Compilation
 Lecture 8

Optimizations
Noam Rinetzky

Basic Compiler Phases

IR Optimization

Optimization points

IR Optimization

- Making code better

IR Optimization

- Making code "better"

Overview of IR optimization

- Formalisms and Terminology
- Control-flow graphs
- Basic blocks
- Local optimizations
- Speeding up small pieces of a procedure
- Global optimizations
- Speeding up procedure as a whole
- The dataflow framework
- Defining and implementing a wide class of optimizations

Program Analysis

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called sound if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
- (Why?)

Soundness \& Precision

int x;
int y;
if (y < 5)

$$
\mathbf{x}=137
$$

else
"At this point in the program, \mathbf{x} is either 137, 42 , or $271^{\prime \prime}$

Print(x);

A formalism for IR optimization

- Every phase of the compiler uses some new abstraction:
- Scanning uses regular expressions
- Parsing uses CFGs
- Semantic analysis uses proof systems and symbol tables
- IR generation uses ASTs
- In optimization, we need a formalism that captures the structure of a program in a way amenable to optimization

Visualizing IR

main:

$$
\begin{aligned}
& \text { tmp0 = Call_ReadInteger; } \\
& \mathrm{a}=\text { tmp0; } \\
& \overline{t m p} \overline{1}=\text { Call_ReadInteger; } \\
& \mathrm{b}=\text { tmp1; }
\end{aligned}
$$

L0 :

$$
_\operatorname{tmp} 2=0
$$

$$
\text { _tmp3 }=\mathrm{b}==\text { tmp2 }
$$

$$
\text { _tmp4 }=0
$$

$$
\operatorname{tmp} 5=\operatorname{tmp} 3==-\operatorname{tmp} 4
$$

$$
\bar{I} f Z \text { tmp } \overline{5} \text { Goto _LI }
$$

$$
c=a ;
$$

$$
a=b
$$

$$
\operatorname{tmp} 6=c \% a
$$

$$
\overline{\mathrm{b}}=-\operatorname{tmp} 6
$$

Goto_LO;
_L1:

Push a;
Call _PrintInt;
start

```
tmp0 = Call _ReadInteger;
a = _tmp0;
\overline{b}
b = _tmp1;
```

```
tmp2 = 0;
_tmp3 = b == _tmp2;
tmp4 = 0;
\tmp5 = _tmp3 == t-tmp4;
```

Push a;
Call _PrintInt;
end

Basic blocks

- A basic block is a sequence of IR instructions where
- There is exactly one spot where control enters the sequence, which must be at the start of the sequence
- There is exactly one spot where control leaves the sequence, which must be at the end of the sequence
- Informally, a sequence of instructions that always execute as a group

Control-Flow Graphs

- A control-flow graph (CFG) is a graph of the basic blocks in a function
- The term CFG is overloaded - from here on out, we'll mean "control-flow graph" and not "context free grammar"
- Each edge from one basic block to another indicates that control can flow from the end of the first block to the start of the second block
- There is a dedicated node for the start and end of a function

Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b
...
v2 $=\mathrm{a} o \mathrm{p} \mathrm{b}$
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as v1 = a op b
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b [or: v1 = a]
v2 = a op b [or: v2 = a]
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as $\mathrm{v} 1=\mathrm{aop} \quad$ [or: $\mathrm{v} 1=\mathrm{a}$]
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Copy Propagation

- If we have a variable assignment v1 = v2
then as long as v 1 and v 2 are not reassigned, we can rewrite expressions of the form
a = ... v1 ...
as
a = ... v2 ...
provided that such a rewrite is legal

Dead Code Elimination

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Live variables

- The analysis corresponding to dead code elimination is called liveness analysis
- A variable is live at a point in a program if later in the program its value will be read before it is written to again
- Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

Computing live variables

- To know if a variable will be used at some point, we iterate across the statements in a basic block in reverse order
- Initially, some small set of values are known to be live (which ones depends on the particular program)
- When we see the statement $\mathrm{a}=\mathrm{b}$ op c :
- Just before the statement, a is not alive, since its value is about to be overwritten
- Just before the statement, both b and c are alive, since we're about to read their values
- (what if we have $a=a+b$?)

