
Compilation
Lecture 9

Optimizations
Noam Rinetzky

1

Optimization points

source
code

Front
end IR Code

generator
target
code

User
profile program

change algorithm

Compiler
intraprocedural IR
Interprocedural IR
IR optimizations

Compiler
register allocation

instruction selection
peephole transformations

now 2

Program Analysis

• In order to optimize a program, the
compiler has to be able to reason about the
properties of that program

• An analysis is called sound if it never
asserts an incorrect fact about a program

• All the analyses we will discuss in this class
are sound
– (Why?)

3

A formalism for IR optimization

• Every phase of the compiler uses some new
abstraction:
– Scanning uses regular expressions
– Parsing uses CFGs
– Semantic analysis uses proof systems and symbol

tables
– IR generation uses ASTs

• In optimization, we need a formalism that
captures the structure of a program in a way
amenable to optimization

4

Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

5

Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

6

Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 7

Basic blocks

• A basic block is a sequence of IR instructions
where
– There is exactly one spot where control enters the

sequence, which must be at the start of the
sequence

– There is exactly one spot where control leaves the
sequence, which must be at the end of the
sequence

• Informally, a sequence of instructions that
always execute as a group

8

Control-Flow Graphs

• A control-flow graph (CFG) is a graph of the
basic blocks in a function

• The term CFG is overloaded – from here on
out, we'll mean “control-flow graph” and not
“context free grammar”

• Each edge from one basic block to another
indicates that control can flow from the end of
the first block to the start of the second block

• There is a dedicated node for the start and
end of a function

9

Optimization path

IR Control-Flow
Graph

CFG
builder

Program
Analysis

Annotated
CFG

Optimizing
Transformation

Target
Code

Code
Generation

(+optimizations)

done
with IR

optimizations

IR
optimizations

10

Types of optimizations

• An optimization is local if it works on just a
single basic block

• An optimization is global if it works on an
entire control-flow graph

• An optimization is interprocedural if it
works across the control-flow graphs of
multiple functions
– We won't talk about this in this course

11

Local Optimizations

12

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

13

Class Object {
method fn(int);

}

Explaining the program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

14

Size of Object

Object Class

Class Object {
method fn(int);

}

For simplicity, ignore
Popping return value,

parameters etc.

Explaining the program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

15

Class Object {
method fn(int);

}

Explaining the program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

16

Class Object {
method fn(int);

}

Explaining the program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

17

Points to ObjectC

Start of fn

Class Object {
method fn(int);

}

Explaining the program

Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b
…
v2 = a op b

• and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
v1 = a op b
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations

18

Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b [or: v1 = a]
…
v2 = a op b [or: v2 = a]

• and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
v1 = a op b [or: v1 = a]
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations

19

Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

20

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

21

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

22

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

23

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

24

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common subexpression elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

25

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation

• If we have a variable assignment
v1 = v2
then as long as v1 and v2 are not
reassigned, we can rewrite expressions of
the form
a = … v1 …
as
a = … v2 …
provided that such a rewrite is legal

26

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

27

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

28

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

29

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

30

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

31

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

32

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

33

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

34

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

35

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

36

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Is this transformation OK?
What do we need to know?

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

37

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

38

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

39

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

40

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Dead Code Elimination

• An assignment to a variable v is called dead
if the value of that assignment is never
read anywhere

• Dead code elimination removes dead
assignments from IR

• Determining whether an assignment is
dead depends on what variable is being
assigned to and when it's being assigned

41

Dead Code Elimination

42

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

Dead Code Elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

43

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Dead Code Elimination
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

values
never
read

values
never
read

44

Dead Code Elimination
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;

*(_tmp1) = ObjectC;

_tmp4 = _tmp0 + b;
c = _tmp4;

_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

45

Applying local optimizations

• The different optimizations we've seen so far all
take care of just a small piece of the optimization

• Common subexpression elimination eliminates
unnecessary statements

• Copy propagation helps identify dead code
• Dead code elimination removes statements that are

no longer needed
• To get maximum effect, we may have to apply

these optimizations numerous times

46

Applying local optimizations
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

47

Applying local optimizations
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

Which optimization should we apply here?

