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Program Analysis

• In order to optimize a program, the 
compiler has to be able to reason about the 
properties of that program

• An analysis is called sound if it never 
asserts an incorrect fact about a program

• All the analyses we will discuss in this class 
are sound
– (Why?)
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A formalism for IR optimization

• Every phase of the compiler uses some new 
abstraction:
– Scanning uses regular expressions
– Parsing uses CFGs
– Semantic analysis uses proof systems and symbol 

tables
– IR generation uses ASTs

• In optimization, we need a formalism that 
captures the structure of a program in a way 
amenable to optimization
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Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;
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Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;
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Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start
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Basic blocks

• A basic block is a sequence of IR instructions 
where
– There is exactly one spot where control enters the 

sequence, which must be at the start of the 
sequence

– There is exactly one spot where control leaves the 
sequence, which must be at the end of the 
sequence

• Informally, a sequence of instructions that 
always execute as a group
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Control-Flow Graphs

• A control-flow graph (CFG) is a graph of the 
basic blocks in a function

• The term CFG is overloaded – from here on 
out, we'll mean “control-flow graph” and not 
“context free grammar”

• Each edge from one basic block to another 
indicates that control can flow from the end of 
the first block to the start of the second block

• There is a dedicated node for the start and 
end of a function
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Types of optimizations

• An optimization is local if it works on just a 
single basic block

• An optimization is global if it works on an 
entire control-flow graph

• An optimization is interprocedural if it 
works across the control-flow graphs of 
multiple functions
– We won't talk about this in this course
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Local Optimizations
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Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Class Object {
method fn(int);

}

Explaining the program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Size of Object

Object Class

Class Object {
method fn(int);

}

For simplicity, ignore
Popping return value, 

parameters etc.

Explaining the program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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method fn(int);

}

Explaining the program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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}

Explaining the program



Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Points to ObjectC

Start of fn

Class Object {
method fn(int);

}

Explaining the program



Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b      
…
v2 = a op b      

• and the values of v1, a, and b have not changed 
between the assignments, rewrite the code as
v1 = a op b
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations
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Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b     [or:  v1 = a]
…
v2 = a op b     [or:  v2 = a] 

• and the values of v1, a, and b have not changed 
between the assignments, rewrite the code as
v1 = a op b     [or:  v1 = a] 
…
v2 = v1            

• Eliminates useless recalculation
• Paves the way for later optimizations
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Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation

• If we have a variable assignment
v1 = v2
then as long as v1 and v2 are not 
reassigned, we can rewrite expressions of 
the form
a = … v1 …
as
a = … v2 …
provided that such a rewrite is legal
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Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

31

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Is this transformation OK?
What do we need to know?



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

39

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Dead Code Elimination

• An assignment to a variable v is called dead
if the value of that assignment is never 
read anywhere

• Dead code elimination removes dead 
assignments from IR

• Determining whether an assignment is 
dead depends on what variable is being 
assigned to and when it's being assigned
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Dead Code Elimination

42

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;



Dead Code Elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);



Dead Code Elimination
Object x;
int a;
int b;
int c;

x = new 
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

values 
never 
read

values 
never 
read
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Dead Code Elimination
Object x;
int a;
int b;
int c;

x = new 
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;

*(_tmp1) = ObjectC;

_tmp4 = _tmp0 + b;
c = _tmp4;

_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
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Applying local optimizations

• The different optimizations we've seen so far all 
take care of just a small piece of the optimization

• Common subexpression elimination eliminates 
unnecessary statements

• Copy propagation helps identify dead code
• Dead code elimination removes statements that are 

no longer needed
• To get maximum effect, we may have to apply 

these optimizations numerous times
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Applying local optimizations 
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;
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Applying local optimizations 
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

Which optimization should we apply here?
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Applying local optimizations 
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Common sub-expression elimination

Which optimization should we apply here?

49



Applying local optimizations 
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Which optimization should we apply here?
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Applying local optimizations 
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which optimization should we apply here?

Copy propagation
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Applying local optimizations 
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which optimization should we apply here?
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Applying local optimizations 
example

b = a * a;
c = b;
d = b + b;
e = d;

Which optimization should we apply here?

Common sub-expression elimination (again)
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Other types of local 
optimizations

• Arithmetic Simplification
– Replace “hard” operations with easier ones
– e.g. rewrite x = 4 * a; as x = a << 2;

• Constant Folding
– Evaluate expressions at compile-time if they 

have a constant value.
– e.g. rewrite x = 4 * 5; as x = 20;
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Optimizations and analyses

• Most optimizations are only possible given 
some analysis of the program's behavior

• In order to implement an optimization, we 
will talk about the corresponding program 
analyses
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Available expressions

• Both common subexpression elimination and copy 
propagation depend on an analysis of the available 
expressions in a program

• An expression is called available if some variable in 
the program holds the value of that expression

• In common subexpression elimination, we replace 
an available expression by the variable holding its 
value

• In copy propagation, we replace the use of a 
variable by the available expression it holds
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Finding available expressions

• Initially, no expressions are available
• Whenever we execute a statement

a = b op c:
– Any expression holding a is invalidated
– The expression a = b op c becomes available

• Idea: Iterate across the basic block, beginning 
with the empty set of expressions and 
updating available expressions at each 
variable
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Available expressions example

58

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Common sub-expression elimination
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a = b + 2;

b = x;

d = a + b;

e = d;

d = b;

f = e;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Common sub-expression elimination
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a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Live variables

• The analysis corresponding to dead code 
elimination is called liveness analysis

• A variable is live at a point in a program if 
later in the program its value will be read 
before it is written to again