$$
\begin{aligned}
& \text { \{ b \} } \\
& \text { Likeness analysis } \\
& \mathrm{a}=\mathrm{b} \text {; } \\
& \text { \{ a, b \} } \\
& \text { c = a; } \\
& \{\mathrm{a}, \mathrm{~b} \text { \}} \\
& d=a+b ; \\
& \text { \{ a, b, d \} } \\
& \text { e = d; } \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{e}\} \\
& \mathrm{d}=\mathrm{a} \text {; } \\
& \text { \{ b, d, e \} } \\
& \text { f = e; } \\
& \text { \{ b, d \} - given }
\end{aligned}
$$

```
    { b } Dead Code Elimination
a = b;
    { a, b }
c = a;
    { a, b }
                            Which statements are dead?
d = a + b;
    { a, b, d }
e = d;
    { a, b, e }
d = a;
    { b, d, e }
f = e;
    { b, d }
```

$\begin{aligned} & \{b\} \\ & a=b ;\end{aligned}$
$\begin{aligned} & \{a, b\}\end{aligned}$
$\begin{aligned} & \{a, b\} \\ & d=a+b ; \\ & \{a, b, d\} \\ & e=d ; \\ & \{a, b, e\} \\ & d=a ; \\ & \{b, d, e\} \\ & \{b, d i m\end{aligned}$
$\begin{aligned} & \{b, d\}\end{aligned}$

Formalizing local analyses

I

Available Expressions

Live Variables

Live Variables

Information for a local analysis

- What direction are we going?
- Sometimes forward (available expressions)
- Sometimes backward (liveness analysis)
- How do we update information after processing a statement?
- What are the new semantics?
- What information do we know initially?

Formalizing local analyses

- Define an analysis of a basic block as a quadruple (D, V, F, I) where
- \mathbf{D} is a direction (forwards or backwards)
- \mathbf{V} is a set of values the program can have at any point
- F is a family of transfer functions defining the meaning of any expression as a function $\mathrm{f}: \mathbf{V} \rightarrow \mathbf{V}$
- I is the initial information at the top (or bottom) of a basic block

Liveness Analysis

- Direction: Backward
- Values: Sets of variables
- Transfer functions: Given a set of variable assignments V and statement $\mathrm{a}=\mathrm{b}+\mathrm{c}$:
- Remove a from V (any previous value of a is now dead.)
- Add b and c to V (any previous value of b or c is now live.)
- Formally: $\mathrm{V}_{\text {in }}=\left(\mathrm{V}_{\text {out }} \backslash\{\mathrm{a}\}\right) \cup\{\mathbf{b}, \mathbf{c}\}$
- Initial value: Depends on semantics of language
- E.g., function arguments and return values (pushes)
- Result of local analysis of other blocks as part of a global analysis

Running local analyses

- Given an analysis (D, V, F, I) for a basic block
- Assume that D is "forward;" analogous for the reverse case
- Initially, set OUT[entry] to I
- For each statement s, in order:
- Set IN[s] to OUT[prev], where prev is the previous statement
- Set OUT[s] to $f_{s}(I N[s])$, where f_{s} is the transfer function for statement s

Global analysis

- A global analysis is an analysis that works on a control-flow graph as a whole
- Substantially more powerful than a local analysis
- (Why?)
- Substantially more complicated than a local analysis
- (Why?)

Why global analysis is hard

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph and may need to iterate multiple times to compute the final value (but the analysis still needs to terminate!)
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global dead code elimination

- Local dead code elimination needed to know what variables were live on exit from a basic block
- This information can only be computed as part of a global analysis
- How do we modify our liveness analysis to handle a CFG?

CFGs without loops

CFGs without loops

CFGs without loops

CFGs without loops

CFGs without loops

Major changes - part 1

- In a local analysis, each statement has exactly one predecessor
- In a global analysis, each statement may have multiple predecessors
- A global analysis must have some means of combining information from all predecessors of a basic block

CFGs without loops

CFGs without loops

CFGs without loops

Major changes - part 2

- In a local analysis, there is only one possible path through a basic block
- In a global analysis, there may be many paths through a CFG
- May need to recompute values multiple times as more information becomes available
- Need to be careful when doing this not to loop infinitely!
- (More on that later)
- Can order of computation affect result?

CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program

CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program
- Sound approximation: Assume that every possible path through the CFG corresponds to a valid execution
- Includes all realizable paths, but some additional paths as well
- May make our analysis less precise (but still sound)
- Makes the analysis feasible; we'll see how later

CFGs with loops

Major changes - part 3

- In a local analysis, there is always a well defined "first" statement to begin processing
- In a global analysis with loops, every basic block might depend on every other basic block
- To fix this, we need to assign initial values to all of the blocks in the CFG

CFGs with loops - initialization

CFGs with loops - iteration

Summary of differences

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value
- But the analysis still needs to terminate!
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global liveness analysis

- Initially, set IN[s] = \{ \} for each statement s
- Set IN[exit] to the set of variables known to be live on exit (language-specific knowledge)
- Repeat until no changes occur:
- For each statement \mathbf{s} of the form $\mathbf{a}=\mathbf{b}+\mathbf{c}$, in any order you'd like:
- Set OUT[s] to set union of $\operatorname{IN}[\mathbf{p}]$ for each successor \mathbf{p} of \mathbf{s}
- Set IN[s] to (OUT[s] - a) $\cup\{\mathbf{b}, \mathbf{c}\}$.
- Yet another fixed-point iteration!

Global liveness analysis

Why does this work?

- To show correctness, we need to show that
- The algorithm eventually terminates, and
- When it terminates, it has a sound answer
- Termination argument:
- Once a variable is discovered to be live during some point of the analysis, it always stays live
- Only finitely many variables and finitely many places where a variable can become live
- Soundness argument (sketch):
- Each individual rule, applied to some set, correctly updates liveness in that set
- When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

Abstract Interpretation

- Theoretical foundations of program analysis
- Cousot and Cousot 1977
- Abstract meaning of programs
- Executed at compile time

Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

Properties of local analysis

- The only way to find out what a program will actually do is to run it
- Problems:
- The program might not terminate
- The program might have some behavior we didn't see when we ran it on a particular input
- However, this is not a problem inside a basic block
- Basic blocks contain no loops
- There is only one path through the basic block

Assigning new semantics

- Example: Available Expressions
- Redefine the statement $\mathbf{a}=\mathbf{b}+\mathbf{c}$ to mean "a now holds the value of $b+c$, and any variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

Theory to the rescue

- Building up all of the machinery to design this analysis was tricky
- The key ideas, however, are mostly independent of the analysis:
- We need to be able to compute functions describing the behavior of each statement
- We need to be able to merge several subcomputations together
- We need an initial value for all of the basic blocks
- There is a beautiful formalism that captures many of these properties

Join semilattices

- A join semilattice is an ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
- The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

Join semilattice for liveness

What is the join of $\{b\}$ and $\{c\}$?

What is the join of $\{b\}$ and $\{a, c\}$?

What is the join of $\{b\}$ and $\{a, c\}$?

What is the join of $\{a\}$ and $\{a, b\}$?

What is the join of $\{a\}$ and $\{a, b\}$?

Formal definitions

- A join semilattice is a pair (V, U), where
- V is a domain of elements
- \sqcup is a join operator that is
- commutative: $x \sqcup y=y \sqcup x$
- associative: $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$
- idempotent: $x \bigsqcup x=x$
- If $x \sqcup y=z$, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted \perp such that $\perp \sqcup \mathrm{x}=\mathrm{x}$ for all x

Join semilattices and ordering

Greater

Lower

Join semilattices and ordering

Join semilattices and orderings

- Every join semilattice (V, ப) induces an ordering relationship \sqsubseteq over its elements
- Define x 〔 y iff x ل $\mathrm{y}=\mathrm{y}$
- Need to prove
- Reflexivity: x ㄷ
- Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$
- Transitivity: If $\mathrm{x} \sqsubseteq \mathrm{y}$ and $\mathrm{y} \sqsubseteq \mathrm{z}$, then $\mathrm{x} \sqsubseteq \mathrm{z}$

An example join semilattice

- The set of natural numbers and the max function
- Idempotent
$-\max \{a, a\}=a$
- Commutative
$-\max \{a, b\}=\max \{b, a\}$
- Associative
$-\max \{a, \max \{b, c\}\}=\max \{\max \{a, b\}, c\}$
- Bottom element is 0:
$-\max \{0, a\}=a$
- What is the ordering over these elements?

