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What is a compiler?

“A compiler is a computer program that transforms 
source code written in a programming language 
(source language) into another language (target 
language).

The most common reason for wanting to transform 
source code is to create an executable program.”

--Wikipedia
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Compilation è Execution
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Program Runtime State
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Challenges

§ goto L2 è JMP 0x110FF
§ G:=3 è MOV 0x2200F, 0..011
§ foo() è CALL 0x130FF
§ extern_G := 1 è MOV 0x2400F, 0..01
§ extern_foo() è CALL 0x140FF
§ printf() è CALL  0x150FF

§ x:=2 è MOV FP+32, 0…010
§ goto L2 è JMP [PC +] 0x000FF
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Assembly è Image
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Assembly è Image
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Outline

§ Assembly
§ Linker / Link editor
§ Loader

§ Static linking
§ Dynamic linking
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Assembler
§ Converts (symbolic) assembler to binary (object) code

§ Object files contain a combination of machine  instructions, data, and 
information needed to place instructions properly in memory

§ Yet another(simple) compiler
§ One-to one translation

§ Converts constants to machine repr. (3è0…011)
§ Resolve internal references
§ Records info for code & data relocation
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Object File Format

§ Header: Admin info + “file map”
§ Text seg.: machine instruction
§ Data seg.: (Initialized) data in machine format
§ Relocation info: instructions and data that depend 

on absolute addresses
§ Symbol table: “exported” references + unresolved 

references

Header Text 
Segment

Data
Segment

Relocation 
Information

Symbol 
Table

Debugging 
Information
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Handling Internal Addresses

13



Resolving Internal Addresses

§ Two scans of the code
§ Construct a table label ® address
§ Replace labels with values

§ One scan of the code (Backpatching) 
§ Simultaneously construct the table and resolve symbolic 

addresses
§ Maintains list of unresolved labels

§ Useful beyond assemblers
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Backpatching
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Handling External Addresses

§ Record symbol table in “external” table
§ Exported (defined) symbols

§ G, foo()

§ Imported (required) symbols
§ Extern_G, extern_bar(), printf()

§ Relocation bits
§ Mark instructions that depend on absolute (fixed) 

addresses 
§ Instructions using globals
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Example

External references 
resolved by the 
Linker using the 
relocation info.
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Example of External Symbol Table
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Assembler Summary

§ Converts symbolic machine code to binary
§ addl %edx, %ecx Þ 000 0001 11 010 001 = 01 D1 (Hex)

§ Format conversions
§ 3 è 0x0..011  or 0x000000110…0

§ Resolves internal addresses

§ Some assemblers support overloading
§ Different opcodes based on types
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Linker

§ Merges object files to an executable
§ Enables separate compilation

§ Combine memory layouts of object modules
§ Links program calls to library routines

§ printf(), malloc()

§ Relocates instructions by adjusting absolute references
§ Resolves references among files
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Linker
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Relocation information

• Information needed to change addresses

§ Positions in the code which contains addresses
§ Data
§ Code

§ Two implementations
§ Bitmap
§ Linked-lists

22



External References

§ The code may include references to external 
names (identifiers)
§ Library calls
§ External data

§ Stored in external symbol table
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Example of External Symbol Table
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Example
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Linker (Summary)

§ Merge several object files
§ Resolve external references
§ Relocate addresses

§ User mode

§ Provided by the operating system
§ But can be specific for the compiler

§ More secure code
§ Better error diagnosis
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Linker Design Issues

§ Merges
§ Code segments
§ Data segments
§ Relocation bit maps
§ External symbol tables

§ Retain information about static length
§ Real life complications

§ Aggregate initializations 
§ Object file formats
§ Large library
§ Efficient search procedures
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Loader

§ Brings an executable file from disk into memory and starts it 
running 
§ Read executable file’s header to determine the size of text and data 

segments 
§ Create a new address space for the program
§ Copies instructions and data into memory
§ Copies arguments passed to the program on the stack 

§ Initializes the machine registers including the stack ptr
§ Jumps to a startup routine that copies the program’s arguments 

from the stack to registers and calls the program’s main routine 
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Program Loading
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Loader (Summary)

§ Initializes the runtime state

§ Part of the operating system
§ Privileged mode

§ Does not depend on the programming language

§ “Invisible activation record”
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Static Linking (Recap)

§ Assembler generates binary code 
§ Unresolved addresses
§ Relocatable addresses

§ Linker generates executable code
§ Loader generates runtime states (images)
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Dynamic Linking

§ Why dynamic linking?
§ Shared libraries

§ Save space
§ Consistency

§ Dynamic loading
§ Load on demand

32



What’s the challenge?

Assembler

Compiler

Linker

Loader

Source program

Assembly lang. program (.s)

Machine lang. Module (.o): program (+library) modules 

Executable (“.exe”): 

Image (in memory): 

“compilation” time

“execution” time
Libraries (.o)
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Position-Independent Code (PIC)

§ Code which does not need to be changed  regardless of the 
address in which it is loaded 
§ Enable loading the same object file at different addresses

§ Thus, shared libraries and dynamic loading

§ “Good” instructions for PIC: use relative addresses
§ relative jumps
§ reference to activation records

§ “Bad” instructions for : use fixed addresses
§ Accessing global and static data
§ Procedure calls

§ Where are the library procedures located? 
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How?

“All problems in computer science can be solved by 
another level of indirection" 

Butler Lampson / David Wheeler
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PIC: The Main Idea

§ Keep the global data in a table
§ Refer to all data relative to the designated register
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Per-Routine Pointer Table

§ Record for every routine in a table

&foo

&D.S. 1

PT ext_bar

&ext_bar

&D.S. 2

&zoo

&D.S. 2

PT ext_bar

&D.S. 2

foo 
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Per-Routine Pointer Table

§ Record for every routine in a table
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Per-Routine Pointer Table
§ Record for every routine in a table
§ Record used as a address to procedure

Caller:
1. Load Pointer table address 

into RP
2. Load Code address from 

0(RP) into RC
3. Call via RC

Callee:
1. RP points to pointer table
2. Table has addresses of pointer table 

for sub-procedures

Other data

RP
.func
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PIC: The Main Idea

§ Keep the global data in a table
§ Refer to all data relative to the designated register

§ Efficiency: use a register to point to the beginning 
of the table
§ Troublesome in CISC machines
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ELF-Position Independent 
Code

§ Executable and Linkable code Format
§ Introduced in Unix System V

§ Observation
§ Executable consists of code followed by data
§ The offset of the data from the beginning of the code is known at 

compile-time

GOT
(Global Offset Table)Data

Segment

Code
Segment

XX0000

call L2
L2: 

popl %ebx
addl $_GOT[.-..L2], %ebx
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ELF: Accessing global data
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ELF: Calling Procedures 
(before 1st call)
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ELF: Calling Procedures 
(after 1st call)
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PIC benefits and costs
§ Enable loading w/o 

relocation
§ Share memory locations 

among processes

§ Data segment may need to 
be reloaded

§ GOT can be large
§ More runtime overhead
§ More space overhead 
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Shared Libraries

§ Heavily used libraries
§ Significant code space 

§ 5-10 Mega for print
§ Significant disk space
§ Significant memory space

§ Can be saved by sharing the same code
§ Enforce consistency
§ But introduces some overhead

§ Can be implemented either with static or dynamic loading
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Consistency

§ How to guarantee that the code/library used the 
“right” library version
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Loading Dynamically Linked 
Programs
§ Start the dynamic linker
§ Find the libraries
§ Initialization
§ Resolve symbols 
§ GOT

§ Typically small

§ Library specific initialization

§ Lazy procedure linkage

49



Microsoft Dynamic Libraries  (DLL)

§ Similar to ELF
§ Somewhat simpler
§ Require compiler support to address dynamic 

libraries
§ Programs and DLL are Portable Executable (PE)
§ Each application has it own address
§ Supports lazy bindings
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Dynamic Linking Approaches

§ Unix/ELF uses a single name space and MS/PE uses 
several name spaces

§ ELF executable lists the names of symbols and 
libraries it needs

§ PE file lists the libraries to import from other 
libraries

§ ELF is more flexible
§ PE is more efficient 
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Costs of dynamic loading

§ Load time relocation of libraries
§ Load time resolution of libraries and executable
§ Overhead from PIC prolog
§ Overhead from indirect addressing
§ Reserved registers
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Summary

§ Code generation yields code which is still far from 
executable
§ Delegate to existing assembler

§ Assembler translates symbolic instructions into 
binary and creates relocation bits

§ Linker creates executable from several files 
produced by the assembly

§ Loader creates an image from executable
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