• Dead code elimination works by computing 
liveness for each variable, then eliminating 
assignments to dead variables

61



Computing live variables
• To know if a variable will be used at some point, 

we iterate across the statements in a basic block 
in reverse order

• Initially, some small set of values are known to be 
live (which ones depends on the particular 
program)

• When we see the statement a = b op c:
– Just before the statement, a is not alive, since its value 

is about to be overwritten
– Just before the statement, both b and c are alive, since 

we're about to read their values
– (what if we have a = a + b?) 62



Liveness analysisa = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d } - given

Which statements are dead?
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Dead Code Eliminationa = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }

Which statements are dead?
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Dead Code Eliminationa = b;

d = a + b;

e = d;

d = a;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }
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Liveness analysis IIa = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?
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Liveness analysis IIa = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?
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Dead code eliminationa = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?
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Dead code eliminationa = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

69



Liveness analysis IIIa = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which statements are dead?
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Dead code eliminationa = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which statements are dead?
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Dead code eliminationa = b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

72



Dead code eliminationa = b;

d = a;

73

If we further apply 
copy propagation 
this statement can 
be eliminated too



Formalizing local analyses

74

a = b + c

Output Value
Vout

Input Value
Vin

Vout = fa=b+c(Vin) 

Transfer Function



Available Expressions

75

a = b + c

Output Value
Vout

Input Value
Vin

Vout = (Vin \ {e | e contains a}) ∪ {a=b+c} 

Expressions of the forms
a=…        and       x=…a…



Live Variables

76

a = b + c

Output Value
Vout

Input Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout



Live Variables

77

a = b + c

Output Value
Vout

Input Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout



Information for a local analysis

• What direction are we going?
– Sometimes forward (available expressions)
– Sometimes backward (liveness analysis)

• How do we update information after 
processing a statement?
– What are the new semantics?
– What information do we know initially?

78



Formalizing local analyses

• Define an analysis of a basic block as a 
quadruple (D, V, F, I) where
– D is a direction (forwards or backwards)
– V is a set of values the program can have at any 

point
– F is a family of transfer functions defining the 

meaning of any expression as a function f : Và V
– I is the initial information at the top (or bottom) of 

a basic block

79



Available Expressions

• Direction: Forward
• Values: Sets of expressions assigned to variables
• Transfer functions: Given a set of variable 

assignments V and statement a = b + c:
– Remove from V any expression containing a as a 

subexpression
– Add to V the expression a = b + c
– Formally: Vout = (Vin \ {e | e contains a}) ∪ {a = b + c} 

• Initial value: Empty set of expressions

80



Liveness Analysis

• Direction: Backward
• Values: Sets of variables
• Transfer functions: Given a set of variable assignments V 

and statement a = b + c:
• Remove a from V (any previous value of a is now dead.)
• Add b and c to V (any previous value of b or c is now live.)
• Formally: Vin = (Vout \ {a}) ∪ {b,c}
• Initial value: Depends on semantics of language

– E.g., function arguments and return values (pushes)
– Result of local analysis of other blocks as part of a 

global analysis 81



Running local analyses

• Given an analysis (D, V, F, I) for a basic block
• Assume that D is “forward;” analogous for the 

reverse case
• Initially, set OUT[entry] to I
• For each statement s, in order:

– Set IN[s] to OUT[prev], where prev is the previous 
statement

– Set OUT[s] to fs(IN[s]), where fs is the transfer 
function for statement s

82



Global Optimizations

83



High-level goals

• Generalize analysis mechanism
– Reuse common ingredients for many analyses
– Reuse proofs of correctness

• Generalize from basic blocks to entire CFGs
– Go from local optimizations to global 

optimizations

84



Global analysis

• A global analysis is an analysis that works 
on a control-flow graph as a whole

• Substantially more powerful than a local 
analysis
– (Why?)

• Substantially more complicated than a local 
analysis
– (Why?)
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Local vs. global analysis
• Many of the optimizations from local analysis can still 

be applied globally
– Common sub-expression elimination
– Copy propagation
– Dead code elimination

• Certain optimizations are possible in global analysis that 
aren't possible locally:
– e.g. code motion: Moving code from one basic block into 

another to avoid computing values unnecessarily
• Example global optimizations:

– Global constant propagation
– Partial redundancy elimination

86



Loop invariant code motion example

87

while (t < 120) {
z = z + x - y;

}

w = x – y;
while (t < 120) {
z = z + w;

}

value of expression x – y is 
not changed by loop body



Why global analysis is hard

• Need to be able to handle multiple 
predecessors/successors for a basic block

• Need to be able to handle multiple paths 
through the control-flow graph, and may need 
to iterate multiple times to compute the final 
value (but the analysis still needs to 
terminate!)

• Need to be able to assign each basic block a 
reasonable default value for before we've 
analyzed it

88



Global dead code elimination

• Local dead code elimination needed to 
know what variables were live on exit from 
a basic block

• This information can only be computed as 
part of a global analysis

• How do we modify our liveness analysis to 
handle a CFG?

89



CFGs without loops

90Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry



CFGs without loops

91Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

?

Which variables may
be live on some
execution path?