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$
-x \cup x=x
$$

- Commutative:
$-x \cup y=y \cup x$
- Associative:
$-(x \cup y) \cup z=x \cup(y \cup z)$
- Bottom element:
- The empty set: $\varnothing \cup x=x$
- What is the ordering over these elements?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- What value do we give to basic blocks we haven't seen yet?
- How do we know that the algorithm always terminates?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
- Use the bottom element
- How do we know that the algorithm always terminates?
- Actually, we still don't! More on that later

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
- Use the bottom element
- How do we know that the algorithm always terminates?
- Actually, we still don't! More on that later

A general framework

- A global analysis is a tuple (D, V, 드, F, I), where
- D is a direction (forward or backward)
- The order to visit statements within a basic block, not the order in which to visit the basic blocks
- V is a set of values
- \sqcup is a join operator over those values
- F is a set of transfer functions $f: \mathbf{V} \rightarrow \mathbf{V}$
- I is an initial value
- The only difference from local analysis is the introduction of the join operator

Running global analyses

- Assume that ($\mathrm{D}, \mathrm{V}, \mathrm{L}, \mathrm{F}, \mathrm{I}$) is a forward analysis
- Set OUT[s] $=\perp$ for all statements \mathbf{s}
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}$:
- Set IN[s] = OUT[$\left[p_{1}\right] \sqcup \operatorname{OUT}\left[p_{2}\right] \sqcup \ldots \sqcup \operatorname{OUT}\left[p_{n}\right]$
- Set OUT[s] = f_{s} (IN[s])
- The order of this iteration does not matter
- This is sometimes called chaotic iteration

For comparison

- Set OUT[s] = \perp for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}$:
- Set IN[s]=OUT[pp] OUT[p $\left.p_{2}\right] \sqcup . . . \sqcup$ OUT[$\left.p_{n}\right]$
- Set OUT[s] = $\mathrm{f}_{\mathrm{s}}(\operatorname{IN}[\mathrm{s}])$
- Set IN[s] = \{\} for all statements s
- Set OUT[exit] = the set of variables known to be live on exit
- Repeat until no values change:
- For each statement s of the form $\mathbf{a}=\mathbf{b}+\mathbf{c}$:
- Set OUT[s] = set union of $\operatorname{IN}[\mathbf{x}]$ for each successor \mathbf{x} of \mathbf{s}
- Set $\operatorname{IN}[s]=(O U T[s]-\{a\}) \cup\{b, c\}$

The dataflow framework

- This form of analysis is called the dataflow framework
- Can be used to easily prove an analysis is sound
- With certain restrictions, can be used to prove that an analysis eventually terminates
- Again, more on that later

Global constant propagation

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

Global constant propagation

Global constant propagation

Global constant propagation

Constant propagation analysis

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point
- Every variable will either
- Never have a value assigned to it,
- Have a single constant value assigned to it,
- Have two or more constant values assigned to it, or
- Have a known non-constant value.
- Our analysis will propagate this information throughout a CFG to identify locations where a value is constant

Properties of constant

propagation

- For now, consider just some single variable \mathbf{x}
- At each point in the program, we know one of three things about the value of \mathbf{x} :
- \mathbf{x} is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant
$-\mathbf{x}$ is definitely a constant and has value \mathbf{k}
- We have never seen a value for \mathbf{x}
- Note that the first and last of these are not the same!
- The first one means that there may be a way for \mathbf{x} to have multiple values
- The last one means that \mathbf{x} never had a value at all

Defining a join operator

- The join of any two different constants is Not-a-Constant
- (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-aConstant
- (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of Undefined and any other value is that other value
- (If \mathbf{x} has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

The lattice is infinitely wide

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

- Note:
- The join of any two different constants is Not-a-Constant
- The join of Not a Constant and any other value is Not-a-Constant
- The join of Undefined and any other value is that other value

Global constant propagation

Dataflow for constant

propagation

- Direction: Forward
- Semilattice: Vars \rightarrow \{Undefined, $0,1,-1,2,-2, \ldots$, Not-aConstant $\}$
- Join mapping for variables point-wise

$$
\{x \mapsto 1, y \mapsto 1, z \mapsto 1\} \sqcup\{x \mapsto 1, y \mapsto 2, z \mapsto \text { Not-a-Constant }\}=
$$

$$
\{\mathrm{x} \mapsto 1, \mathrm{y} \mapsto \text { Not-a-Constant,z } \mapsto \text { Not-a-Constant }\}
$$

- Transfer functions:
$-\mathrm{f}_{\mathrm{x}=\mathrm{k}}(\mathrm{V})=\left.\mathrm{V}\right|_{\mathrm{x} \mapsto \mathrm{k}}$ (update V by mapping x to k)
$-\mathrm{f}_{\mathrm{x}=\mathrm{a}+\mathrm{b}}(\mathrm{V})=\left.\mathrm{V}\right|_{\mathrm{x} \rightarrow \text { Not-a-Constant }}$ (assign Not-a-Constant)
- Initial value: \mathbf{x} is Undefined
- (When might we use some other value?)

