
Compilation
0368-3133
Lecture 11

Assemblers, linkers, loaders

Noam Rinetzky

1

What is a compiler?

“A compiler is a computer program that transforms
source code written in a programming language
(source language) into another language (target
language).

The most common reason for wanting to transform
source code is to create an executable program.”

--Wikipedia

2

AS
T

+
Sy

m
. T

ab
.

Stages of compilation
Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

Context
Analysis

Portable/Retarg
etable code
generation

Target code

(executable)

As
se

m
bl

y

IRTe
xt

To
ke

n
st

re
am

AS
T

Code
Generation

3

Compilation è Execution

AS
T

+
Sy

m
. T

ab
.

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

Context
Analysis

Portable/Retarg
etable code
generation

Target code

(executable)

IRTe
xt

To
ke

n
st

re
am

AS
T

Code
Generation

Li
nk

er

As
se

m
bl

er

Lo
ad

er

Sy
m

bo
lic

 A
dd

r

O
bj

ec
t F

ile

Ex
ec

ut
ab

le
 F

ile

im
ag

e

Executing
program

Ru
nt

im
e

Sy
st

em

4

Program Runtime State

Code

Static
Data

Stack

Heap

Registers 0x11000

0x22000

0x33000

0x99000

G, extern_G

foo, extern_foo
printf

x

0x88000

6

Challenges

§ goto L2 è JMP 0x110FF
§ G:=3 è MOV 0x2200F, 0..011
§ foo() è CALL 0x130FF
§ extern_G := 1 è MOV 0x2400F, 0..01
§ extern_foo() è CALL 0x140FF
§ printf() è CALL 0x150FF

§ x:=2 è MOV FP+32, 0…010
§ goto L2 è JMP [PC +] 0x000FF

Code

Static
Data
Stack

Heap

0x11000

0x22000

0x33000

0x99000

G, extern_G

foo, extern_foo
printf

x

0x88000

7

Assembly è Image

Assembler

Compiler

Linker

Loader

Source program

Assembly lang. program (.s)

Machine lang. Module (.o): program (+library) modules

Executable (“.exe”):

Image (in memory):

“compilation” time

“execution” time
Libraries (.o)

(dynamic loading) 8

Assembly è Image

Linker

Loader

Assembler

Compiler

Source file (e.g., utils)

Assembly (.s)

Executable (“.elf”)

Image (in memory):

Assembler

Compiler

Source file (e.g., main)

Assembly (.s)

Assembler

Compiler

library

Assembly (.s)

Object (.o)Object (.o) Object (.o)

9

Outline

§ Assembly
§ Linker / Link editor
§ Loader

§ Static linking
§ Dynamic linking

10

Assembler
§ Converts (symbolic) assembler to binary (object) code

§ Object files contain a combination of machine instructions, data, and
information needed to place instructions properly in memory

§ Yet another(simple) compiler
§ One-to one translation

§ Converts constants to machine repr. (3è0…011)
§ Resolve internal references
§ Records info for code & data relocation

11

Object File Format

§ Header: Admin info + “file map”
§ Text seg.: machine instruction
§ Data seg.: (Initialized) data in machine format
§ Relocation info: instructions and data that depend

on absolute addresses
§ Symbol table: “exported” references + unresolved

references

Header Text
Segment

Data
Segment

Relocation
Information

Symbol
Table

Debugging
Information

12

Handling Internal Addresses

13

Resolving Internal Addresses

§ Two scans of the code
§ Construct a table label ® address
§ Replace labels with values

§ One scan of the code (Backpatching)
§ Simultaneously construct the table and resolve symbolic

addresses
§ Maintains list of unresolved labels

§ Useful beyond assemblers

14

Backpatching

15

Handling External Addresses

§ Record symbol table in “external” table
§ Exported (defined) symbols

§ G, foo()

§ Imported (required) symbols
§ Extern_G, extern_bar(), printf()

§ Relocation bits
§ Mark instructions that depend on absolute (fixed)

addresses
§ Instructions using globals

16

Example

External references
resolved by the
Linker using the
relocation info.