CFGs without loops

92Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}



CFGs without loops

93Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry



CFGs without loops

94Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry



Major changes – part 1

• In a local analysis, each statement has 
exactly one predecessor

• In a global analysis, each statement may 
have multiple predecessors

• A global analysis must have some means of 
combining information from all 
predecessors of a basic block

95



CFGs without loops

96Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{b, c, d}

{c, d} Need to combine 
currently-
computed value 
with new value

Need to combine 
currently-
computed value 
with new value



CFGs without loops

97Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{c, d}



CFGs without loops

98Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}



Major changes – part 2

• In a local analysis, there is only one possible 
path through a basic block

• In a global analysis, there may be many paths 
through a CFG

• May need to recompute values multiple times 
as more information becomes available

• Need to be careful when doing this not to loop 
infinitely!
– (More on that later)

• Can order of computation affect result?
99



CFGs with loops
• Up to this point, we've considered loop-free CFGs, 

which have only finitely many possible paths
• When we add loops into the picture, this is no longer 

true
• Not all possible loops in a CFG can be realized in the 

actual program

100

IfZ x goto Top

x = 1;

Top:

x = 0;

x = 2;



CFGs with loops
• Up to this point, we've considered loop-free CFGs, 

which have only finitely many possible paths
• When we add loops into the picture, this is no longer 

true
• Not all possible loops in a CFG can be realized in the 

actual program
• Sound approximation: Assume that every possible 

path through the CFG corresponds to a valid execution
– Includes all realizable paths, but some additional paths as 

well
– May make our analysis less precise (but still sound)
– Makes the analysis feasible; we'll see how later

101



CFGs with loops

102Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;
IfZ ...

Entry

{a}

?



Major changes – part 3

• In a local analysis, there is always a  well 
defined “first” statement to begin 
processing

• In a global analysis with loops, every basic 
block might depend on every other basic 
block

• To fix this, we need to assign initial values 
to all of the blocks in the CFG
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CFGs with loops - initialization

104Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}



CFGs with loops - iteration

105Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

{a}



CFGs with loops - iteration

106Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}



CFGs with loops - iteration

107Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}



CFGs with loops - iteration

108Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}



CFGs with loops - iteration

109Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}



CFGs with loops - iteration

110Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs with loops - iteration

111Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs with loops - iteration

112Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs with loops - iteration

113Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs with loops - iteration

114Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs with loops - iteration

115Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs with loops - iteration

116Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs with loops - iteration

117Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



CFGs with loops - iteration

118Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



CFGs with loops - iteration

119Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



Summary of differences

• Need to be able to handle multiple 
predecessors/successors for a basic block

• Need to be able to handle multiple paths 
through the control-flow graph, and may need 
to iterate multiple times to compute the final 
value
– But the analysis still needs to terminate!

• Need to be able to assign each basic block a 
reasonable default value for before we've 
analyzed it
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Global liveness analysis

• Initially, set IN[s] = { } for each statement s
• Set IN[exit] to the set of variables known to be 

live on exit (language-specific knowledge)

• Repeat until no changes occur:

– For each statement s of the form a = b + c, in any 

order you'd like:

• Set OUT[s] to set union of IN[p] for each successor p of s
• Set IN[s] to (OUT[s] – a) ∪ {b, c}.

• Yet another fixed-point iteration!

121



Global liveness analysis

122

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2] ∪ IN[s3]

IN[s]=(UT[s] – {a}) ∪ {b, c}



Why does this work?
• To show correctness, we need to show that

– The algorithm eventually terminates, and
– When it terminates, it has a sound answer

• Termination argument:
– Once a variable is discovered to be live during some point of the 

analysis, it always stays live
– Only finitely many variables and finitely many places where a 

variable can become live
• Soundness argument (sketch):

– Each individual rule, applied to some set, correctly updates 
liveness in that set

– When computing the union of the set of live variables, a variable 
is only live if it was live on some path leaving the statement
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Abstract Interpretation

• Theoretical foundations of program 
analysis

• Cousot and Cousot 1977

• Abstract meaning of programs
– Executed at compile time 

124



Another view of local 
optimization

• In local optimization, we want to reason 
about some property of the runtime 
behavior of the program

• Could we run the program and just watch 
what happens?

• Idea: Redefine the semantics of our 
programming language to give us 
information about our analysis

125



Properties of local analysis

• The only way to find out what a program will 
actually do is to run it

• Problems:
– The program might not terminate
– The program might have some behavior we didn't 

see when we ran it on a particular input
• However, this is not a problem inside a basic 

block
– Basic blocks contain no loops
– There is only one path through the basic block
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Assigning new semantics

• Example: Available Expressions
• Redefine the statement a = b + c to mean 

“a now holds the value of b + c, and any 
variable holding the value a is now invalid”

• Run the program assuming these new 
semantics

• Treat the optimizer as an interpreter for 
these new semantics

127



Theory to the rescue
• Building up all of the machinery to design this 

analysis was tricky
• The key ideas, however, are mostly independent of 

the analysis:
– We need to be able to compute functions describing 

the behavior of each statement
– We need to be able to merge several subcomputations 

together
– We need an initial value for all of the basic blocks

• There is a beautiful formalism that captures many 
of these properties
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Join semilattices
• A join semilattice is a ordering defined on a set of 

elements
• Any two elements have some join that is the smallest 

element larger than both elements
• There is a unique bottom element, which is smaller 

than all other elements
• Intuitively:

– The join of two elements represents combining information 
from two elements by an overapproximation

• The bottom element represents “no information yet” or 
“the least conservative possible answer”
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Join semilattice for liveness

130

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom 
element



What is the join of {b} and {c}?

