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But first, a short reminder
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What is a compiler?

“A compiler is a computer program that 
transforms source code written in a 
programming language (source language) into 
another language (target language).

The most common reason for wanting to 
transform source code is to create an executable 
program.”

--Wikipedia
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Lexical Analysis
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From scanning to parsing
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Context Analysis
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Code Generation
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What is a compiler?
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“A compiler is a computer program that transforms
source code written in a programming language 
(source language) into another language (target 
language).

The most common reason for wanting to transform 
source code is to create an executable program.”



A CPU is (a sort of) an Interpreter

• Interprets machine code …
– Why not AST?

• Do we want to go from AST directly to MC?
– We can, but …

• Machine specific
• Very low level
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“A compiler is a computer program that transforms
source code written in a programming language 
(source language) into another language (target 
language).

The most common reason for wanting to transform 
source code is to create an executable program.”



Code Generation in Stages
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1 Note: Compile Time vs Runtime

• Compile time: Data structures used during 
program compilation

• Runtime: Data structures used during program 
execution
– Activation record stack
– Memory management 

• The compiler generates code that allows the 
program to interact with the runtime 
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Intermediate Representation



Code Generation: IR

• Translating from abstract syntax (AST) to 
intermediate representation (IR)
– Three-Address Code

• …
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Three-Address Code IR

• A popular form of IR
• High-level assembly where instructions 

have at most three operands
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IR by example
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Sub-expressions example

int a;
int b;
int c;
int d;
a = b + c + d;
b = a * a + b * b;

19

Source IR

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;



Sub-expressions example

int a;
int b;
int c;
int d;
a = b + c + d;
b = a * a + b * b;

20

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;

Source IR (not optimized)

Temporaries explicitly 
store intermediate 
values resulting from 
sub-expressions



Variable assignments
• var = constant;
• var1 = var2;
• var1 = var2 op var3;
• var1 = constant op var2;
• var1 = var2 op constant;
• var = constant1 op constant2;
• Permitted operators are +, -, *, /, %
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In the impl. var is 
replaced by a pointer 
to the symbol table 

A compiler-generated 
temporary can be 
used instead of a var



Booleans
• Boolean variables are represented as integers 

that have zero or nonzero values
• In addition to the arithmetic operator, TAC 

supports <, ==, ||, and &&
• How might you compile the following?
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b = (x <= y); _t0 = x < y;
_t1 = x == y;
b = _t0 || _t1;



Unary operators

• How might you compile the following assignments 
from unary statements?
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y = -x;

z := !w;

y = 0 - x;

z = w == 0;

y = -1 * x;



Control flow instructions
• Label introduction

_label_name:
Indicates a point in the code that can be jumped to

• Unconditional jump: go to instruction following label L
Goto L;

• Conditional jump: test condition variable t;
if 0, jump to label L

IfZ t Goto L;
• Similarly : test condition variable t;

if not zero, jump to label L
IfNZ t Goto L;
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Control-flow example – conditions
int x;
int y;
int z;

if (x < y)
z = x;

else
z = y;

z = z * z;
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_t0 = x < y;
IfZ _t0 Goto _L0;
z = x;
Goto _L1;

_L0:
z = y;

_L1:
z = z * z;



Control-flow example – loops
int x;
int y;

while (x < y) {
x = x * 2;

}

y = x;
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_L0:
_t0 = x < y;
IfZ _t0 Goto _L1;
x = x * 2;
Goto _L0;

_L1:
y = x;



Procedures / Functions 
p(){ 
int y=1, x=0;
x=f(a1,…,an);
print(x);
}

• What happens in runtime?
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p

f



Memory Layout 
(popular convention)
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Low
addresses



A logical stack frame
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Param N
Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual 

arguments)

Locals and 
temporaries

Stack frame 
for function 

f(a1,…,an)



Procedures / Functions 
• A procedure call instruction pushes arguments to 

stack and jumps to the function label
A statement x=f(a1,…,an); looks like

Push a1; … Push an;
Call f;
Pop x; // pop returned value, and copy to it

• Returning a value is done by pushing it to the 
stack (return x;)