17

Example of External Symbol Table

18

Assembler Summary

§ Converts symbolic machine code to binary
§ addl %edx, %ecx Þ 000 0001 11 010 001 = 01 D1 (Hex)

§ Format conversions
§ 3 è 0x0..011 or 0x000000110…0

§ Resolves internal addresses

§ Some assemblers support overloading
§ Different opcodes based on types

19

Linker

§ Merges object files to an executable
§ Enables separate compilation

§ Combine memory layouts of object modules
§ Links program calls to library routines

§ printf(), malloc()

§ Relocates instructions by adjusting absolute references
§ Resolves references among files

20

Linker

Code
Segment 1

Data

Segment 1

Code
Segment 2

Data

Segment 2

0

200

100

0

450

300

120

ext_bar()

380

ext_bar 150
zoo 180

Data

Segment 1

Code
Segment 2

Data

Segment 2

0

400

100

500

420

580

ext_bar 250
zoo 280

650

Code
Segment 1

foo foo

21

Relocation information

• Information needed to change addresses

§ Positions in the code which contains addresses
§ Data
§ Code

§ Two implementations
§ Bitmap
§ Linked-lists

22

External References

§ The code may include references to external
names (identifiers)
§ Library calls
§ External data

§ Stored in external symbol table

23

Example of External Symbol Table

24

Example

25

Linker (Summary)

§ Merge several object files
§ Resolve external references
§ Relocate addresses

§ User mode

§ Provided by the operating system
§ But can be specific for the compiler

§ More secure code
§ Better error diagnosis

26

Linker Design Issues

§ Merges
§ Code segments
§ Data segments
§ Relocation bit maps
§ External symbol tables

§ Retain information about static length
§ Real life complications

§ Aggregate initializations
§ Object file formats
§ Large library
§ Efficient search procedures

27

Loader

§ Brings an executable file from disk into memory and starts it
running
§ Read executable file’s header to determine the size of text and data

segments
§ Create a new address space for the program
§ Copies instructions and data into memory
§ Copies arguments passed to the program on the stack

§ Initializes the machine registers including the stack ptr
§ Jumps to a startup routine that copies the program’s arguments

from the stack to registers and calls the program’s main routine

28

Program Loading

Registers

Loader Image

Code
Segment 2

Data

Segment 2

0

400

100

500

420

580

ext_bar 250
zoo 280

650

Code
Segment 1

Data

Segment 1

Code
Segment

Static
Data

Stack

Heap

Program Executable

foo

29

Loader (Summary)

§ Initializes the runtime state

§ Part of the operating system
§ Privileged mode

§ Does not depend on the programming language

§ “Invisible activation record”

30

Static Linking (Recap)

§ Assembler generates binary code
§ Unresolved addresses
§ Relocatable addresses

§ Linker generates executable code
§ Loader generates runtime states (images)

31

Dynamic Linking

§ Why dynamic linking?
§ Shared libraries

§ Save space
§ Consistency

§ Dynamic loading
§ Load on demand

32

What’s the challenge?

Assembler

Compiler

Linker

Loader

Source program

Assembly lang. program (.s)

Machine lang. Module (.o): program (+library) modules

Executable (“.exe”):

Image (in memory):

“compilation” time

“execution” time
Libraries (.o)

(dynamic linking) 33

Position-Independent Code (PIC)

§ Code which does not need to be changed regardless of the
address in which it is loaded
§ Enable loading the same object file at different addresses

§ Thus, shared libraries and dynamic loading

§ “Good” instructions for PIC: use relative addresses
§ relative jumps
§ reference to activation records

§ “Bad” instructions for : use fixed addresses
§ Accessing global and static data
§ Procedure calls

§ Where are the library procedures located?
34

How?