48

Applying local optimizations
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Common sub-expression elimination

Which optimization should we apply here?

49

Applying local optimizations
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Which optimization should we apply here?

50

Applying local optimizations
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which optimization should we apply here?

Copy propagation

51

Applying local optimizations
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which optimization should we apply here?

52

Applying local optimizations
example

b = a * a;
c = b;
d = b + b;
e = d;

Which optimization should we apply here?

Common sub-expression elimination (again)

53

Other types of local
optimizations

• Arithmetic Simplification
– Replace “hard” operations with easier ones
– e.g. rewrite x = 4 * a; as x = a << 2;

• Constant Folding
– Evaluate expressions at compile-time if they

have a constant value.
– e.g. rewrite x = 4 * 5; as x = 20;

54

Optimizations and analyses

• Most optimizations are only possible given
some analysis of the program's behavior

• In order to implement an optimization, we
will talk about the corresponding program
analyses

55

Available expressions

• Both common subexpression elimination and copy
propagation depend on an analysis of the available
expressions in a program

• An expression is called available if some variable in
the program holds the value of that expression

• In common subexpression elimination, we replace
an available expression by the variable holding its
value

• In copy propagation, we replace the use of a
variable by the available expression it holds

56

Finding available expressions

• Initially, no expressions are available
• Whenever we execute a statement

a = b op c:
– Any expression holding a is invalidated
– The expression a = b op c becomes available

• Idea: Iterate across the basic block, beginning
with the empty set of expressions and
updating available expressions at each
variable

57

Available expressions example

58

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common sub-expression elimination

59

a = b + 2;

b = x;

d = a + b;

e = d;

d = b;

f = e;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common sub-expression elimination

60

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Live variables

• The analysis corresponding to dead code
elimination is called liveness analysis

• A variable is live at a point in a program if
later in the program its value will be read
before it is written to again

• Dead code elimination works by computing
liveness for each variable, then eliminating
assignments to dead variables

61

Computing live variables
• To know if a variable will be used at some point,

we iterate across the statements in a basic block
in reverse order

• Initially, some small set of values are known to be
live (which ones depends on the particular
program)

• When we see the statement a = b op c:
– Just before the statement, a is not alive, since its value

is about to be overwritten
– Just before the statement, both b and c are alive, since

we're about to read their values
– (what if we have a = a + b?) 62

Liveness analysisa = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d } - given

Which statements are dead?

63

Dead Code Eliminationa = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }

Which statements are dead?

64

Dead Code Eliminationa = b;

d = a + b;

e = d;

d = a;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }
65

Liveness analysis IIa = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?

66

Liveness analysis IIa = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?

67

Dead code eliminationa = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?

68

Dead code eliminationa = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

69

Liveness analysis IIIa = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which statements are dead?

70

Dead code eliminationa = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which statements are dead?

71

Dead code eliminationa = b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

72

Dead code eliminationa = b;

d = a;

73

If we further apply
copy propagation
this statement can
be eliminated too

Formalizing local analyses

74

a = b + c

Output Value
Vout

Input Value
Vin

Vout = fa=b+c(Vin)

Transfer Function

Available Expressions

75

a = b + c

Output Value
Vout

Input Value
Vin

Vout = (Vin \ {e | e contains a}) ∪ {a=b+c}

Expressions of the forms
a=… and x=…a…

Live Variables

76

a = b + c

Output Value
Vout

Input Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout

Live Variables

77

a = b + c

Output Value
Vout

Input Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout

Information for a local analysis

• What direction are we going?
– Sometimes forward (available expressions)
– Sometimes backward (liveness analysis)

• How do we update information after
processing a statement?
– What are the new semantics?
– What information do we know initially?

78

Formalizing local analyses

• Define an analysis of a basic block as a
quadruple (D, V, F, I) where
– D is a direction (forwards or backwards)
– V is a set of values the program can have at any

point
– F is a family of transfer functions defining the

meaning of any expression as a function f : Và V
– I is the initial information at the top (or bottom) of

a basic block

79

Available Expressions

• Direction: Forward
• Values: Sets of expressions assigned to variables
• Transfer functions: Given a set of variable

assignments V and statement a = b + c:
– Remove from V any expression containing a as a

subexpression
– Add to V the expression a = b + c
– Formally: Vout = (Vin \ {e | e contains a}) ∪ {a = b + c}

• Initial value: Empty set of expressions

80

Liveness Analysis

• Direction: Backward
• Values: Sets of variables
• Transfer functions: Given a set of variable assignments V

and statement a = b + c:
• Remove a from V (any previous value of a is now dead.)
• Add b and c to V (any previous value of b or c is now live.)
• Formally: Vin = (Vout \ {a}) ∪ {b,c}
• Initial value: Depends on semantics of language

– E.g., function arguments and return values (pushes)
– Result of local analysis of other blocks as part of a

global analysis 81

Running local analyses

• Given an analysis (D, V, F, I) for a basic block
• Assume that D is “forward;” analogous for the

reverse case
• Initially, set OUT[entry] to I
• For each statement s, in order:

– Set IN[s] to OUT[prev], where prev is the previous
statement

– Set OUT[s] to fs(IN[s]), where fs is the transfer
function for statement s

82

Global Optimizations

83

High-level goals

• Generalize analysis mechanism
– Reuse common ingredients for many analyses
– Reuse proofs of correctness

• Generalize from basic blocks to entire CFGs
– Go from local optimizations to global

optimizations

84

Global analysis

• A global analysis is an analysis that works
on a control-flow graph as a whole

• Substantially more powerful than a local
analysis
– (Why?)

• Substantially more complicated than a local
analysis
– (Why?)

85

Local vs. global analysis
• Many of the optimizations from local analysis can still

be applied globally
– Common sub-expression elimination
– Copy propagation
– Dead code elimination

• Certain optimizations are possible in global analysis that
aren't possible locally:
– e.g. code motion: Moving code from one basic block into

another to avoid computing values unnecessarily
• Example global optimizations:

– Global constant propagation
– Partial redundancy elimination

86

Loop invariant code motion example

87

while (t < 120) {
z = z + x - y;

}

w = x – y;
while (t < 120) {
z = z + w;

}

value of expression x – y is
not changed by loop body

Why global analysis is hard

• Need to be able to handle multiple
predecessors/successors for a basic block

• Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value (but the analysis still needs to
terminate!)

• Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

88

Global dead code elimination

• Local dead code elimination needed to
know what variables were live on exit from
a basic block

• This information can only be computed as
part of a global analysis

• How do we modify our liveness analysis to
handle a CFG?

89

CFGs without loops

90Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

CFGs without loops

91Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

?

Which variables may
be live on some
execution path?

CFGs without loops

92Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

CFGs without loops

93Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

CFGs without loops

94Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

Major changes – part 1

• In a local analysis, each statement has
exactly one predecessor

• In a global analysis, each statement may
have multiple predecessors

• A global analysis must have some means of
combining information from all
predecessors of a basic block

95

CFGs without loops

96Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{b, c, d}

{c, d} Need to combine
currently-
computed value
with new value

Need to combine
currently-
computed value
with new value

CFGs without loops

97Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{c, d}

CFGs without loops

98Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

Major changes – part 2

• In a local analysis, there is only one possible
path through a basic block

• In a global analysis, there may be many paths
through a CFG

• May need to recompute values multiple times
as more information becomes available

• Need to be careful when doing this not to loop
infinitely!
– (More on that later)

