
Compilation
Lecture 6

Getting into the back-end
Noam Rinetzky

1

Compilation
Lecture 6

Intermediate Representation
Noam Rinetzky

2

But first, a short reminder

3

What is a compiler?

“A compiler is a computer program that
transforms source code written in a
programming language (source language) into
another language (target language).

The most common reason for wanting to
transform source code is to create an executable
program.”

--Wikipedia

4

Front-End

Where we were

5

Executable

code

exe

Source

text

txt
Lexical

Analysis
Semantic
Analysis

Process
text

input

characters Syntax
Analysis

tokens AST

Intermediate
code

generation

Annotated AST

Intermediate
code

optimization

IR Code
generationIR

Target code
optimization

Symbolic Instructions

SI Machine code
generation

Write
executable

output

MI

✓ ✓ ✓

Back-End

Lexical Analysis

6

((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical
Analyzer

program text

token stream

From scanning to parsing

7

((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical
Analyzer

program text

token stream

Parser
Grammar:
E ® ... | Id
Id ® ‘a’ | ... | ‘z’

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

validsyntax
error

Context Analysis

8

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

E1 : int E2 : int

E1 + E2 : int

Type rules

Semantic Error Valid + Symbol Table

Code Generation

9

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Valid Abstract Syntax Tree
Symbol Table

…

Verification (possible runtime)
Errors/Warnings

Executable Codeinput output

What is a compiler?

10

“A compiler is a computer program that transforms
source code written in a programming language
(source language) into another language (target
language).

The most common reason for wanting to transform
source code is to create an executable program.”

A CPU is (a sort of) an Interpreter

• Interprets machine code …
– Why not AST?

• Do we want to go from AST directly to MC?
– We can, but …

• Machine specific
• Very low level

11

“A compiler is a computer program that transforms
source code written in a programming language
(source language) into another language (target
language).

The most common reason for wanting to transform
source code is to create an executable program.”

Code Generation in Stages

12

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Valid Abstract Syntax Tree
Symbol Table

…

Verification (possible runtime)
Errors/Warnings

Intermediate Representation (IR)

Executable Codeinput output

Front-End

Back-End

✓ ✓ ✓

Where we are

13

Executable
code

exe

Source
text

txt
Lexical
Analysis

Sem.
Analysis

Process
text
input

characters Syntax
Analysistokens AST

Intermediate
code

generation

Annotated AST

Intermediate
code

optimization
IR Code

generationIR

Target code
optimization

Symbolic Instructions

SI Machine code
generation

Write
executable

output

MI

Lexical
Analysis

Syntax
Analysis

1 Note: Compile Time vs Runtime

• Compile time: Data structures used during
program compilation

• Runtime: Data structures used during program
execution
– Activation record stack
– Memory management

• The compiler generates code that allows the
program to interact with the runtime

14

15

Intermediate Representation

Code Generation: IR

• Translating from abstract syntax (AST) to
intermediate representation (IR)
– Three-Address Code

• …

16

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Source code

(executable)

Three-Address Code IR

• A popular form of IR
• High-level assembly where instructions

have at most three operands

17

Chapter 8

IR by example

18

Sub-expressions example

int a;
int b;
int c;
int d;
a = b + c + d;
b = a * a + b * b;

19

Source IR

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;

Sub-expressions example

int a;
int b;
int c;
int d;
a = b + c + d;
b = a * a + b * b;

20

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;

Source IR (not optimized)

Temporaries explicitly
store intermediate
values resulting from
sub-expressions

Variable assignments
• var = constant;
• var1 = var2;
• var1 = var2 op var3;
• var1 = constant op var2;
• var1 = var2 op constant;
• var = constant1 op constant2;
• Permitted operators are +, -, *, /, %

21

In the impl. var is
replaced by a pointer
to the symbol table

A compiler-generated
temporary can be
used instead of a var

Booleans
• Boolean variables are represented as integers

that have zero or nonzero values
• In addition to the arithmetic operator, TAC

supports <, ==, ||, and &&
• How might you compile the following?

22

b = (x <= y); _t0 = x < y;
_t1 = x == y;
b = _t0 || _t1;

Unary operators

• How might you compile the following assignments
from unary statements?