131

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What is the join of {b} and {c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What is the join of {b} and {a,c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What is the join of {b} and {a,c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What is the join of {a} and {a,b}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What is the join of {a} and {a,b}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



Formal definitions
• A join semilattice is a pair (V, ⨆), where
• V is a domain of elements
• ⨆ is a join operator that is

– commutative: x ⨆ y = y ⨆ x
– associative: (x ⨆ y) ⨆ z = x ⨆ (y ⨆ z)
– idempotent: x ⨆ x = x

• If x ⨆ y = z, we say that z is the join
or (least upper bound) of x and y

• Every join semilattice has a bottom element 
denoted ⊥ such that ⊥ ⨆ x = x for all x
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Join semilattices and ordering

138

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Greater

Lower



Join semilattices and ordering

139

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least precise

Most precise



Join semilattices and orderings

• Every join semilattice (V, ⨆) induces an 
ordering relationship ⊑ over its elements

• Define x ⊑ y iff x ⨆ y = y
• Need to prove

– Reflexivity: x ⊑ x
– Antisymmetry: If x ⊑ y and y ⊑ x, then x = y
– Transitivity: If x ⊑ y and y ⊑ z, then x ⊑ z
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An example join semilattice
• The set of natural numbers and the max function
• Idempotent

– max{a, a} = a
• Commutative

– max{a, b} = max{b, a}
• Associative

– max{a, max{b, c}} = max{max{a, b}, c}
• Bottom element is 0:

– max{0, a} = a
• What is the ordering over these elements?
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A join semilattice for liveness
• Sets of live variables and the set union operation
• Idempotent:

– x ∪ x = x
• Commutative:

– x ∪ y = y ∪ x
• Associative:

– (x ∪ y) ∪ z = x ∪ (y ∪ z)
• Bottom element:

– The empty set: Ø ∪ x = x
• What is the ordering over these elements?
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Semilattices and program 
analysis

• Semilattices naturally solve many of the 
problems we encounter in global analysis

• How do we combine information from 
multiple basic blocks?

• What value do we give to basic blocks we 
haven't seen yet?

• How do we know that the algorithm always 
terminates?
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Semilattices and program 
analysis

• Semilattices naturally solve many of the problems 
we encounter in global analysis

• How do we combine information from multiple 
basic blocks?
– Take the join of all information from those blocks

• What value do we give to basic blocks we haven't 
seen yet?
– Use the bottom element

• How do we know that the algorithm always 
terminates?
– Actually, we still don't! More on that later
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Semilattices and program 
analysis

• Semilattices naturally solve many of the problems 
we encounter in global analysis

• How do we combine information from multiple 
basic blocks?
– Take the join of all information from those blocks

• What value do we give to basic blocks we haven't 
seen yet?
– Use the bottom element

• How do we know that the algorithm always 
terminates?
– Actually, we still don't! More on that later
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A general framework

• A global analysis is a tuple (D, V, ⊑, F, I), where
– D is a direction (forward or backward)

• The order to visit statements within a basic block, not the 
order in which to visit the basic blocks

– V is a set of values
– ⨆ is a join operator over those values
– F is a set of transfer functions f : V à V
– I is an initial value

• The only difference from local analysis is the 
introduction of the join operator
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Running global analyses

• Assume that (D, V, ⨆, F, I) is a forward analysis
• Set OUT[s] = ⊥ for all statements s
• Set OUT[entry] = I
• Repeat until no values change:

– For each statement s with predecessors
p1, p2, … , pn:

• Set IN[s] = OUT[p1] ⨆ OUT[p2] ⨆ … ⨆ OUT[pn]
• Set OUT[s] = fs (IN[s])

• The order of this iteration does not matter
– This is sometimes called chaotic iteration
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For comparison
• Set OUT[s] = ⊥ for all 

statements s
• Set OUT[entry] = I

• Repeat until no values 
change:
– For each statement s

with predecessors
p1, p2, … , pn:

• Set IN[s] = OUT[p1] ⨆
OUT[p2] ⨆ … ⨆ OUT[pn]

• Set OUT[s] = fs (IN[s])

• Set IN[s] = {} for all 
statements s

• Set OUT[exit] = the set of 
variables known to be live 
on exit

• Repeat until no values 
change:
– For each statement s of the 

form a=b+c:
• Set OUT[s] = set union of IN[x] 

for each successor x of s
• Set IN[s] = (OUT[s]-{a}) ∪ {b,c}
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The dataflow framework

• This form of analysis is called the dataflow 
framework

• Can be used to easily prove an analysis is 
sound

• With certain restrictions, can be used to 
prove that an analysis eventually 
terminates
– Again, more on that later
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Global constant propagation

• Constant propagation is an optimization 
that replaces each variable that is known to 
be a constant value with that constant

• An elegant example of the dataflow 
framework
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Global constant propagation
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exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry



Global constant propagation
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exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry



Global constant propagation
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exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry



Constant propagation analysis
• In order to do a constant propagation, we need to 

track what values might be assigned to a variable at 
each program point

• Every variable will either
– Never have a value assigned to it,
– Have a single constant value assigned to it,
– Have two or more constant values assigned to it, or
– Have a known non-constant value.
– Our analysis will propagate this information 

throughout a CFG to identify locations where a value is 
constant
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Properties of constant 
propagation

• For now, consider just some single variable x
• At each point in the program, we know one of three 

things about the value of x:
– x is definitely not a constant, since it's been assigned two 

values or assigned a value that we know isn't a constant
– x is definitely a constant and has value k
– We have never seen a value for x

• Note that the first and last of these are not the same!
– The first one means that there may be a way for x to have 

multiple values
– The last one means that x never had a value at all
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Defining a join operator
• The join of any two different constants is Not-a-Constant

– (If the variable might have two different values on entry to a 
statement, it cannot be a constant)

• The join of Not a Constant and any other value is Not-a-
Constant
– (If on some path the value is known not to be a constant, then on 

entry to a statement its value can't possibly be a constant)
• The join of Undefined and any other value is that other value

– (If x has no value on some path and does have a value on some 
other path, we can just pretend it always had the assigned value)
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A semilattice for constant propagation
• One possible semilattice for this analysis is 

shown here (for each variable):
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Undefined

0-1-2 1 2 ......