Push x;
• Return control to caller (and roll up stack)

Return;
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Functions example
int SimpleFn(int z) {

int x, y;
x = x * y * z;
return x;

}

void main() {
int w;
w = SimpleFunction(137);

}
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_SimpleFn:
_t0 = x * y;
_t1 = _t0 * z;
x = _t1;
Push x;
Return;

main:
_t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;



Memory access instructions

• Copy instruction: a = b
• Load/store instructions:

a = *b *a = b
• Address of instruction a=&b
• Array accesses:

a = b[i] a[i] = b
• Field accesses:

a = b[f] a[f] = b
• Memory allocation instruction:

a = alloc(size)
– Sometimes left out (e.g., malloc is a procedure in C)
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Memory access instructions

• Copy instruction: a = b
• Load/store instructions:

a = *b *a = b
• Address of instruction a=&b
• Array accesses:

a = b[i] a[i] = b
• Field accesses:

a = b[f] a[f] = b
• Memory allocation instruction:

a = alloc(size)
– Sometimes left out (e.g., malloc is a procedure in C)
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Array operations
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t1 := &y      ; t1 = address-of y
t2 := t1 + i  ; t2 = address of y[i]
x  := *t2      ; loads the value located at y[i]

t1   := &x      ; t1 = address-of x
t2   := t1 + i  ; t2 = address of x[i]
*t2 := y         ; store through pointer

x := y[i]

x[i] := y



IR Summary
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Intermediate representation

36

• A language that is between the source language and 
the target language – not specific to any machine

• Goal 1: retargeting  compiler components for 
different source languages/target machines

C++ IR

Pentium

Java bytecode

SparcPyhton

Java
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C++ IR

Pentium

Java bytecode

SparcPyhton

Java
optimize

Lowering Code Gen.

Intermediate representation
• A language that is between the source language and 

the target language – not specific to any machine
• Goal 1: retargeting  compiler components for 

different source languages/target machines
• Goal 2: machine-independent optimizer

– Narrow interface: small number of instruction types



Multiple IRs
• Some optimizations require high-level 

structure
• Others more appropriate on low-level code
• Solution: use multiple IR stages

38

AST LIR

Pentium

Java bytecode

Sparc

optimize

HIR

optimize



AST vs. LIR for imperative languages

AST LIR
Rich set of language constructs An abstract machine language

Rich type system Very limited type system

Declarations: types (classes, interfaces), 
functions, variables

Only computation-related code

Control flow statements: if-then-else, 
while-do, break-continue, switch, 
exceptions

Labels and conditional/ unconditional 
jumps, no looping

Data statements: assignments, array 
access, field access

Data movements, generic memory 
access statements

Expressions: variables, constants, 
arithmetic operators, logical operators, 
function calls

No sub-expressions, logical as numeric, 
temporaries, constants, function calls –
explicit argument passing 39



Lowering AST to TAC
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IR Generation

41

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Valid Abstract Syntax Tree
Symbol Table

…

Verification (possible runtime)
Errors/Warnings

Intermediate Representation (IR)

Executable Codeinput output



TAC generation

• At this stage in compilation, we have
– an AST
– annotated with scope information
– and annotated with type information

• To generate TAC for the program, we do 
recursive tree traversal
– Generate TAC for any subexpressions or 

substatements
– Using the result, generate TAC for the overall 

expression
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TAC generation for expressions

• Define a function cgen(expr) that generates 
TAC that computes an expression, stores it in a 
temporary variable, then hands back the name 
of that temporary
– Define cgen directly for atomic expressions 

(constants, this, identifiers, etc.)
• Define cgen recursively for compound 

expressions (binary operators, function calls, 
etc.)
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cgen for basic expressions
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cgen(k) = { // k is a constant
Choose a new temporary t
Emit( t = k )
Return t

}

cgen(id) = { // id is an identifier
Choose a new temporary t
Emit( t = id )
Return t

}



cgen for binary operators
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cgen(e1 + e2) = {
Choose a new temporary t
Let t1 = cgen(e1)
Let t2 = cgen(e2)
Emit( t = t1 + t2 )
Return t