• Can order of computation affect result?
99

CFGs with loops
• Up to this point, we've considered loop-free CFGs,

which have only finitely many possible paths
• When we add loops into the picture, this is no longer

true
• Not all possible loops in a CFG can be realized in the

actual program

100

IfZ x goto Top

x = 1;

Top:

x = 0;

x = 2;

CFGs with loops
• Up to this point, we've considered loop-free CFGs,

which have only finitely many possible paths
• When we add loops into the picture, this is no longer

true
• Not all possible loops in a CFG can be realized in the

actual program
• Sound approximation: Assume that every possible

path through the CFG corresponds to a valid execution
– Includes all realizable paths, but some additional paths as

well
– May make our analysis less precise (but still sound)
– Makes the analysis feasible; we'll see how later

101

CFGs with loops

102Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;
IfZ ...

Entry

{a}

?

Major changes – part 3

• In a local analysis, there is always a well
defined “first” statement to begin
processing

• In a global analysis with loops, every basic
block might depend on every other basic
block

• To fix this, we need to assign initial values
to all of the blocks in the CFG

103

CFGs with loops - initialization

104Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

CFGs with loops - iteration

105Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

{a}

CFGs with loops - iteration

106Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

CFGs with loops - iteration

107Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}

CFGs with loops - iteration

108Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

CFGs with loops - iteration

109Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}

CFGs with loops - iteration

110Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

111Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

112Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

113Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

114Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

115Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

116Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs with loops - iteration

117Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs with loops - iteration

118Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs with loops - iteration

119Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

Summary of differences

• Need to be able to handle multiple
predecessors/successors for a basic block

• Need to be able to handle multiple paths
through the control-flow graph, and may need
to iterate multiple times to compute the final
value
– But the analysis still needs to terminate!

• Need to be able to assign each basic block a
reasonable default value for before we've
analyzed it

120

Global liveness analysis

• Initially, set IN[s] = { } for each statement s
• Set IN[exit] to the set of variables known to be

live on exit (language-specific knowledge)

• Repeat until no changes occur:

– For each statement s of the form a = b + c, in any

order you'd like:

• Set OUT[s] to set union of IN[p] for each successor p of s
• Set IN[s] to (OUT[s] – a) ∪ {b, c}.

• Yet another fixed-point iteration!

121

Global liveness analysis

122

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2] ∪ IN[s3]

IN[s]=(UT[s] – {a}) ∪ {b, c}

Why does this work?
• To show correctness, we need to show that

– The algorithm eventually terminates, and
– When it terminates, it has a sound answer

• Termination argument:
– Once a variable is discovered to be live during some point of the

analysis, it always stays live
– Only finitely many variables and finitely many places where a

variable can become live
• Soundness argument (sketch):

– Each individual rule, applied to some set, correctly updates
liveness in that set

– When computing the union of the set of live variables, a variable
is only live if it was live on some path leaving the statement

123

Abstract Interpretation

• Theoretical foundations of program
analysis

• Cousot and Cousot 1977

• Abstract meaning of programs
– Executed at compile time

124

Another view of local
optimization

• In local optimization, we want to reason
about some property of the runtime
behavior of the program

• Could we run the program and just watch
what happens?

• Idea: Redefine the semantics of our
programming language to give us
information about our analysis

125

Properties of local analysis

• The only way to find out what a program will
actually do is to run it

• Problems:
– The program might not terminate
– The program might have some behavior we didn't

see when we ran it on a particular input
• However, this is not a problem inside a basic

block
– Basic blocks contain no loops
– There is only one path through the basic block

126

Assigning new semantics

• Example: Available Expressions
• Redefine the statement a = b + c to mean

“a now holds the value of b + c, and any
variable holding the value a is now invalid”

• Run the program assuming these new
semantics

• Treat the optimizer as an interpreter for
these new semantics

127

Theory to the rescue
• Building up all of the machinery to design this

analysis was tricky
• The key ideas, however, are mostly independent of

the analysis:
– We need to be able to compute functions describing

the behavior of each statement
– We need to be able to merge several subcomputations

together
– We need an initial value for all of the basic blocks

• There is a beautiful formalism that captures many
of these properties

128

Join semilattices
• A join semilattice is a ordering defined on a set of

elements
• Any two elements have some join that is the smallest

element larger than both elements
• There is a unique bottom element, which is smaller

than all other elements
• Intuitively:

– The join of two elements represents combining information
from two elements by an overapproximation

• The bottom element represents “no information yet” or
“the least conservative possible answer”

129

Join semilattice for liveness

130

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom
element

What is the join of {b} and {c}?