Not-a-constant

The lattice is infinitely wide



A semilattice for constant propagation
• One possible semilattice for this analysis is 

shown here (for each variable):
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Undefined

0-1-2 1 2 ......

Not-a-constant

• Note:
• The join of any two different constants is Not-a-Constant
• The join of Not a Constant and any other value is Not-a-Constant
• The join of Undefined and any other value is that other value



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

x=Undefined
y=Undefined
z=Undefined
w=Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined



Global constant propagation

162

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
Undefined

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

y=6 ⨆ y=Undefined 
gives  what?



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation

171

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

x=y=w=6
z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation

181

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

x=6 ⨆ x=4 gives  
what?



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6, x=⊤
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
y=w=6 
x = 4;
x=4, y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
y=w=6 
x = 4;
x=4, y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global analysis
reached fixpoint



Global constant propagation
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined



Global constant propagation
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Why y=6?



Dataflow for constant 
propagation

• Direction: Forward
• Semilattice: Varsà {Undefined, 0, 1, -1, 2, -2, …, Not-a-

Constant}
– Join mapping for variables point-wise

{x↦1,y ↦ 1,z ↦ 1} ⨆ {x ↦ 1,y ↦ 2,z ↦ Not-a-Constant} = 
{x ↦ 1,y ↦ Not-a-Constant,z ↦ Not-a-Constant}

• Transfer functions:
– fx=k(V) = V|x ↦ k (update V by mapping x to k)
– fx=a+b(V) = V|x ↦ Not-a-Constant (assign Not-a-Constant)

• Initial value: x is Undefined
– (When might we use some other value?)
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Proving termination

• Our algorithm for running these analyses 
continuously loops until no changes are 
detected

• Given this, how do we know the analyses 
will eventually terminate?
– In general, we don‘t
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Terminates?
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Liveness Analysis

• A variable is live at a point in a program if 
later in the program its value will be read 
before it is written to again
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Join semilattice definition
• A join semilattice is a pair (V, ⨆), where
• V is a domain of elements
• ⨆ is a join operator that is

– commutative: x ⨆ y = y ⨆ x
– associative: (x ⨆ y) ⨆ z = x ⨆ (y ⨆ z)
– idempotent: x ⨆ x = x

• If x ⨆ y = z, we say that z is the join
or (Least Upper Bound) of x and y

• Every join semilattice has a bottom element 
denoted ⊥ such that ⊥ ⨆ x = x for all x
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Partial ordering induced by join

• Every join semilattice (V, ⨆) induces an 
ordering relationship ⊑ over its elements

• Define x ⊑ y iff x 7 y = y

• Need to prove
– Reflexivity: x ⊑ x

– Antisymmetry: If x ⊑ y and y ⊑ x, then x = y

– Transitivity: If x ⊑ y and y ⊑ z, then x ⊑ z
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A join semilattice for liveness
• Sets of live variables and the set union operation
• Idempotent:

– x ∪ x = x
• Commutative:

– x ∪ y = y ∪ x
• Associative:

– (x ∪ y) ∪ z = x ∪ (y ∪ z)
• Bottom element:

– The empty set: Ø ∪ x = x
• Ordering over elements = subset relation
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Join semilattice example for liveness

197

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom 
element



Dataflow framework

• A global analysis is a tuple (D, V, ⨆, F, I), 
where
– D is a direction (forward or backward)

• The order to visit statements within a basic block,
NOT the order in which to visit the basic blocks

– V is a set of values (sometimes called domain)
– ⨆ is a join operator over those values
– F is a set of transfer functions fs : V à V

(for every statement s)
– I is an initial value
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Running global analyses

• Assume that (D, V, ⨆, F, I) is a forward analysis
• For every statement s maintain values before  - IN[s] - and after 

- OUT[s]
• Set OUT[s] = ⊥ for all statements s
• Set OUT[entry] = I
• Repeat until no values change:

– For each statement s with predecessors
PRED[s]={p1, p2, … , pn}

• Set IN[s] = OUT[p1] ⨆ OUT[p2] ⨆ … ⨆ OUT[pn]
• Set OUT[s] = fs(IN[s])

• The order of this iteration does not matter
– Chaotic iteration
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Proving termination

• Our algorithm for running these analyses 
continuously loops until no changes are 
detected

• Problem: how do we know the analyses will 
eventually terminate?
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A non-terminating analysis

• The following analysis will loop infinitely on 
any CFG containing a loop:

• Direction: Forward
• Domain: ℕ
• Join operator: max
• Transfer function: f(n) = n + 1
• Initial value: 0
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A non-terminating analysis

202

start

end

x ++



Initialization

203

start

end

x ++
0

0



Fixed-point iteration

204

start

end

x ++
0

0



Choose a block

205

start

end

x ++
0

0



Iteration 1

206

start

end

x ++
0

0

0



Iteration 1

207

start

end

x ++
1

0

0



Choose a block

208

start

end

x ++
1

0

0



Iteration 2

209

start

end

x ++
1

0

0



Iteration 2
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start

end

x ++
1

0

1



Iteration 2
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start

end

x ++
2

0

1



Choose a block

212

start

end

x ++
2

0

1



Iteration 3
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start

end

x ++
2

0

1



Iteration 3

214

start

end

x ++
2

0

2



Iteration 3

215

start

end

x ++
3

0

2



Why doesn’t this terminate?
• Values can increase without bound
• Note that “increase” refers to the lattice 

ordering, not the ordering on the natural 
numbers

• The height of a semilattice is the length of the 
longest increasing sequence in that semilattice