“All problems in computer science can be solved by
another level of indirection"

Butler Lampson / David Wheeler

35

PIC: The Main Idea

§ Keep the global data in a table
§ Refer to all data relative to the designated register

36

Per-Routine Pointer Table

§ Record for every routine in a table

&foo

&D.S. 1

PT ext_bar

&ext_bar

&D.S. 2

&zoo

&D.S. 2

PT ext_bar

&D.S. 2

foo

37

Per-Routine Pointer Table

§ Record for every routine in a table

Data

Segment 1

Code
Segment 2

Data

Segment 2 580

ext_bar
zoo

Code
Segment 1

foo

&foo

&D.S. 1

PT ext_bar

&ext_bar

&D.S. 2

&zoo

&D.S. 2

PT ext_bar

&D.S. 2 ext_g

foo

38

Per-Routine Pointer Table
§ Record for every routine in a table
§ Record used as a address to procedure

Caller:
1. Load Pointer table address

into RP
2. Load Code address from

0(RP) into RC
3. Call via RC

Callee:
1. RP points to pointer table
2. Table has addresses of pointer table

for sub-procedures

Other data

RP
.func

39

PIC: The Main Idea

§ Keep the global data in a table
§ Refer to all data relative to the designated register

§ Efficiency: use a register to point to the beginning
of the table
§ Troublesome in CISC machines

40

ELF-Position Independent
Code

§ Executable and Linkable code Format
§ Introduced in Unix System V

§ Observation
§ Executable consists of code followed by data
§ The offset of the data from the beginning of the code is known at

compile-time

GOT
(Global Offset Table)Data

Segment

Code
Segment

XX0000

call L2
L2:

popl %ebx
addl $_GOT[.-..L2], %ebx

41

ELF: Accessing global data

42

ELF: Calling Procedures
(before 1st call)

43

ELF: Calling Procedures
(after 1st call)

44

PIC benefits and costs
§ Enable loading w/o

relocation
§ Share memory locations

among processes

§ Data segment may need to
be reloaded

§ GOT can be large
§ More runtime overhead
§ More space overhead

45

Shared Libraries

§ Heavily used libraries
§ Significant code space

§ 5-10 Mega for print
§ Significant disk space
§ Significant memory space

§ Can be saved by sharing the same code
§ Enforce consistency
§ But introduces some overhead

§ Can be implemented either with static or dynamic loading

46

Content of ELF file

Call
PLT

GOT

Te
xt

Da
ta

Routine
PLT

GOT

Te
xt

Da
ta

Program Libraries

47

Consistency

§ How to guarantee that the code/library used the
“right” library version

48

Loading Dynamically Linked
Programs
§ Start the dynamic linker
§ Find the libraries
§ Initialization
§ Resolve symbols
§ GOT

§ Typically small

§ Library specific initialization

§ Lazy procedure linkage

49

Microsoft Dynamic Libraries (DLL)

§ Similar to ELF
§ Somewhat simpler
§ Require compiler support to address dynamic

libraries
§ Programs and DLL are Portable Executable (PE)
§ Each application has it own address
§ Supports lazy bindings

50

Dynamic Linking Approaches

§ Unix/ELF uses a single name space and MS/PE uses
several name spaces

§ ELF executable lists the names of symbols and
libraries it needs

§ PE file lists the libraries to import from other
libraries

§ ELF is more flexible
§ PE is more efficient

51

Costs of dynamic loading

§ Load time relocation of libraries
§ Load time resolution of libraries and executable
§ Overhead from PIC prolog
§ Overhead from indirect addressing
§ Reserved registers

52

Summary

§ Code generation yields code which is still far from
executable
§ Delegate to existing assembler

§ Assembler translates symbolic instructions into
binary and creates relocation bits

§ Linker creates executable from several files
produced by the assembly

§ Loader creates an image from executable

53