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
- In general, we don't

Terminates?

Liveness Analysis

- A variable is live at a point in a program if later in the program its value will be read before it is written to again

Join semilattice definition

- A join semilattice is a pair (V, U), where
- V is a domain of elements
- \sqcup is a join operator that is
- commutative: $x \sqcup y=y \sqcup x$
- associative: $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$
- idempotent: $x \bigsqcup x=x$
- If $x \sqcup y=z$, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted \perp such that $\perp \sqcup \mathrm{x}=\mathrm{x}$ for all x

Partial ordering induced by join

- Every join semilattice (V, ப) induces an ordering relationship \sqsubseteq over its elements
- Define $x \sqsubseteq y$ iff $x \sqcup y=y$
- Need to prove
- Reflexivity: x ㄷ
- Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$
- Transitivity: If $\mathrm{x} \sqsubseteq \mathrm{y}$ and $\mathrm{y} \sqsubseteq \mathrm{z}$, then $\mathrm{x} \sqsubseteq \mathrm{z}$

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$
-x \cup x=x
$$

- Commutative:
$-x \cup y=y U x$
- Associative:
$-(x \cup y) \cup z=x \cup(y \cup z)$
- Bottom element:
- The empty set: $\varnothing \cup x=x$
- Ordering over elements = subset relation

Join semilattice example for liveness

Dataflow framework

- A global analysis is a tuple (D, V, ப, F, I), where
- D is a direction (forward or backward)
- The order to visit statements within a basic block, NOT the order in which to visit the basic blocks
- V is a set of values (sometimes called domain)
$-\bigsqcup$ is a join operator over those values
- F is a set of transfer functions $f_{\mathrm{s}}: \mathbf{V} \rightarrow \mathbf{V}$ (for every statement s)
- I is an initial value

Running global analyses

- Assume that ($\mathrm{D}, \mathrm{V}, \mathrm{L}, \mathrm{F}, \mathrm{I}$) is a forward analysis
- For every statement s maintain values before - IN[s] - and after - OUT[s]
- Set OUT[s] = \perp for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement \mathbf{s} with predecessors PRED[s]=\{ $\left.\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right\}$

- Set OUT[s] $=f_{s}(\operatorname{IN}[\mathbf{s}])$
- The order of this iteration does not matter
- Chaotic iteration

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

A non-terminating analysis

- The following analysis will loop infinitely on any CFG containing a loop:
- Direction: Forward
- Domain: \mathbb{N}
- Join operator: max
- Transfer function: $f(n)=n+1$
- Initial value: 0

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Iteration 1

Iteration 1

Choose a block

Iteration 2

Iteration 2

Iteration 2

Choose a block

Iteration 3

Iteration 3

Iteration 3

Why doesn't this terminate?

- Values can increase without bound
- Note that "increase" refers to the lattice ordering, not the ordering on the natural numbers
- The height of a semilattice is the length of the longest increasing sequence in that semilattice
- The dataflow framework is not guaranteed to terminate for semilattices of infinite height
- Note that a semilattice can be infinitely large but have finite height
- e.g. constant propagation

Height of a lattice

- An increasing chain is a sequence of elements
\perp ㄷ․ $\mathrm{a}_{1} \subseteq \mathrm{a}_{2} \subseteq \ldots$ ㄷ.. a_{k}
- The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with n program variables:
$-\{ \} \subseteq\left\{\mathrm{v}_{1}\right\} \subseteq\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\} \subseteq \ldots \subseteq\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- For available expressions it is the number of expressions of the form $a=b$ op c
- For n program variables and m operator types:mn ${ }^{3}$

Another non-terminating analysis

- This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:
- Direction: Forward
- Domain: Boolean values true and false
- Join operator: Logical OR
- Transfer function: Logical NOT
- Initial value: false

A non-terminating analysis

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Iteration 1

Iteration 1

Iteration 2

Iteration 2

Iteration 3

Iteration 3

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?

