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration 4

205

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration 5

206

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration 6

207

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Which expressions are loop invariant?

208

t is defined only in
d2 – outside of loop

z is defined only in
d3 – outside of loop

y is defined only in d4 – inside
of loop but depends on t and
4, both loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{d2, d3, d4, d5}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x is defined only in d5 –
inside of loop so is not a
loop-invariant

Inferring loop-invariant
expressions

• For a statement s of the form t = a1 op a2
• A variable ai is immediately loop-invariant if all

reaching definitions IN[s]={d1,…,dk} for ai are
outside of the loop

• LOOP-INV = immediately loop-invariant variables
and constants
LOOP-INV = LOOP-INV 4 {x | d: x = a1 op a2, d is in
the loop, and both a1 and a2 are in LOOP-INV}
– Iterate until fixed-point

• An expression is loop-invariant if all operands are
loop-invariants

209

Computing LOOP-INV

210

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t}

Computing LOOP-INV

211

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t}

Computing LOOP-INV

212

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}

Computing LOOP-INV

213

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}

Computing LOOP-INV

214

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}

215

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}
LOOP-INV = {t, z}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Computing LOOP-INV

Computing LOOP-INV

216

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

LOOP-INV = {t, z, y}

Induction variables

217

while (i < x) {
j = a + 4 * i
a[j] = j
i = i + 1

}
i is incremented by a loop-
invariant expression on each
iteration – this is called an
induction variable

j is a linear function of
the induction variable
with multiplier 4

Strength-reduction

218

j = a + 4 * i
while (i < x) {

j = j + 4
a[j] = j
i = i + 1

}

Prepare initial
value

Increment by
multiplier