}



cgen example
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cgen(5 + x) = {
Choose a new temporary t
Let t1 = cgen(5)
Let t2 = cgen(x)
Emit( t = t1 + t2 )
Return t

}



cgen example
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cgen(5 + x) = {
Choose a new temporary t
Let t1 = {

Choose a new temporary t
Emit( t = 5; )
Return t

}
Let t2 = cgen(x)
Emit( t = t1 + t2 )
Return t

}



cgen example
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cgen(5 + x) = {
Choose a new temporary t
Let t1 = {

Choose a new temporary t
Emit( t = 5; )
Return t

}
Let t2 = {

Choose a new temporary t
Emit( t = x; )
Return t

}
Emit( t = t1 + t2; )
Return t

}

t1 = 5;
t2 = x;
t = t1 + t2;

Returns an arbitrary
fresh name



cgen example
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cgen(5 + x) = {
Choose a new temporary t
Let t1 = {

Choose a new temporary t
Emit( t = 5; )
Return t

}
Let t2 = {

Choose a new temporary t
Emit( t = x; )
Return t

}
Emit( t = t1 + t2; )
Return t

}

_t18 = 5;
_t29 = x;
_t6 = _t18 + _t29;

Inefficient translation, 
but we will improve 
this later

Returns an arbitrary
fresh name



Num
val = 5

AddExpr
left right

Ident
name = x

visit

visit
(left)

visit
(right)

cgen as recursive AST traversal

cgen(5 + x)
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t1 = 5;

t2 = x;

t = t1 + t2;

t1 = 5 t2 = x

t = t1 + t2



Naive cgen for expressions

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit( _tc = A op B; )
Return _tc

}
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Example
cgen( (a*b)-d)
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c = 0
cgen( (a*b)-d)

Example



54

c = 0
cgen( (a*b)-d) = {

Let A = cgen(a*b)
c = c + 1
Let B = cgen(d)
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Example
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c = 0
cgen( (a*b)-d) = {

Let A = {
Let A = cgen(a)
c = c + 1
Let B = cgen(b)
c = c + 1
Emit( _tc = A * B; )
Return tc

}   
c = c + 1
Let B = cgen(d)
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Example
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c = 0
cgen( (a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit( _tc = A * B; )
Return _tc

}   
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Code
here A=_t0

Example
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c = 0
cgen( (a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit( _tc = A * B; )
Return _tc

}   
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Code
_t0=a;here A=_t0

Example



58

c = 0
cgen( (a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit( _tc = A * B; )
Return _tc

}   
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Code
_t0=a;
_t1=b;

here A=_t0

Example
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c = 0
cgen( (a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit( _tc = A * B; )
Return _tc

}   
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1

here A=_t0

Example
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c = 0
cgen( (a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit( _tc = A * B; )
Return _tc

}   
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1

here A=_t0

here A=_t2

Example
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c = 0
cgen( (a*b)-d) = {
Let A = {

Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit( _tc = A * B; )
Return _tc

}   
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1
_t3=d;

here A=_t0

here A=_t2

Example
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c = 0
cgen( (a*b)-d) = {
Let A = {

Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit( _tc = A * B; )
Return _tc

}   
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit( _tc = A - B; )
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1
_t3=d;
_t4=_t2-_t3

here A=_t0

here A=_t2

Example



cgen for statements

• We can extend the cgen function to 
operate over statements as well

• Unlike cgen for expressions, cgen for 
statements does not return the name of a 
temporary holding a value.
– (Why?)
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cgen for if-then-else
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cgen(if (e) s1 else s2) Let _t = cgen(e)
Let Ltrue be a new label
Let Lfalse be a new label
Let Lafter be a new label
Emit( IfZ _t Goto Lfalse; )
cgen(s1)
Emit( Goto Lafter; )
Emit( Lfalse: )
cgen(s2)
Emit( Goto Lafter;)
Emit( Lafter: )



cgen for while loops
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cgen(while (expr) stmt) Let Lbefore be a new label.
Let Lafter be a new label.
Emit( Lbefore: )
Let t = cgen(expr)
Emit( IfZ t Goto Lafter; )
cgen(stmt)
Emit( Goto Lbefore; )
Emit( Lafter: )



cgen for short-circuit disjunction

cgen(e1 || e2)
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Emit(_t1 = 0; _t2 = 0;)
Let Lafter be a new label
Let _t1 = cgen(e1)
Emit( IfNZ _t1 Goto Lafter)
Let _t2 = cgen(e2)
Emit( Lafter: )
Emit( _t = _t1 || _t2; )
Return _t