131

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {b} and {c}?

132

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {b} and {a,c}?

133

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {b} and {a,c}?

134

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {a} and {a,b}?

135

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What is the join of {a} and {a,b}?

136

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Formal definitions
• A join semilattice is a pair (V, ⨆), where
• V is a domain of elements
• ⨆ is a join operator that is

– commutative: x ⨆ y = y ⨆ x
– associative: (x ⨆ y) ⨆ z = x ⨆ (y ⨆ z)
– idempotent: x ⨆ x = x

• If x ⨆ y = z, we say that z is the join
or (least upper bound) of x and y

• Every join semilattice has a bottom element
denoted ⊥ such that ⊥ ⨆ x = x for all x

137

Join semilattices and ordering

138

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Greater

Lower

Join semilattices and ordering

139

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least precise

Most precise

Join semilattices and orderings

• Every join semilattice (V, ⨆) induces an
ordering relationship ⊑ over its elements

• Define x ⊑ y iff x ⨆ y = y
• Need to prove

– Reflexivity: x ⊑ x
– Antisymmetry: If x ⊑ y and y ⊑ x, then x = y
– Transitivity: If x ⊑ y and y ⊑ z, then x ⊑ z

140

An example join semilattice
• The set of natural numbers and the max function
• Idempotent

– max{a, a} = a
• Commutative

– max{a, b} = max{b, a}
• Associative

– max{a, max{b, c}} = max{max{a, b}, c}
• Bottom element is 0:

– max{0, a} = a
• What is the ordering over these elements?

141

A join semilattice for liveness
• Sets of live variables and the set union operation
• Idempotent:

– x ∪ x = x
• Commutative:

– x ∪ y = y ∪ x
• Associative:

– (x ∪ y) ∪ z = x ∪ (y ∪ z)
• Bottom element:

– The empty set: Ø ∪ x = x
• What is the ordering over these elements?

142

Semilattices and program
analysis

• Semilattices naturally solve many of the
problems we encounter in global analysis

• How do we combine information from
multiple basic blocks?

• What value do we give to basic blocks we
haven't seen yet?

• How do we know that the algorithm always
terminates?

143

Semilattices and program
analysis

• Semilattices naturally solve many of the problems
we encounter in global analysis

• How do we combine information from multiple
basic blocks?
– Take the join of all information from those blocks

• What value do we give to basic blocks we haven't
seen yet?
– Use the bottom element

• How do we know that the algorithm always
terminates?
– Actually, we still don't! More on that later

144

Semilattices and program
analysis

• Semilattices naturally solve many of the problems
we encounter in global analysis

• How do we combine information from multiple
basic blocks?
– Take the join of all information from those blocks

• What value do we give to basic blocks we haven't
seen yet?
– Use the bottom element

• How do we know that the algorithm always
terminates?
– Actually, we still don't! More on that later

145

A general framework

• A global analysis is a tuple (D, V, ⊑, F, I), where
– D is a direction (forward or backward)

• The order to visit statements within a basic block, not the
order in which to visit the basic blocks

– V is a set of values
– ⨆ is a join operator over those values
– F is a set of transfer functions f : V à V
– I is an initial value

• The only difference from local analysis is the
introduction of the join operator

146

Running global analyses

• Assume that (D, V, ⨆, F, I) is a forward analysis
• Set OUT[s] = ