
Compilation
0368-3133
Lecture 10

Memory Management

Noam Rinetzky

1

AS
T

+
Sy

m
. T

ab
.

Stages of compilation
Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

Context
Analysis

Portable/Retarg
etable code
generation

Target code

(executable)

As
se

m
bl

y

IRTe
xt

To
ke

n
st

re
am

AS
T

Code
Generation

Compilation è Execution

AS
T

+
Sy

m
. T

ab
.

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

Context
Analysis

Portable/Retarg
etable code
generation

Target code

(executable)

IRTe
xt

To
ke

n
st

re
am

AS
T

Code
Generation

Li
nk

er

As
se

m
bl

er

Lo
ad

er

Sy
m

bo
lic

 A
dd

r

O
bj

ec
t F

ile

Ex
ec

ut
ab

le
 F

ile

im
ag

e

Executing
program

Ru
nt

im
e

Sy
st

em

Runtime Environment

§ Mediates between the OS and the programming language
§ Hides details of the machine from the programmer

§ Ranges from simple support functions all the way to a full-fledged
virtual machine

§ Handles common tasks
§ Runtime stack (activation records)
§ Memory management
§ Dynamic optimization
§ Debugging
§ …

4

Where do we allocate data?

§ Activation records
§ Lifetime of allocated data limited by procedure lifetime
§ Stack frame deallocated (popped) when procedure return

§ Dynamic memory allocation on the heap

5

Memory Layout

stack grows down
(towards lower addresses)

heap grows up
(towards higher

addresses)

heap

stack

code

static data

6

Alignment

§ Typically, can only access memory at aligned
addresses
§ Either 4-bytes or 8-bytes

§ What happens if you allocate data of size 5 bytes?
§ Padding – the space until the next aligned addresses is

kept empty
§ (side note: x86, is more complicated, as usual, and also

allows unaligned accesses, but not recommended)

7

Allocating memory

§ In C - malloc
§ void *malloc(size_t size)

§ Why does malloc return void* ?
§ It just allocates a chunk of memory, without regard to its

type

§ How does malloc guarantee alignment?
§ After all, you don’t know what type it is allocating for
§ It has to align for the largest primitive type
§ In practice optimized for 8 byte alignment (glibc-2.17)

8

Memory Management

§ Manual memory management
§ Automatic memory management

9

Manual memory management

§ malloc
§ free

a = malloc(…) ;
// do something with a
free(a);

10

malloc

§ where is malloc implemented?
§ how does it work?

11

§ A data structure records the location and size of free
cells of memory.

§ The allocator considers each free cell in turn, and
according to some policy, chooses one to allocate.

§ Three basic types of free-list allocation:
§ First-fit
§ Next-fit
§ Best-fit

Free-list Allocation

Memory chunks

13

Free list

14

First-Fit

150KB 100KB 170KB 300KB 50KB

Allocated Free

120KB allocation
request

30KB 100KB 170KB 300KB 50KB

30KB 100KB 170KB 300KB 50KB

50KB allocation
request

30KB 50KB 170KB 300KB 50KB

First-Fit

30KB 50KB 170KB 300KB 50KB

200KB allocation
request

30KB 50KB 170KB 100KB 50KB

First-Fit

§ Dispersal of free memory across a possibly large number of
small free cells.

§ Negative effects:
§ Can prevent allocation from succeeding
§ May cause a program to use more address space, more resident

pages and more cache lines.
§ Fragmentation is impractical to avoid:
§ Usually the allocator cannot know what the future request

sequence will be.
§ Even given a known request sequence, doing an optimal

allocation is NP-hard.
§ Usually There is a trade-off between allocation speed and

fragmentation.

Fragmentation

§ Idea – use multiple free-list whose members are
segregated by size in order to speed allocation.

§ Usually a fixed number k of size values s0 <	s1	<	…	<	sk-1
§ k+1	free lists f0,…,fk
§ For a free cell, b, on list fi,

size b = 𝑠2 ∀ 1 ≤ 𝑖 ≤ 𝑘 − 1
size(b)	>	sk-1	if	i=k

§ When requesting a cell of size b≤sk-1, the allocator rounds
the request size up to the smallest si such that b ≤si.

§ Si is called a size class

Segregated-fits Allocation

SegregatedFitAllocate(j):

result ← remove(freeLists[j])

if result = null
large ← allocateBlock()

if large = null
return null

initialize(large, sizes[j])

result ← remove(freeList[j])

return result

§ List fk, for cells larger than sk, is organized to use one of the
basic single-list algorithms.

§ Per-cell overheads for large cell are a bit higher but in total it
is negligible.

§ The main advantage: for size classes other than sk, allocation
typically requires constant time.

Segregated-fits Allocation

fk-1

fk

f1

f0

s0

s1

sk-1

>sk-1 >sk-1

Runtime support for MM

§ C’s standard library provides basic memory
management
§ Gets memory pages from the OS
§ Maintains inventory of free memory cells

§ mmap(), brk()

22

free

§ Free too late – waste memory (memory leak)
§ Free too early – dangling pointers / crashes
§ Free twice – error

23

When can we free an object?

a = malloc(…) ;
b = a;
// free (a); ?
c = malloc (…);
if (b == c)

printf(“unexpected equality”);

Cannot free an object if it has a reference with a future use!

24

When can free x be inserted after p?

p
cannot free x

x references an object l

some reference to l is used

On all execution paths after p there are no uses of references to the object
referenced by x è inserting free x after p is valid

25

Automatic Memory Management

§ automatically free memory when it is no longer
needed

§ not limited to OO languages
§ prevalent in OO languages such as Java
§ also in functional languages

26

Garbage collection

§ approximate reasoning about object liveness
§ use reachability to approximate liveness
§ assume reachable objects are live
§ non-reachable objects are dead

27

Garbage Collection – Classical Techniques

§ reference counting
§ mark and sweep
§ copying

28

GC using Reference Counting

§ add a reference-count field to every object
§ how many references point to it

§ when (rc==0) the object is non reachable
§ non reachable => dead
§ can be collected (deallocated)

29

Managing Reference Counts
§ Each object has a reference count o.RC
§ A newly allocated object o gets o.RC = 1
§ why?