Our first optimization
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Naive cgen for expressions

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit( _tc = A op B; )
Return _tc

}

69



Naïve translation

• cgen translation shown so far very inefficient
– Generates (too) many temporaries – one per sub-

expression
– Generates many instructions – at least one per sub-

expression

• Expensive in terms of running time and space
• Code bloat

• We can do much better … 

70



Naive cgen for expressions

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit( _tc = A op B; )
Return _tc

}
• Observation: temporaries in cgen(e1) can be reused in 

cgen(e2)
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Improving cgen for expressions

• Observation – naïve translation needlessly generates 
temporaries for leaf expressions

• Observation – temporaries used exactly once
– Once a temporary has been read it can be reused for 

another sub-expression
• cgen(e1 op e2) = {

Let _t1 = cgen(e1)
Let _t2 = cgen(e2)
Emit( _t =_t1 op _t2; )
Return t

}
• Temporaries cgen(e1) can be reused in cgen(e2)
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Sethi-Ullman translation

• Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC
– Minimizes number of temporaries

• Main data structure in algorithm is a stack of 
temporaries
– Stack corresponds to recursive invocations of _t = cgen(e)
– All the temporaries on the stack are live

• Live = contain a value that is needed later on
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Live temporaries stack
• Implementation: use counter c to implement 

live temporaries stack
– Temporaries _t(0), … , _t(c) are alive
– Temporaries _t(c+1), _t(c+2)… can be (re)used
– Push means increment c, pop means decrement c

• In the translation of _t(c)=cgen(e1 op e2)

74

_t(c) = cgen(e1)

_t(c) = cgen(e2)

_t(c) = _t(c) op _t(c+1)

c = c + 1

c = c - 1



Using stack of temporaries example

75

_t0 = cgen( ((c*d)-(e*f))+(a*b) )

_t0 = c*d

_t1 = e*f

_t0 = _t0 -_t1

c = c + 1

c = c - 1

c = 0

_t0 = cgen(c*d)-(e*f))

_t1 = a*b
c = c + 1

_t0 = _t0 + _t1

c = c - 1



Weighted register allocation

• Suppose we have expression e1 op e2
– e1, e2 without side-effects

• That is, no function calls, memory accesses, ++x
– cgen(e1 op e2) = cgen(e2 op e1)
– Does order of translation matter? 

• Sethi & Ullman’s algorithm translates heavier 
sub-tree first
– Optimal local (per-statement) allocation for side-

effect-free statements

76

Temporaries



Example
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_t0 = cgen( a+(b+(c*d)) )
+ and * are commutative operators

b

c d

*

+

+

a_t0

_t1

_t2

4 temporaries

_t2

_t1

left child first

b

c d

*

+

+

a

_t0

2 temporary

_t0

_t0

right child first

_t0_t0

_t1

_t1

_t1

_t3



Weighted register allocation
• Can save registers by re-ordering subtree computations
• Label each node with its weight

– Weight = number of registers needed
– Leaf weight known
– Internal node weight

• w(left) > w(right) then w = left
• w(right) > w(left) then w = right
• w(right) = w(left) then w = left + 1

• Choose heavier child as first to be translated
• WARNING: have to check that no side-effects exist before 

attempting to apply this optimization
– pre-pass on the tree
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Weighted reg. alloc. example

79

b

5 c

*

array access

+

aw=0

w=0 w=0

w=1w=0 

w=1

w=1

Phase 1: - check absence of side-effects in expression tree
- assign weight to each AST node