23

y = -x;

z := !w;

y = 0 - x;

z = w == 0;

y = -1 * x;

Control flow instructions
• Label introduction

_label_name:
Indicates a point in the code that can be jumped to

• Unconditional jump: go to instruction following label L
Goto L;

• Conditional jump: test condition variable t;
if 0, jump to label L

IfZ t Goto L;
• Similarly : test condition variable t;

if not zero, jump to label L
IfNZ t Goto L;

24

Control-flow example – conditions
int x;
int y;
int z;

if (x < y)
z = x;

else
z = y;

z = z * z;

25

_t0 = x < y;
IfZ _t0 Goto _L0;
z = x;
Goto _L1;

_L0:
z = y;

_L1:
z = z * z;

Control-flow example – loops
int x;
int y;

while (x < y) {
x = x * 2;

}

y = x;

26

_L0:
_t0 = x < y;
IfZ _t0 Goto _L1;
x = x * 2;
Goto _L0;

_L1:
y = x;

Procedures / Functions
p(){
int y=1, x=0;
x=f(a1,…,an);
print(x);
}

• What happens in runtime?

27

p

f

Memory Layout
(popular convention)

28

Global Variables

Stack

Heap

High
addresses

Low
addresses

A logical stack frame

29

Param N
Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual

arguments)

Locals and
temporaries

Stack frame
for function

f(a1,…,an)

Procedures / Functions
• A procedure call instruction pushes arguments to

stack and jumps to the function label
A statement x=f(a1,…,an); looks like

Push a1; … Push an;
Call f;
Pop x; // pop returned value, and copy to it

• Returning a value is done by pushing it to the
stack (return x;)

Push x;
• Return control to caller (and roll up stack)

Return;

30

Functions example
int SimpleFn(int z) {

int x, y;
x = x * y * z;
return x;

}

void main() {
int w;
w = SimpleFunction(137);

}

31

_SimpleFn:
_t0 = x * y;
_t1 = _t0 * z;
x = _t1;
Push x;
Return;

main:
_t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;

Memory access instructions

• Copy instruction: a = b
• Load/store instructions:

a = *b *a = b
• Address of instruction a=&b
• Array accesses:

a = b[i] a[i] = b
• Field accesses:

a = b[f] a[f] = b
• Memory allocation instruction:

a = alloc(size)
– Sometimes left out (e.g., malloc is a procedure in C)

32

Memory access instructions

• Copy instruction: a = b
• Load/store instructions:

a = *b *a = b
• Address of instruction a=&b
• Array accesses:

a = b[i] a[i] = b
• Field accesses:

a = b[f] a[f] = b
• Memory allocation instruction:

a = alloc(size)
– Sometimes left out (e.g., malloc is a procedure in C)

33

Array operations

34

t1 := &y ; t1 = address-of y
t2 := t1 + i ; t2 = address of y[i]
x := *t2 ; loads the value located at y[i]

t1 := &x ; t1 = address-of x
t2 := t1 + i ; t2 = address of x[i]
*t2 := y ; store through pointer

x := y[i]

x[i] := y

IR Summary

35

Intermediate representation

36

• A language that is between the source language and
the target language – not specific to any machine

• Goal 1: retargeting compiler components for
different source languages/target machines

C++ IR

Pentium

Java bytecode

SparcPyhton

Java

37

C++ IR

Pentium

Java bytecode

SparcPyhton

Java
optimize

Lowering Code Gen.

Intermediate representation
• A language that is between the source language and

the target language – not specific to any machine
• Goal 1: retargeting compiler components for

different source languages/target machines
• Goal 2: machine-independent optimizer

– Narrow interface: small number of instruction types

Multiple IRs
• Some optimizations require high-level

structure
• Others more appropriate on low-level code
• Solution: use multiple IR stages

38

AST LIR

Pentium

Java bytecode

Sparc

optimize

HIR

optimize

AST vs. LIR for imperative languages

AST LIR
Rich set of language constructs An abstract machine language

Rich type system Very limited type system

Declarations: types (classes, interfaces),
functions, variables

Only computation-related code

Control flow statements: if-then-else,
while-do, break-continue, switch,
exceptions

Labels and conditional/ unconditional
jumps, no looping

Data statements: assignments, array
access, field access

Data movements, generic memory
access statements

Expressions: variables, constants,
arithmetic operators, logical operators,
function calls

No sub-expressions, logical as numeric,
temporaries, constants, function calls –
explicit argument passing 39

Lowering AST to TAC

40

IR Generation

41

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Valid Abstract Syntax Tree
Symbol Table

…

Verification (possible runtime)
Errors/Warnings

Intermediate Representation (IR)

Executable Codeinput output

TAC generation

• At this stage in compilation, we have
– an AST
– annotated with scope information
– and annotated with type information

• To generate TAC for the program, we do
recursive tree traversal
– Generate TAC for any subexpressions or

substatements
– Using the result, generate TAC for the overall

expression

42

TAC generation for expressions

• Define a function cgen(expr) that generates
TAC that computes an expression, stores it in a
temporary variable, then hands back the name
of that temporary
– Define cgen directly for atomic expressions

(constants, this, identifiers, etc.)
• Define cgen recursively for compound

expressions (binary operators, function calls,
etc.)

43

cgen for basic expressions

44

cgen(k) = { // k is a constant
Choose a new temporary t
Emit(t = k)
Return t

}

cgen(id) = { // id is an identifier
Choose a new temporary t
Emit(t = id)
Return t

}

cgen for binary operators

45

cgen(e1 + e2) = {
Choose a new temporary t
Let t1 = cgen(e1)
Let t2 = cgen(e2)
Emit(t = t1 + t2)
Return t

}

cgen example

46

cgen(5 + x) = {
Choose a new temporary t
Let t1 = cgen(5)
Let t2 = cgen(x)
Emit(t = t1 + t2)
Return t

}

cgen example

47

cgen(5 + x) = {
Choose a new temporary t
Let t1 = {

Choose a new temporary t
Emit(t = 5;)
Return t

}
Let t2 = cgen(x)
Emit(t = t1 + t2)
Return t

}

cgen example

48

cgen(5 + x) = {
Choose a new temporary t
Let t1 = {

Choose a new temporary t
Emit(t = 5;)
Return t

}
Let t2 = {

Choose a new temporary t
Emit(t = x;)
Return t

}
Emit(t = t1 + t2;)
Return t

}

t1 = 5;
t2 = x;
t = t1 + t2;

Returns an arbitrary
fresh name

cgen example

49

cgen(5 + x) = {
Choose a new temporary t
Let t1 = {

Choose a new temporary t
Emit(t = 5;)
Return t

}
Let t2 = {

Choose a new temporary t
Emit(t = x;)
Return t

}
Emit(t = t1 + t2;)
Return t

}

_t18 = 5;
_t29 = x;
_t6 = _t18 + _t29;

Inefficient translation,
but we will improve
this later

Returns an arbitrary
fresh name

Num
val = 5

AddExpr
left right

Ident
name = x

visit

visit
(left)

visit
(right)

cgen as recursive AST traversal

cgen(5 + x)

50

t1 = 5;

t2 = x;

t = t1 + t2;

t1 = 5 t2 = x

t = t1 + t2

Naive cgen for expressions

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit(_tc = A op B;)
Return _tc

}

51

52

Example
cgen((a*b)-d)

53

c = 0
cgen((a*b)-d)

Example

54

c = 0
cgen((a*b)-d) = {

Let A = cgen(a*b)
c = c + 1
Let B = cgen(d)
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Example

55

c = 0
cgen((a*b)-d) = {

Let A = {
Let A = cgen(a)
c = c + 1
Let B = cgen(b)
c = c + 1
Emit(_tc = A * B;)
Return tc

}
c = c + 1
Let B = cgen(d)
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Example

56

c = 0
cgen((a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit(_tc = A * B;)
Return _tc

}
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Code
here A=_t0

Example

57

c = 0
cgen((a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit(_tc = A * B;)
Return _tc

}
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Code
_t0=a;here A=_t0

Example

58

c = 0
cgen((a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit(_tc = A * B;)
Return _tc

}
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Code
_t0=a;
_t1=b;

here A=_t0

Example

59

c = 0
cgen((a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit(_tc = A * B;)
Return _tc

}
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1

here A=_t0

Example

60

c = 0
cgen((a*b)-d) = {

Let A = {
Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit(_tc = A * B;)
Return _tc

}
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1

here A=_t0

here A=_t2

Example

61

c = 0
cgen((a*b)-d) = {
Let A = {

Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit(_tc = A * B;)
Return _tc

}
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1
_t3=d;

here A=_t0

here A=_t2

Example

62

c = 0
cgen((a*b)-d) = {
Let A = {

Let A = { Emit(_tc = a;), return _tc }
c = c + 1
Let B = { Emit(_tc = b;), return _tc }
c = c + 1
Emit(_tc = A * B;)
Return _tc

}
c = c + 1
Let B = { Emit(_tc = d;), return _tc }
c = c + 1
Emit(_tc = A - B;)
Return _tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1
_t3=d;
_t4=_t2-_t3

here A=_t0

here A=_t2

Example

cgen for statements

• We can extend the cgen function to
operate over statements as well

• Unlike cgen for expressions, cgen for
statements does not return the name of a
temporary holding a value.
– (Why?)

63

cgen for if-then-else

65

cgen(if (e) s1 else s2) Let _t = cgen(e)
Let Ltrue be a new label
Let Lfalse be a new label
Let Lafter be a new label
Emit(IfZ _t Goto Lfalse;)
cgen(s1)
Emit(Goto Lafter;)
Emit(Lfalse:)
cgen(s2)
Emit(Goto Lafter;)
Emit(Lafter:)

cgen for while loops

66

cgen(while (expr) stmt) Let Lbefore be a new label.
Let Lafter be a new label.
Emit(Lbefore:)
Let t = cgen(expr)
Emit(IfZ t Goto Lafter;)
cgen(stmt)
Emit(Goto Lbefore;)
Emit(Lafter:)

cgen for short-circuit disjunction

cgen(e1 || e2)

67

Emit(_t1 = 0; _t2 = 0;)
Let Lafter be a new label
Let _t1 = cgen(e1)
Emit(IfNZ _t1 Goto Lafter)
Let _t2 = cgen(e2)
Emit(Lafter:)
Emit(_t = _t1 || _t2;)
Return _t

Our first optimization

68

Naive cgen for expressions

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit(_tc = A op B;)
Return _tc

}

69

Naïve translation

• cgen translation shown so far very inefficient
– Generates (too) many temporaries – one per sub-

expression
– Generates many instructions – at least one per sub-

expression

• Expensive in terms of running time and space
• Code bloat

• We can do much better …

70

Naive cgen for expressions

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit(_tc = A op B;)
Return _tc

}
• Observation: temporaries in cgen(e1) can be reused in

cgen(e2)

71

Improving cgen for expressions

• Observation – naïve translation needlessly generates
temporaries for leaf expressions

• Observation – temporaries used exactly once
– Once a temporary has been read it can be reused for

another sub-expression
• cgen(e1 op e2) = {

Let _t1 = cgen(e1)
Let _t2 = cgen(e2)
Emit(_t =_t1 op _t2;)
Return t

}
• Temporaries cgen(e1) can be reused in cgen(e2)

72

Sethi-Ullman translation

• Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC
– Minimizes number of temporaries

• Main data structure in algorithm is a stack of
temporaries
– Stack corresponds to recursive invocations of _t = cgen(e)
– All the temporaries on the stack are live

• Live = contain a value that is needed later on

73

Live temporaries stack
• Implementation: use counter c to implement

live temporaries stack
– Temporaries _t(0), … , _t(c) are alive
– Temporaries _t(c+1), _t(c+2)… can be (re)used
– Push means increment c, pop means decrement c

• In the translation of _t(c)=cgen(e1 op e2)

74

_t(c) = cgen(e1)

_t(c) = cgen(e2)

_t(c) = _t(c) op _t(c+1)

c = c + 1

c = c - 1

Using stack of temporaries example

75

_t0 = cgen(((c*d)-(e*f))+(a*b))

_t0 = c*d

_t1 = e*f

_t0 = _t0 -_t1

c = c + 1

c = c - 1

c = 0

_t0 = cgen(c*d)-(e*f))

_t1 = a*b
c = c + 1

_t0 = _t0 + _t1

c = c - 1

Weighted register allocation

• Suppose we have expression e1 op e2
– e1, e2 without side-effects

• That is, no function calls, memory accesses, ++x
– cgen(e1 op e2) = cgen(e2 op e1)
– Does order of translation matter?

• Sethi & Ullman’s algorithm translates heavier
sub-tree first
– Optimal local (per-statement) allocation for side-

effect-free statements

76

Temporaries

Example

77

_t0 = cgen(a+(b+(c*d)))
+ and * are commutative operators

b

c d

*

+

+

a_t0

_t1

_t2

4 temporaries

_t2

_t1

left child first

b

c d

*

+

+

a

_t0

2 temporary

_t0

_t0

right child first

_t0_t0

_t1

_t1

_t1

_t3

Weighted register allocation
• Can save registers by re-ordering subtree computations
• Label each node with its weight

– Weight = number of registers needed
– Leaf weight known
– Internal node weight

• w(left) > w(right) then w = left
• w(right) > w(left) then w = right
• w(right) = w(left) then w = left + 1