§ write-barrier for reference updates
update(x,old,new) {

old.RC--;
new.RC++;
if (old.RC == 0) collect(old);

}

§ collect(old) will decrement RC for all children and recursively
collect objects whose RC reached 0.

30

Cycles!

§ cannot identify non-reachable cycles
§ reference counts for nodes on the cycle will never

decrement to 0

§ several approaches for dealing with cycles
§ ignore
§ periodically invoke a tracing algorithm to collect cycles
§ specialized algorithms for collecting cycles

31

The Mark-and-Sweep Algorithm
[McCarthy 1960]

§ Marking phase
§ mark roots
§ trace all objects transitively reachable from roots
§ mark every traversed object

§ Sweep phase
§ scan all objects in the heap
§ collect all unmarked objects

32

The Mark-Sweep algorithm

§ Traverse live objects & mark black.
§ White objects can be reclaimed.

stack
Heap

registers

Roots

Note!
This is not
the heap data
structure!

33

stack

Heap

The Mark-Sweep algorithm

§ Traverse live objects & mark black.
§ White objects can be reclaimed.

registers

Roots

34

Triggering

New(A)=
if free_list is empty

mark_sweep()
if free_list is empty

return (“out-of-memory”)
pointer = allocate(A)
return (pointer)

Garbage collection is triggered by allocation

35

Basic Algorithm

mark_sweep()=
for Ptr in Roots

mark(Ptr)
sweep()

mark(Obj)=
if mark_bit(Obj) == unmarked

mark_bit(Obj)=marked
for C in Children(Obj)

mark(C)

Sweep()=
p = Heap_bottom
while (p < Heap_top)

if (mark_bit(p) == unmarked) then free(p)
else mark_bit(p) = unmarked;
p=p+size(p)

36

Mark&Sweep Example

r1

r2

37

Mark&Sweep Example

r1

r2

38

Mark&Sweep in Depth

mark(Obj)=
if mark_bit(Obj) == unmarked

mark_bit(Obj)=marked
for C in Children(Obj)

mark(C)

§ How much memory does it consume?
§ Recursion depth?
§ Can you traverse the heap without worst-case O(n) stack?

§ Deutch-Schorr-Waite algorithm for graph marking without recursion
or stack (works by reversing pointers)

39

Properties of Mark & Sweep

• Most popular method today
• Simple
• Does not move objects, and so heap may fragment
• Complexity

J Mark phase: live objects (dominant phase)
L Sweep phase: heap size

• Termination: each pointer traversed once
• Engineering tricks used to improve performance

40

Mark-Compact

§ During the run objects are allocated and reclaimed
§ Gradually, the heap gets fragmented
§ When space is too fragmented to allocate, a compaction

algorithm is used
§ Move all live objects to the beginning of the heap and

update all pointers to reference the new locations
§ Compaction is very costly and we attempt to run it

infrequently, or only partially

41

The
Heap

Mark Compact

§ Important parameters of a compaction
algorithm
§ Keep order of objects?
§ Use extra space for compactor data structures?
§ How many heap passes?
§ Can it run in parallel on a multi-processor?

§ We do not elaborate in this intro

42

Copying GC

§ partition the heap into two parts
§ old space
§ new space

§ Copying GC algorithm
§ copy all reachable objects from old space to new space
§ swap roles of old/new space

43

Example

old new

Roots

A

D

C

B

E

44

Example

old new

Roots

A

D

C

B

E

A

C

45

Properties of Copying Collection

§ Compaction for free
§ Major disadvantage: half of the heap is not used
§ “Touch” only the live objects

§ Good when most objects are dead
§ Usually most new objects are dead

§ Some methods use a small space for young objects and
collect this space using copying garbage collection

46

A very simplistic comparison

CopyingMark & sweepReference
Counting

Live objectsMark = live objects
Sweep = Size of heap

Pointer updates +
dead objects

Complexity

Half heap
wasted

Bit/object + stack for
DFS

Count/object +
stack for DFS

Space
overhead

For freeAdditional workAdditional workCompaction

longlongMostly short Pause time

Cycle collectionMore issues

47

Parallel Mark&Sweep GC

r1

r2

Thread 1
Thread 2

Parallel GC: mutator is stopped, GC threads
run in parallel

48

Concurrent Mark&Sweep Example

r1

r2

X

X

Concurrent GC: mutator and GC threads run in
parallel, no need to stop mutator

49

Conservative GC

§ How do you track pointers in languages such as C ?
§ Any value can be cast down to a pointer

§ How can you follow pointers in a structure?

§ Easy – be conservative, consider anything that can
be a pointer to be a pointer

§ Practical! (e.g., Boehm collector)

50

Conservative GC

§ Can you implement a conservative copying GC?

§ What is the problem?

§ Cannot update pointers to the new address… you
don’t know whether the value is a pointer, cannot
update it

51

Modern Memory Management

§ Considers standard program properties
§ Handle parallelism
§ Stop the program and collect in parallel on all available

processors
§ Run collection concurrently with the program run

§ Cache consciousness
§ Real-time

52

Terminology Recap

§ Heap, objects

§ Allocate, free (deallocate, delete, reclaim)

§ Reachable, live, dead, unreachable

§ Roots
§ Reference counting, mark and sweep, copying,

compaction, tracing algorithms
§ Fragmentation

53