_t0 = cgen( a+b[5*c] )

base index



Weighted reg. alloc. example

80

b

5 c

*

array access

+

a
base index

w=0

w=0 w=0

w=1w=0 

w=1

w=1

_t0 = cgen( a+b[5*c] )
Phase 2: - use weights to decide on order of translation

_t0

_t0

_t0
Heavier sub-tree

Heavier sub-tree

_t0 = _t1 * _t0

_t0 = _t1[_t0]

_t0 = _t1 + _t0

_t0_t1

_t1

_t1
_t0 = c

_t1 = 5

_t1 = b

_t1 = a



Note on weighted register allocation
• Must reset temporaries counter after every  

statement: x=y; y=z
– should not be translated to
_t0 = y;
x = _t0;
_t1 = z;
y = _t1;

– But rather to
_t0 = y;
x = _t0; # Finished translating statement. Set c=0
_t0 = z;
y= _t0;
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Code generation 
for procedure calls

(+ a few words on the runtime system)
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Code generation for procedure calls

• Compile time generation of code for 
procedure invocations

• Activation Records (aka Stack Frames)
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Supporting Procedures

• Stack: a new computing environment 
– e.g., temporary memory for local variables

• Passing information into the new 
environment
– Parameters

• Transfer of control to/from procedure
• Handling return values

84



Calling Conventions

• In general, compiler can use any 
convention to handle procedures

• In practice, CPUs specify standards
• Aka calling conventios

– Allows for compiler interoperability
• Libraries! 
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Abstract Register Machine
(High Level View)
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Heap

Abstract Register Machine
(High Level View)
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Abstract Activation Record Stack
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Stack frame for 
procedure

Prock+1(a1,…,aN)

Prock

Prock+2

…

…

Prock+1

main

Proc1

Proc2

Prock

Prock+1

Prock+2

Stack 
grows this 

way

…

…



Abstract Stack Frame
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Param N
Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual 

arguments)

Locals and 
temporaries

Prock

Prock+2

…

…

Stack frame for 
procedure

Prock+1(a1,…,aN)



Handling Procedures
• Store local variables/temporaries in a stack
• A function call instruction pushes arguments to 

stack and jumps to the function label
A statement x=f(a1,…,an); looks like

Push a1; … Push an;
Call f;
Pop x; // copy returned value

• Returning a value is done by pushing it to the 
stack (return x;)

Push x;
• Return control to caller (and roll up stack)

Return; 90



Heap

Abstract Register Machine
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Heap

Abstract Register Machine
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Intro: Functions Example
int SimpleFn(int z) {

int x, y;
x = x * y * z;
return x;

}

void main() {
int w;
w = SimpleFunction(137);

}

93

_SimpleFn:
_t0 = x * y;
_t1 = _t0 * z;
x = _t1;
Push x;
Return;

main:
_t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;



What Can We Do with Procedures?

• Declarations & Definitions
• Call & Return
• Jumping out of procedures
• Passing & Returning procedures as 

parameters

94



Design Decisions

• Scoping rules
– Static scoping vs. dynamic scoping

• Caller/callee conventions
– Parameters
– Who saves register values?

• Allocating space for local variables
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Static (lexical) Scoping

96

main ( )
{

int a = 0 ;
int b = 0 ;
{

int b = 1 ;
{

int a = 2 ;
printf (“%d %d\n”, a, b)

}
{

int b = 3 ;
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}

B0
B1

B3B3

B2

Declaration Scopes

a=0 B0,B1,B3

b=0 B0

b=1 B1,B2

a=2 B2

b=3 B3

a name refers to 
its (closest) 

enclosing scope

known at 
compile time



Dynamic Scoping

• Each identifier is associated with a global stack of 
bindings

• When entering scope where identifier is declared
– push declaration on identifier stack

• When exiting scope where identifier is declared
– pop identifier stack

• Evaluating the identifier in any context binds to 
the current top of stack

• Determined at runtime
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Example

• What value is returned from main?
– Static scoping?
– Dynamic scoping?
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int x = 42; 

int f() { return x; } 
int g() { int x = 1; return f(); }
int main() { return g(); } 



Why do we care?