• Choose heavier child as first to be translated
• WARNING: have to check that no side-effects exist before

attempting to apply this optimization
– pre-pass on the tree

78

Weighted reg. alloc. example

79

b

5 c

*

array access

+

aw=0

w=0 w=0

w=1w=0

w=1

w=1

Phase 1: - check absence of side-effects in expression tree
- assign weight to each AST node

_t0 = cgen(a+b[5*c])

base index

Weighted reg. alloc. example

80

b

5 c

*

array access

+

a
base index

w=0

w=0 w=0

w=1w=0

w=1

w=1

_t0 = cgen(a+b[5*c])
Phase 2: - use weights to decide on order of translation

_t0

_t0

_t0
Heavier sub-tree

Heavier sub-tree

_t0 = _t1 * _t0

_t0 = _t1[_t0]

_t0 = _t1 + _t0

_t0_t1

_t1

_t1
_t0 = c

_t1 = 5

_t1 = b

_t1 = a

Note on weighted register allocation
• Must reset temporaries counter after every

statement: x=y; y=z
– should not be translated to
_t0 = y;
x = _t0;
_t1 = z;
y = _t1;

– But rather to
_t0 = y;
x = _t0; # Finished translating statement. Set c=0
_t0 = z;
y= _t0;

81

Code generation
for procedure calls

(+ a few words on the runtime system)

82

Code generation for procedure calls

• Compile time generation of code for
procedure invocations

• Activation Records (aka Stack Frames)

83

Supporting Procedures

• Stack: a new computing environment
– e.g., temporary memory for local variables

• Passing information into the new
environment
– Parameters

• Transfer of control to/from procedure
• Handling return values

84

Calling Conventions

• In general, compiler can use any
convention to handle procedures

• In practice, CPUs specify standards
• Aka calling conventios

– Allows for compiler interoperability
• Libraries!

85

Abstract Register Machine
(High Level View)

86

Code

Data

High
addresses

Low
addresses

CPU

Register 00

Register 01

Register xx

…

Register PC

Co
nt

ro
l

re
gi

st
er

s
(d

at
a)

 re
gi

st
er

s
G

en
er

al
 p

ur
po

se

…

Heap

Abstract Register Machine
(High Level View)

87

Global Variables

Stack

Low
addresses

CPU Main Memory

Register 00

Register 01

Register xx

…

Register PC

Co
nt

ro
l

re
gi

st
er

s
(d

at
a)

 re
gi

st
er

s
G

en
er

al
 p

ur
po

se

…

Code

High
addresses

Register Stack

Abstract Activation Record Stack

88

Stack frame for
procedure

Prock+1(a1,…,aN)

Prock

Prock+2

…

…

Prock+1

main

Proc1

Proc2

Prock

Prock+1

Prock+2

Stack
grows this

way

…

…

Abstract Stack Frame

89

Param N
Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual

arguments)

Locals and
temporaries

Prock

Prock+2

…

…

Stack frame for
procedure

Prock+1(a1,…,aN)

Handling Procedures
• Store local variables/temporaries in a stack
• A function call instruction pushes arguments to

stack and jumps to the function label
A statement x=f(a1,…,an); looks like

Push a1; … Push an;
Call f;
Pop x; // copy returned value

• Returning a value is done by pushing it to the
stack (return x;)

Push x;
• Return control to caller (and roll up stack)

Return; 90

Heap

Abstract Register Machine

91

Global Variables

Stack

Low
addresses

CPU Main Memory

Register 00

Register 01

Register xx

…

Register PC

Co
nt

ro
l

re
gi

st
er

s
(d

at
a)

 re
gi

st
er

s
G

en
er

al
 p

ur
po

se

…

Code

High
addresses

Heap

Abstract Register Machine

92

Global Variables

Stack

Low
addresses

CPU Main Memory

(d
at

a)
 re

gi
st

er
s

G
en

er
al

 p
ur

po
se

Code

High
addresses

Register 00

Register 01

Register xx

…

Register PC

Co
nt

ro
l

re
gi

st
er

s

……
Register Stack

Intro: Functions Example
int SimpleFn(int z) {

int x, y;
x = x * y * z;
return x;

}

void main() {
int w;
w = SimpleFunction(137);

}

93

_SimpleFn:
_t0 = x * y;
_t1 = _t0 * z;
x = _t1;
Push x;
Return;

main:
_t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;

What Can We Do with Procedures?

• Declarations & Definitions
• Call & Return
• Jumping out of procedures
• Passing & Returning procedures as

parameters

94

Design Decisions

• Scoping rules
– Static scoping vs. dynamic scoping

• Caller/callee conventions
– Parameters
– Who saves register values?

• Allocating space for local variables

95

Static (lexical) Scoping

96

main ()
{

int a = 0 ;
int b = 0 ;
{

int b = 1 ;
{

int a = 2 ;
printf (“%d %d\n”, a, b)

}
{

int b = 3 ;
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}

B0
B1

B3B3

B2

Declaration Scopes

a=0 B0,B1,B3

b=0 B0

b=1 B1,B2

a=2 B2

b=3 B3

a name refers to
its (closest)

enclosing scope

known at
compile time

Dynamic Scoping

• Each identifier is associated with a global stack of
bindings

• When entering scope where identifier is declared
– push declaration on identifier stack

• When exiting scope where identifier is declared
– pop identifier stack

• Evaluating the identifier in any context binds to
the current top of stack

• Determined at runtime

97

Example

• What value is returned from main?
– Static scoping?
– Dynamic scoping?

98

int x = 42;

int f() { return x; }
int g() { int x = 1; return f(); }
int main() { return g(); }

Why do we care?

• We need to generate code to access variables

• Static scoping
– Identifier binding is known at compile time
– “Address” of the variable is known at compile time
– Assigning addresses to variables is part of code

generation
– No runtime errors of “access to undefined variable”
– Can check types of variables

99

Variable addresses for static scoping: first attempt

100

int x = 42;

int f() { return x; }
int g() { int x = 1; return f(); }
int main() { return g(); }

identifier address

x (global) 0x42

x (inside g) 0x73

Variable addresses for static scoping: first attempt

101

int a [11] ;

void quicksort(int m, int n) {
int i;
if (n > m) {
i = partition(m, n);
quicksort (m, i-1) ;
quicksort (i+1, n) ;

}

main() {
...
quicksort (1, 9) ;
}

what is the address
of the variable “i” in

the procedure
quicksort?

Compile-Time Information on Variables
• Name
• Type
• Scope

– when is it recognized

• Duration
– Until when does its value exist

• Size
– How many bytes are required at runtime

• Address
– Fixed
– Relative
– Dynamic 102

Activation Record (Stack Frames)

• separate space for each procedure invocation

• managed at runtime
– code for managing it generated by the compiler

• desired properties
– efficient allocation and deallocation

• procedures are called frequently
– variable size

• different procedures may require different memory sizes

103

Semi-Abstract Register Machine

104

Global Variables

Stack

Heap

High addresses

Low addresses

CPU Main Memory

Register 00

Register 01

Register xx

…

Register PC

Co
nt

ro
l

re
gi

st
er

s
(d

at
a)

 re
gi

st
er

s
G

en
er

al
 p

ur
po

se

…

ebp

esp
…re

gi
st

er
s

St
ac

k

End of lesson 7

105

Runtime Stack

• Stack of activation records
• Call = push new activation record
• Return = pop activation record
• Only one “active” activation record – top of

stack
• How do we handle recursion?

107

Activation Record (frame)

108

parameter k

parameter 1

return information

lexical pointer

dynamic link

registers & misc

local variables
temporaries

next frame would be here

…

administrative
part

high
addresses

low
addresses

frame (base)
pointer

stack
pointer

incoming
parameters

stack
grows
down

Runtime Stack
• SP – stack pointer

– top of current frame
• FP – frame pointer

– base of current frame
– Sometimes called BP

(base pointer)
– Usually points to a “fixed” offset

from the “start” of the frame

109

Current
frame

… …

Previous
frame

SP

FP

stack
grows
down

Code Blocks

• Programming language provides code
blocks
void foo()
{

int x = 8 ; y=9;//1
{ int x = y * y ;//2 }
{ int x = y * 7 ;//3}

x = y + 1;
}

110

adminstrative

x1

y1

x2

x3

…

L-Values of Local Variables

• The offset in the stack is known at compile
time

• L-val(x) = FP+offset(x)
• x = 5 Þ Load_Constant 5, R3

Store R3, offset(x)(FP)

111

Pentium Runtime Stack

112

Pentium stack registers

Pentium stack and call/ret instructions

Register Usage

ESP Stack pointer

EBP Base pointer

Instruction Usage

push, pusha,… push on runtime stack

pop,popa,… Base pointer

call transfer control to called routine

return transfer control back to caller

Accessing Stack Variables

• Use offset from FP (%ebp)
– Remember: stack grows

downwards
• Above FP = parameters
• Below FP = locals
• Examples

– %ebp + 4 = return address
– %ebp + 8 = first parameter
– %ebp – 4 = first local