• The dataflow framework is not guaranteed to 
terminate for semilattices of infinite height

• Note that a semilattice can be infinitely large 
but have finite height
– e.g. constant propagation
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Height of a lattice

• An increasing chain is a sequence of elements
⊥⊑ a1 ⊑ a2 ⊑ … ⊑ ak
– The length of such a chain is k

• The height of a lattice is the length of the maximal 
increasing chain

• For liveness with n program variables:
– {}⊆{v1} ⊆ {v1,v2} ⊆ … ⊆ {v1,…,vn}

• For available expressions it is the number of 
expressions of the form a=b op c
– For n program variables and m operator types:mn3
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Another non-terminating 
analysis

• This analysis works on a finite-height 
semilattice, but will not terminate on 
certain CFGs:

• Direction: Forward
• Domain: Boolean values true and false
• Join operator: Logical OR
• Transfer function: Logical NOT
• Initial value: false
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A non-terminating analysis

219

start

end

x = !x



A non-terminating analysis

220

start

end

x = !x



Initialization

221

start

end

x = !xfalse

false



Fixed-point iteration

222

start

end

x = !xfalse

false



Choose a block

223

start

end

x = !xfalse

false



Iteration 1

224

start

end

x = !xfalse

false

false



Iteration 1

225

start

end

x = !xtrue

false

false



Iteration 2

226

start

end

x = !xtrue

false

true



Iteration 2

227

start

end

x = !xfalse

false

true



Iteration 3

228

start

end

x = !xfalse

false

false



Iteration 3

229

start

end

x = !xtrue

false

false



Why doesn’t it terminate?
• Values can loop indefinitely
• Intuitively, the join operator keeps pulling 

values up
• If the transfer function can keep pushing 

values back down again, then the values 
might cycle forever
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Why doesn’t it terminate?
• Values can loop indefinitely
• Intuitively, the join operator keeps pulling 

values up
• If the transfer function can keep pushing 

values back down again, then the values 
might cycle forever

• How can we fix this?
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Monotone transfer functions

• A transfer function f is monotone iff
if x ⊑ y, then f(x) ⊑ f(y)

• Intuitively, if you know less information about a 
program point, you can't “gain back” more 
information about that program point

• Many transfer functions are monotone, including 
those for liveness and constant propagation

• Note: Monotonicity does not mean that x ⊑ f(x)
– (This is a different property called extensivity)
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Liveness and monotonicity

• A transfer function f is monotone iff
if x ⊑ y, then f(x) ⊑ f(y)

• Recall our transfer function for a = b + c is
– fa = b + c(V) = (V – {a}) ∪ {b, c}

• Recall that our join operator is set union 
and induces an ordering relationship

X ⊑ Y iff X ⊆Y
• Is this monotone?
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Is constant propagation monotone?
• A transfer function f is monotone iff

if x ⊑y, then f(x) ⊑ f(y)
• Recall our transfer functions

– fx=k(V) = V[x↦k] (update V by mapping x to k)
– fx=a+b(V) = V[x↦Not-a-Constant] (assign Not-a-

Constant)
• Is this monotone?

234Undefined

0-1-2 1 2 ......

Not-a-constant



The grand result

• Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone 
transfer functions always terminates

• Proof sketch:
– The join operator can only bring values up
– Transfer functions can never lower values back 

down below where they were in the past 
(monotonicity)

– Values cannot increase indefinitely (finite height)
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An “optimality” result

• A transfer function f is distributive if
f(a ⨆ b) = f(a) ⨆ f(b)

for every domain elements a and b
• If all transfer functions are distributive then 

the fixed-point solution is the solution that 
would be computed by joining results from all 
(potentially infinite) control-flow paths
– Join over all paths

• Optimal if we ignore program conditions
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An “optimality” result
• A transfer function f is distributive if

f(a ⨆ b) = f(a) ⨆ f(b)
for every domain elements a and b

• If all transfer functions are distributive then the 
fixed-point solution is equal to the solution 
computed by joining results from all (potentially 
infinite) control-flow paths
– Join over all paths

• Optimal if we pretend all control-flow paths can be 
executed by the program

• Which analyses use distributive functions?

237



Loop optimizations
• Most of a program’s computations are done inside 

loops
– Focus optimizations effort on loops

• The optimizations we’ve seen so far are independent of 
the control structure

• Some optimizations are specialized to loops
– Loop-invariant code motion
– (Strength reduction via induction variables)

• Require another type of analysis to find out where 
expressions get their values from
– Reaching definitions

• (Also useful for improving register allocation)
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Loop invariant computation

239

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …



Loop invariant computation

240

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

t*4 and y+z
have same value on 
each iteration



Code hoisting
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x < w

endx = x + 1

start

y = …
t = …
z = …
y = t * 4
w = y + z



What reasoning did we use?
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y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

y is defined inside loop but it 
is loop invariant since t*4 is 
loop-invariant

Both t and z are defined 
only outside of loop

constants are trivially 
loop-invariant



What about now?
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y = t * 4
x < y + z

endx = x + 1
t = t + 1

start
y = …
t = …
z = …

Now t is not loop-invariant 
and so are t*4 and y



Loop-invariant code motion

• d: t = a1 op a2
– d is a program location

• a1 op a2 loop-invariant (for a loop L) if computes the 
same value in each iteration
– Hard to know in general