Monotone transfer functions

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y \text {, then } f(x) \sqsubseteq f(y)
$$

- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does not mean that $\mathrm{x} \sqsubseteq f(\mathrm{x})$
- (This is a different property called extensivity)

Liveness and monotonicity

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y, \text { then } f(x) \sqsubseteq f(y)
$$

- Recall our transfer function for $\mathbf{a}=\mathbf{b}+\mathbf{c}$ is

$$
-f_{a}=b+c(V)=(V-\{a\}) \cup\{b, c\}
$$

- Recall that our join operator is set union and induces an ordering relationship

$$
X \subseteq Y \text { iff } X \subseteq Y
$$

- Is this monotone?

Is constant propagation monotone?

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y \text {, then } f(x) \sqsubseteq f(y)
$$

- Recall our transfer functions
$-\mathrm{f}_{\mathrm{x}=\mathrm{k}}(\mathrm{V})=\mathrm{V}[\mathrm{x} \mapsto \mathrm{k}]$ (update V by mapping x to k)
$-\mathrm{f}_{\mathrm{x}=\mathrm{a}+\mathrm{b}}(\mathrm{V})=\mathrm{V}[\mathrm{x} \mapsto$ Not-a-Constant] (assign Not-aConstant)
- Is this monotone?

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
- The join operator can only bring values up
- Transfer functions can never lower values back down below where they were in the past (monotonicity)
- Values cannot increase indefinitely (finite height)

An "optimality" result

- A transfer function f is distributive if

$$
f(a \sqcup b)=f(a) \sqcup f(b)
$$

for every domain elements a and b

- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths
- Join over all paths
- Optimal if we ignore program conditions

An "optimality" result

- A transfer function f is distributive if

$$
f(a \sqcup b)=f(a) \sqcup f(b)
$$

for every domain elements a and b

- If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths
- Join over all paths
- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

Loop Optimizations

Loop optimizations

- Most of a program's computations are done inside loops
- Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
- Loop-invariant code motion
- (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
- Reaching definitions
- (Also useful for improving register allocation)

Loop invariant computation

Loop invariant computation

Code hoisting

What reasoning did we use?

What about now?

Loop-invariant code motion

- $d: \mathrm{t}=a_{1}$ op a_{2}
- d is a program location
- a_{1} op a_{2} loop-invariant (for a loop L) if computes the same value in each iteration
- Hard to know in general
- Conservative approximation
- Each a_{i} is a constant, or
- All definitions of a_{i} that reach d are outside L, or
- Only one definition of of a_{i} reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

Reaching definitions analysis

- A definition $d: t=\ldots$ reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined

Reaching definitions analysis

- A definition $d: t=\ldots$ reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions
- Join operator: union
- Transfer function:

$$
\begin{aligned}
& f_{\text {d: } a=b \text { op }(}(\mathrm{RD})=(\operatorname{RD}-\operatorname{defs}(a)) \cup\{d\} \\
& f_{d: \text { not-a-def }}(\mathrm{RD})=\operatorname{RD}
\end{aligned}
$$

- Where $\operatorname{defs}(a)$ is the set of locations defining a (statements of the form $a=$...)
- Initial value: $\}$

Reaching definitions analysis

Reaching definitions analysis

Initialization

Iteration 1

Iteration 1

Iteration 2

Iteration 2

Iteration 2

Iteration 2

Iteration 3

Iteration 3

Iteration 4

Iteration 4

Iteration 4

Iteration 5

Iteration 6

Which expressions are loop invariant?

Inferring loop-invariant expressions

- For a statement s of the form $t=a_{1}$ op a_{2}
- A variable a_{i} is immediately loop-invariant if all reaching definitions $\operatorname{IN}[s]=\left\{\mathrm{d}_{1}, \ldots, \mathrm{~d}_{k}\right\}$ for a_{i} are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants
LOOP-INV $=$ LOOP-INV $\cup\left\{x \mid \mathrm{d}: \mathrm{x}=a_{1}\right.$ op $a_{2}, \mathrm{~d}$ is in the loop, and both a_{1} and a_{2} are in LOOP-INV
- Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants

Computing LOOP-INV

Induction variables

j is a linear function of the induction variable with multiplier 4

i is incremented by a loopinvariant expression on each iteration - this is called an induction variable

Strength-reduction