• We need to generate code to access variables

• Static scoping
– Identifier binding is known at compile time
– “Address” of the variable is known at compile time
– Assigning addresses to variables is part of code 

generation
– No runtime errors of “access to undefined variable”
– Can check types of variables

99



Variable addresses for static scoping: first attempt
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int x = 42; 

int f() { return x; } 
int g() { int x = 1; return f(); }
int main() { return g(); } 

identifier address

x (global) 0x42

x (inside g) 0x73



Variable addresses for static scoping: first attempt
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int a [11] ;

void quicksort(int m, int n) {
int i;
if (n > m) {
i = partition(m, n);
quicksort (m, i-1) ;
quicksort (i+1, n) ;

}

main() {
...
quicksort (1, 9) ;
} 

what is the address 
of the variable “i” in 

the procedure 
quicksort?



Compile-Time Information on Variables
• Name
• Type
• Scope

– when is it recognized

• Duration 
– Until when does its value exist

• Size 
– How many bytes are required at runtime  

• Address
– Fixed
– Relative
– Dynamic 102



Activation Record (Stack Frames)

• separate space for each procedure invocation

• managed at runtime
– code for managing it generated by the compiler

• desired properties 
– efficient allocation and deallocation

• procedures are called frequently
– variable size 

• different procedures may require different memory sizes
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Semi-Abstract Register Machine
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End of lesson 7
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Runtime Stack

• Stack of activation records
• Call = push new activation record
• Return = pop activation record
• Only one “active” activation record – top of 

stack
• How do we handle recursion?
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Activation Record (frame)
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parameter k

parameter 1

return information

lexical pointer

dynamic link

registers & misc

local variables
temporaries

next frame would be here

…

administrative
part

high 
addresses

low
addresses

frame (base)
pointer

stack
pointer

incoming 
parameters

stack 
grows 
down



Runtime Stack
• SP – stack pointer 

– top of current frame
• FP – frame pointer 

– base of current frame
– Sometimes called BP

(base pointer)
– Usually points to a “fixed” offset 

from the “start” of the frame
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Current
frame

… …

Previous 
frame

SP

FP

stack 
grows 
down



Code Blocks

• Programming  language provides code 
blocks 
void foo() 
{

int x = 8 ; y=9;//1
{ int x = y * y ;//2 }
{ int x = y * 7 ;//3}     

x = y + 1;
}

110

adminstrative

x1

y1

x2

x3

…



L-Values of Local Variables

• The offset in the stack is known at compile 
time

• L-val(x) = FP+offset(x)
• x = 5 Þ Load_Constant 5, R3

Store R3, offset(x)(FP) 
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Pentium Runtime Stack

112

Pentium stack registers

Pentium stack and call/ret instructions

Register Usage

ESP Stack pointer

EBP Base pointer

Instruction Usage

push, pusha,… push on runtime stack

pop,popa,… Base pointer

call transfer control to called routine

return transfer control back to caller



Accessing Stack Variables

• Use offset from FP (%ebp)
– Remember: stack grows 

downwards
• Above FP = parameters
• Below FP = locals
• Examples

– %ebp + 4 = return address
– %ebp + 8 = first parameter
– %ebp – 4  = first local
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… …

SP

FP

Return address

Return address

Param n
…

param1

Local 1
…

Local n

Previous fp

Param n
…

param1FP+8

FP-4 



Factorial – fact(int n)
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fact:
pushl %ebp # save ebp
movl %esp,%ebp # ebp=esp
pushl %ebx # save ebx
movl 8(%ebp),%ebx # ebx = n
cmpl $1,%ebx # n = 1 ?
jle .lresult # then done
leal -1(%ebx),%eax # eax = n-1
pushl %eax # 
call fact            # fact(n-1)
imull %ebx,%eax # eax=retv*n
jmp .lreturn # 
.lresult:
movl $1,%eax # retv
.lreturn:
movl -4(%ebp),%ebx # restore ebx
movl %ebp,%esp # restore esp
popl %ebp # restore ebp

ESP

EBP

Return address

Return address

old %ebx

Previous fp

nEBP+8

EBP-4 old %ebp

old %eax

(stack in intermediate point)

(disclaimer: real compiler can do better than that)



Call Sequences

• The processor does not save the content of 
registers on procedure calls

• So who will? 
– Caller saves and restores registers
– Callee saves and restores registers
– But can also have both save/restore some 

registers
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Call Sequences
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call

c
a
l
l
e
r

c
a
l
l
e
e

return

c
a
l
l
e
r

Caller push code

Callee push code

(prologue)

Callee pop code

(epilogue)

Caller pop code

Push caller-save registers
Push actual parameters (in reverse order)

push return address (+ other admin info)
Jump to call address

Push current base-pointer
bp = sp

Push local variables
Push callee-save registers

Pop callee-save registers
Pop callee activation record

Pop old base-pointer

pop return address
Jump to address

Pop return value + parameters
Pop caller-save registers

…

…



“To Callee-save or to Caller-save?”

• Callee-saved registers need only be saved 
when callee modifies their value

• Some heuristics and conventions are 
followed
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Caller-Save and Callee-Save Registers
• Callee-Save Registers

– Saved by the callee before modification
– Values are automatically preserved across calls

• Caller-Save Registers 
– Saved (if needed) by the caller before calls
– Values are not automatically preserved across calls

• Usually the architecture defines caller-save and callee-
save registers

• Separate compilation
• Interoperability between code produced by different 

compilers/languages 
• But compiler writers decide when to use caller/callee

registers 118



Callee-Save Registers
• Saved by the callee before modification
• Usually at procedure prolog
• Restored at procedure epilog
• Hardware support may be available 
• Values are automatically preserved across calls

120



Caller-Save Registers
• Saved by the caller before calls when 

needed
• Values are not automatically preserved 

across calls
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Parameter Passing
• 1960s

– In memory 
• No recursion is allowed

• 1970s
– In stack

• 1980s
– In registers
– First k parameters are passed in registers (k=4 or k=6)
– Where is time saved?

123

• Most procedures are leaf procedures
• Interprocedural register allocation
• Many of the registers may be dead before another invocation
• Register windows are allocated in some architectures per call (e.g., sun Sparc)



Activation Records & 
Language Design

124



Compile-Time Information on Variables
• Name, type, size
• Address kind 

– Fixed (global)
– Relative (local)
– Dynamic (heap)

• Scope
– when is it recognized

• Duration 
– Until when does its value exist
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Scoping

• What value is returned from main?
• Static scoping?
• Dynamic scoping?

int x = 42; 

int f() { return x; } 
int g() { int x = 1; return f(); }
int main() { return g(); } 

126



Nested Procedures

• For example – Pascal
• Any routine can have sub-routines
• Any sub-routine can access anything that is 

defined in its containing scope or inside the 
sub-routine itself
– “non-local” variables
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Example: Nested Procedures
program p(){
int x;
procedure a(){

int y;
procedure b(){ … c() … };
procedure c(){
int z;
procedure d(){ 
y := x + z 

};
… b() … d() … 

}
… a() … c() …

}
a()

} 128

Possible call sequence:
p d a d a d c d b d c d d

what are the addresses 
of variables “x,” “y” and 

“z” in procedure d?



Nested Procedures
• can call a sibling, ancestor
• when “c” uses (non-local) 

variables from “a”, which 
instance of “a” is it?

• how do you find the right 
activation record at runtime?

129

a

b

P

c c

d

a

Possible call sequence:
p d a d a d c d b d c d d



Nested Procedures
• goal: find the closest routine in 

the stack from a given nesting 
level 

• if we reached the same routine 
in a sequence of calls

– routine of level k uses variables of 
the same nesting level, it uses its 
own variables

– if it uses variables of nesting level 
j < k then it must be the last 
routine called at level j

• If a procedure is last at level j on 
the stack, then it must be 
ancestor of the current routine

130

Possible call sequence:
p d a d a d c d b d c d d

a

b

P

c c

d

a



Nested Procedures

• problem: a routine may need to access variables of 
another routine that contains it statically

• solution: lexical pointer (a.k.a. access link) in the 
activation record

• lexical pointer points to the last activation record of 
the nesting level above it
– in our example, lexical pointer of d points to activation 

records of c
• lexical pointers created at runtime
• number of links to be traversed is known at compile 

time
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Lexical Pointers 

132

a

a

c

b

c

d

y

y

z

z

Possible call sequence:
p d a d a d c d b d c d d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){ 
y := x + z 

};

… b() … d() … 
}
… a() … c() …

}
a()

}



Lexical Pointers 
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a

a

c

b

c

d

y

y

z

z

Possible call sequence:
p d a d a d c d b d c d d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){ 
y := x + z 

};

… b() … d() … 
}
… a() … c() …

}
a()

} invokes
nested in



Activation Records: Remarks
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Stack Frames
• Allocate a separate space for every procedure incarnation
• Relative addresses
• Provide a simple mean to achieve modularity
• Supports separate code generation of procedures
• Naturally supports recursion
• Efficient memory allocation policy

– Low overhead
– Hardware support may be available

• LIFO policy
• Not a pure stack

– Non local references
– Updated using arithmetic
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Non-Local goto in C syntax
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Non-local gotos in C

• setjmp remembers the current location and 
the stack frame

• longjmp jumps to the current location 
(popping many activation records)

137



Non-Local Transfer of Control in C
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Variable Length Frame Size
• C allows allocating objects of unbounded 

size in the stack
void p() {

int i;
char *p;
scanf(“%d”, &i);
p = (char *) alloca(i*sizeof(int));

}

• Some versions of Pascal allows conformant 
array value parameters
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Limitations

• The compiler may be forced to store a 
value on a stack instead of registers

• The stack may not suffice to handle some 
language features
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Frame-Resident Variables
• A variable x cannot be stored in register when: 

– x is passed by reference
– Address of x is taken (&x)
– is addressed via pointer arithmetic on the stack-frame 
– x is accessed from a nested procedure
– The value is too big to fit into a single register
– The variable is an array
– The register of x is needed for other purposes
– Too many local variables

• An  escape variable:
– Passed by reference
– Address is taken
– Addressed via pointer arithmetic on the stack-frame
– Accessed from a nested procedure

142



The Frames in Different Architectures

Pentium MIPS Sparc

InFrame(8) InFrame(0) InFrame(68)

InFrame(12) InReg(X157) InReg(X157)

InFrame(16) InReg(X158) InReg(X158)

M[sp+0]¬fp
fp ¬sp
sp ¬sp-K

sp¬sp-K

M[sp+K+0]¬r2

X157 ¬r4

X158 ¬r5

save %sp, -K, %sp

M[fp+68]¬i0
X157¬i1
X158¬i2
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g(x, y, z) where x escapes

x

y

z

View

Change



Limitations of Stack Frames
• A local variable of P cannot be stored in the activation record of P if 

its duration exceeds the duration of P
• Example 1: Static variables in C

(own variables in Algol)
void p(int x)
{

static int y = 6 ;
y += x;

}

• Example 2: Features of the C language
int * f() 
{ int x ;

return &x ;
}

• Example 3: Dynamic allocation
int * f()  { return (int *) 
malloc(sizeof(int)); }
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Compiler Implementation

• Hide machine dependent parts
• Hide language dependent part
• Use special modules
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Basic Compiler Phases
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Source program (string)

.EXE

lexical analysis

syntax analysis

semantic analysis

Code generation

Assembler/Linker

Tokens

Abstract syntax tree

Assembly

Frame managerControl Flow Graph



Hidden in the frame ADT

• Word size
• The location of the formals
• Frame resident variables
• Machine instructions to implement “shift-

of-view” (prologue/epilogue)
• The number of locals “allocated” so far
• The label in which the machine code starts
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Activation Records: Summary

• compile time memory management for 
procedure data

• works well for data with well-scoped 
lifetime
– deallocation when procedure returns
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