• Conservative approximation
– Each ai is a constant, or
– All definitions of ai that reach d are outside L, or
– Only one definition of of ai reaches d, and is loop-invariant 

itself
• Transformation: hoist the loop-invariant code outside 

of the loop
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Reaching definitions analysis
• A definition d: t = … reaches a program location if there is a 

path from the definition to the program location, along which 
the defined variable is never redefined

245



Reaching definitions analysis
• A definition d: t = … reaches a program location if there is a 

path from the definition to the program location, along which 
the defined variable is never redefined 

• Direction: Forward
• Domain: sets of program locations that are definitions `
• Join operator: union
• Transfer function:

fd: a=b op c(RD) = (RD - defs(a)) ∪ {d}
fd: not-a-def(RD) = RD

– Where defs(a) is the set of locations defining a (statements of the 
form a=...)

• Initial value: {}
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Reaching definitions analysis
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d4: y = t * 4

d4:x < y + z 

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end
{}



Reaching definitions analysis
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end
{}



Initialization
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}



Iteration 1
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

{}



Iteration 1
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{}

{}

{}



Iteration 2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}



Iteration 2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}



Iteration 2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}



Iteration 2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}



Iteration 3
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}



Iteration 3
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration 4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration 4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration 4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Iteration 5
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Iteration 6
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Which expressions are loop invariant?
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t is defined only in 
d2 – outside of loop

z is defined only in 
d3 – outside of loop

y is defined only in d4 – inside 
of loop but depends on t and 
4, both loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{d2, d3, d4, d5}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x is defined only in d5 –
inside of loop so is not a 
loop-invariant



Inferring loop-invariant 
expressions

• For a statement s of the form t = a1 op a2
• A variable ai is immediately loop-invariant if all 

reaching definitions IN[s]={d1,…,dk} for ai are 
outside of the loop

• LOOP-INV = immediately loop-invariant variables 
and constants
LOOP-INV = LOOP-INV 4 {x | d: x = a1 op a2, d is in 
the loop, and both a1 and a2 are in LOOP-INV}
– Iterate until fixed-point

• An expression is loop-invariant if all operands are 
loop-invariants
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Computing LOOP-INV
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z 

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {T}



Computing LOOP-INV
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z 

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t}



Computing LOOP-INV
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z 

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}



Computing LOOP-INV
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z 

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}



Computing LOOP-INV
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z 

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}
LOOP-INV = {t, z}

d4: y = t * 4

x < y + z 

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Computing LOOP-INV



Computing LOOP-INV
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

LOOP-INV = {t, z, y}



Induction variables
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while (i < x) {
j = a + 4 * i
a[j] = j
i = i + 1

}
i is incremented by a loop-
invariant expression on each 
iteration – this is called an 
induction variable

j is a linear function of 
the induction variable 
with multiplier 4



Strength-reduction
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j = a + 4 * i
while (i < x) {

j = j + 4
a[j] = j
i = i + 1

}

Prepare initial 
value

Increment by 
multiplier



Compilation
0368-3133

Lecture 10b

Register Allocation
Noam Rinetzky
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Registers

• Dedicated memory locations that
– can be accessed quickly,
– can have computations performed on them, and



Registers

• Dedicated memory locations that
– can be accessed quickly,
– can have computations performed on them, and

• Usages
– Operands of instructions
– Store temporary results
– Can (should) be used as loop indexes due to frequent 

arithmetic operation 
– Used to manage administrative info 

• e.g., runtime stack



Register allocation

• Number of registers is limited

• Need to allocate them in a clever way
– Using registers intelligently is a critical step in 

any compiler
• A good register allocator can generate code orders 

of magnitude better than a bad register allocator



Register Allocation: IR

279

Source 
code

(program)

Lexical
Analysis

Syntax 
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target code

(executable)



Simple approach

• Problem: program execution very inefficient–
moving data back and forth between memory 
and registers

x = y + z

mov 16(%ebp), %eax
mov 20(%ebp), %ebx
add %ebx, %eax
mov %eax, 24(%ebp)

• Straightforward solution:
• Allocate each variable in activation record
• At each instruction, bring values needed into 

registers, perform operation, then store result to 
memory



Register allocation
• In TAC, there is an unlimited number of 

variables (temporaries)
• On a physical machine there is a small number 

of registers:
– x86 has 4 general-purpose registers and a number 

of specialized registers
– MIPS has 24 general-purpose registers and 8

special-purpose registers

• Register allocation is the process of assigning 
variables to registers and managing data 
transfer in and out of registers



simple code generation

• assume machine instructions of the form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• We will assume that we have all registers 
available for any usage
– Ignore registers allocated for stack management
– Treat all registers as general-purpose

Fixed number of 
Registers!



Plan

• Goal: Reduce number of temporaries 
(registers)
– Machine-agnostic optimizations

• Assume unbounded number of registers
– Machine-dependent optimization

• Use at most K registers
• K is machine dependent 



Generating Compound Expressions
• Use registers to store temporaries

– Why can we do it?

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit( _tc = A op B; ) // _tc is a register
Return _tc

}

Why 
Naïve? 



Improving cgen for expressions
• Observation – naïve translation needlessly generates 

temporaries for leaf expressions
• Observation – temporaries used exactly once

– Once a temporary has been read it can be reused for 
another sub-expression

• cgen(e1 op e2) = {
Let _t1 = cgen(e1)
Let _t2 = cgen(e2)
Emit( _t1 =_t1 op _t2; )
Return _t1

}
• Temporaries cgen(e1) can be reused in cgen(e2)



Register Allocation

• Machine-agnostic optimizations
• Assume unbounded number of registers

– Expression trees
– Basic blocks

• Machine-dependent optimization
• K registers
• Some have special purposes

– Control flow graphs (whole program)



Sethi-Ullman translation

• Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC
– Minimizes number of temporaries for a single 

expression



Example (optimized): b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3



Generalizations

• More than two arguments for operators
– Function calls

• Multiple effected registers
– Multiplication

• Spilling 
– Need more registers than available

• Register/memory operations



Simple Spilling Method

• Heavy tree – Needs more registers than 
available

• A “heavy” tree contains a “heavy” subtree
whose dependents are “light”

• Simple spilling
– Generate code for the light tree
– Spill the content into memory and replace 

subtree by temporary
– Generate code for the resultant tree



Example (optimized): x:=b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3



Example (spilled): x := b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c



Register Memory Operations

• Add_Mem X, R1
• Mult_Mem X, R1
• No need for registers to store right 

operands  

Hidden Registers



Example: b*b-4*a*c

-

b b 4

a c

0 1

1

0 1

10

1

2

Mult_Mem Mult_Mem

Mult_Mem



Can We do Better?

• Yes: Increase view of code
– Simultaneously allocate registers for multiple 

expressions

• But: Lose per expression optimality 
– Works well in practice



Register Allocation

• Machine-agnostic optimizations
• Assume unbounded number of registers

– Expression trees
– Basic blocks

• Machine-dependent optimization
• K registers
• Some have special purposes

– Control flow graphs (whole program)



Basic Blocks
• basic block is a sequence of instructions with

– single entry (to first instruction), no jumps to the middle 
of the block

– single exit (last instruction)
– code execute as a sequence from first instruction to last 

instruction without any jumps
• edge from one basic block B1 to another block B2 

when the last statement of B1 may jump to B2



control flow graph

• A directed graph G=(V,E)

• nodes V = basic blocks

• edges E = control flow
– (B1,B2) Î E when control from B1 

flows to B2

• Leaders-based construction
– Target of jump instructions

– Instructions following jumps

B1

B2
t1 := 4 * i
t2 := a [ t1 ]
t3 := 4 * i
t4 := b [ t3 ]
t5 := t2 * t4

t6 := prod + t5

prod := t6

t7 := i + 1
i := t7

if i <= 20 goto B2

prod := 0
i := 1

B1

B2

…

…

False

True



AST for a Basic Block
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Dependency graph{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Simplified Data 
Dependency Graph

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Pseudo Register Target Code



Question: Why “y”?
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Question: Why “y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0; 

False True

…



Question: Why “y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…



Question: Why “y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…



y,  dead or alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0; 

False True

…



x,  dead or alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0; 

False True

…



Register Allocation for B.B.

• Dependency graphs for basic blocks
• Transformations on dependency graphs
• From dependency graphs into code

– Instruction selection 
• linearizations of dependency graphs

– Register allocation
• At the basic block level



Dependency graphs
• TAC imposes an order of execution

– But the compiler can reorder assignments as 
long as the program results are not changed

• Define a partial order on assignments
– a < b Û a must be executed before b
– Represented as a directed graph

• Nodes are assignments
• Edges represent dependency

– Acyclic for basic blocks



Running Example

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Sources of dependency

• Data flow inside expressions
– Operator depends on operands
– Assignment depends on assigned expressions

• Data flow between statements
– From assignments to their use

– Pointers complicate dependencies



Sources of dependency

• Order of subexpresion evaluation is 
immaterial
– As long as inside dependencies are respected

• The order of uses of a variable X are 
immaterial as long as:
– X is used between dependent assignments
– Before next assignment to X



Creating Dependency Graph 
from AST

• Nodes AST becomes nodes of the graph
• Replaces arcs of AST by dependency arrows

– Operator ® Operand
– Create arcs from assignments to uses
– Create arcs between assignments of the same 

variable
• Select output variables (roots)
• Remove ; nodes and their arrows



Running Example



Dependency Graph 
Simplifications

• Short-circuit assignments
– Connect variables to assigned expressions
– Connect expression to uses

• Eliminate nodes not reachable from roots



Running Example



Cleaned-Up Data Dependency Graph



Common Subexpressions

• Repeated subexpressions
• Examples

x = a * a  +   2 * a * b + b * b;
y = a * a  – 2 * a * b + b * b;
n[i] := n[i] +m[i]

• Can be eliminated by the compiler
– In the case of basic blocks rewrite the DAG



From Dependency Graph into Code
• Linearize the dependency graph

– Instructions must follow dependency
• Many solutions exist
• Select the one with small runtime cost
• Assume infinite number of registers

– Symbolic registers
– Assign registers later 

• May need additional spill
– Possible Heuristics

• Late evaluation
• Ladders



Pseudo Register Target Code



Non optimized vs Optimized Code

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Register Allocation

• Maps symbolic registers into physical 
registers
– Reuse registers as much as possible
– Graph coloring (next)

• Undirected graph
• Nodes = Registers (Symbolic and real)
• Edges = Interference
• May require spilling



Register Allocation for Basic Blocks

• Heuristics for code generation of basic 
blocks

• Works well in practice
• Fits modern machine architecture
• Can be extended to perform other tasks

– Common subexpression elimination
• But basic blocks are small
• Can be generalized to a procedure





The End