113

… …

SP

FP

Return address

Return address

Param n
…

param1

Local 1
…

Local n

Previous fp

Param n
…

param1FP+8

FP-4

Factorial – fact(int n)

114

fact:
pushl %ebp # save ebp
movl %esp,%ebp # ebp=esp
pushl %ebx # save ebx
movl 8(%ebp),%ebx # ebx = n
cmpl $1,%ebx # n = 1 ?
jle .lresult # then done
leal -1(%ebx),%eax # eax = n-1
pushl %eax #
call fact # fact(n-1)
imull %ebx,%eax # eax=retv*n
jmp .lreturn #
.lresult:
movl $1,%eax # retv
.lreturn:
movl -4(%ebp),%ebx # restore ebx
movl %ebp,%esp # restore esp
popl %ebp # restore ebp

ESP

EBP

Return address

Return address

old %ebx

Previous fp

nEBP+8

EBP-4 old %ebp

old %eax

(stack in intermediate point)

(disclaimer: real compiler can do better than that)

Call Sequences

• The processor does not save the content of
registers on procedure calls

• So who will?
– Caller saves and restores registers
– Callee saves and restores registers
– But can also have both save/restore some

registers

115

Call Sequences

116

call

c
a
l
l
e
r

c
a
l
l
e
e

return

c
a
l
l
e
r

Caller push code

Callee push code

(prologue)

Callee pop code

(epilogue)

Caller pop code

Push caller-save registers
Push actual parameters (in reverse order)

push return address (+ other admin info)
Jump to call address

Push current base-pointer
bp = sp

Push local variables
Push callee-save registers

Pop callee-save registers
Pop callee activation record

Pop old base-pointer

pop return address
Jump to address

Pop return value + parameters
Pop caller-save registers

…

…

“To Callee-save or to Caller-save?”

• Callee-saved registers need only be saved
when callee modifies their value

• Some heuristics and conventions are
followed

117

Caller-Save and Callee-Save Registers
• Callee-Save Registers

– Saved by the callee before modification
– Values are automatically preserved across calls

• Caller-Save Registers
– Saved (if needed) by the caller before calls
– Values are not automatically preserved across calls

• Usually the architecture defines caller-save and callee-
save registers

• Separate compilation
• Interoperability between code produced by different

compilers/languages
• But compiler writers decide when to use caller/callee

registers 118

Callee-Save Registers
• Saved by the callee before modification
• Usually at procedure prolog
• Restored at procedure epilog
• Hardware support may be available
• Values are automatically preserved across calls

120

Caller-Save Registers
• Saved by the caller before calls when

needed
• Values are not automatically preserved

across calls

122

Parameter Passing
• 1960s

– In memory
• No recursion is allowed

• 1970s
– In stack

• 1980s
– In registers
– First k parameters are passed in registers (k=4 or k=6)
– Where is time saved?

123

• Most procedures are leaf procedures
• Interprocedural register allocation
• Many of the registers may be dead before another invocation
• Register windows are allocated in some architectures per call (e.g., sun Sparc)

Activation Records &
Language Design

124

Compile-Time Information on Variables
• Name, type, size
• Address kind

– Fixed (global)
– Relative (local)
– Dynamic (heap)

• Scope
– when is it recognized

• Duration
– Until when does its value exist

125

Scoping

• What value is returned from main?
• Static scoping?
• Dynamic scoping?

int x = 42;

int f() { return x; }
int g() { int x = 1; return f(); }
int main() { return g(); }

126

Nested Procedures

• For example – Pascal
• Any routine can have sub-routines
• Any sub-routine can access anything that is

defined in its containing scope or inside the
sub-routine itself
– “non-local” variables

127

Example: Nested Procedures
program p(){
int x;
procedure a(){

int y;
procedure b(){ … c() … };
procedure c(){
int z;
procedure d(){
y := x + z

};
… b() … d() …

}
… a() … c() …

}
a()

} 128

Possible call sequence:
p d a d a d c d b d c d d

what are the addresses
of variables “x,” “y” and

“z” in procedure d?

Nested Procedures
• can call a sibling, ancestor
• when “c” uses (non-local)

variables from “a”, which
instance of “a” is it?

• how do you find the right
activation record at runtime?

129

a

b

P

c c

d

a

Possible call sequence:
p d a d a d c d b d c d d

Nested Procedures
• goal: find the closest routine in

the stack from a given nesting
level

• if we reached the same routine
in a sequence of calls

– routine of level k uses variables of
the same nesting level, it uses its
own variables

– if it uses variables of nesting level
j < k then it must be the last
routine called at level j

• If a procedure is last at level j on
the stack, then it must be
ancestor of the current routine

130

Possible call sequence:
p d a d a d c d b d c d d

a

b

P

c c

d

a

Nested Procedures

• problem: a routine may need to access variables of
another routine that contains it statically

• solution: lexical pointer (a.k.a. access link) in the
activation record

• lexical pointer points to the last activation record of
the nesting level above it
– in our example, lexical pointer of d points to activation

records of c
• lexical pointers created at runtime
• number of links to be traversed is known at compile

time

131

Lexical Pointers

132

a

a

c

b

c

d

y

y

z

z

Possible call sequence:
p d a d a d c d b d c d d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){
y := x + z

};

… b() … d() …
}
… a() … c() …

}
a()

}

Lexical Pointers

133

a

a

c

b

c

d

y

y

z

z

Possible call sequence:
p d a d a d c d b d c d d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){
y := x + z

};

… b() … d() …
}
… a() … c() …

}
a()

} invokes
nested in

Activation Records: Remarks

134

Stack Frames
• Allocate a separate space for every procedure incarnation
• Relative addresses
• Provide a simple mean to achieve modularity
• Supports separate code generation of procedures
• Naturally supports recursion
• Efficient memory allocation policy

– Low overhead
– Hardware support may be available

• LIFO policy
• Not a pure stack

– Non local references
– Updated using arithmetic

135

Non-Local goto in C syntax

136

Non-local gotos in C

• setjmp remembers the current location and
the stack frame

• longjmp jumps to the current location
(popping many activation records)

137

Non-Local Transfer of Control in C

138

Variable Length Frame Size
• C allows allocating objects of unbounded

size in the stack
void p() {

int i;
char *p;
scanf(“%d”, &i);
p = (char *) alloca(i*sizeof(int));

}

• Some versions of Pascal allows conformant
array value parameters

139

Limitations

• The compiler may be forced to store a
value on a stack instead of registers

• The stack may not suffice to handle some
language features

140

Frame-Resident Variables
• A variable x cannot be stored in register when:

– x is passed by reference
– Address of x is taken (&x)
– is addressed via pointer arithmetic on the stack-frame
– x is accessed from a nested procedure
– The value is too big to fit into a single register
– The variable is an array
– The register of x is needed for other purposes
– Too many local variables

• An escape variable:
– Passed by reference
– Address is taken
– Addressed via pointer arithmetic on the stack-frame
– Accessed from a nested procedure

142

The Frames in Different Architectures

Pentium MIPS Sparc

InFrame(8) InFrame(0) InFrame(68)

InFrame(12) InReg(X157) InReg(X157)

InFrame(16) InReg(X158) InReg(X158)

M[sp+0]¬fp
fp ¬sp
sp ¬sp-K

sp¬sp-K

M[sp+K+0]¬r2

X157 ¬r4

X158 ¬r5

save %sp, -K, %sp

M[fp+68]¬i0
X157¬i1
X158¬i2

143

g(x, y, z) where x escapes

x

y

z

View

Change

Limitations of Stack Frames
• A local variable of P cannot be stored in the activation record of P if

its duration exceeds the duration of P
• Example 1: Static variables in C

(own variables in Algol)
void p(int x)
{

static int y = 6 ;
y += x;

}

• Example 2: Features of the C language
int * f()
{ int x ;

return &x ;
}

• Example 3: Dynamic allocation
int * f() { return (int *)
malloc(sizeof(int)); }

144

Compiler Implementation

• Hide machine dependent parts
• Hide language dependent part
• Use special modules

145

Basic Compiler Phases

146

Source program (string)

.EXE

lexical analysis

syntax analysis

semantic analysis

Code generation

Assembler/Linker

Tokens

Abstract syntax tree

Assembly

Frame managerControl Flow Graph

Hidden in the frame ADT

• Word size
• The location of the formals
• Frame resident variables
• Machine instructions to implement “shift-

of-view” (prologue/epilogue)
• The number of locals “allocated” so far
• The label in which the machine code starts

147

Activation Records: Summary

• compile time memory management for
procedure data

• works well for data with well-scoped
lifetime
– deallocation when procedure returns

148

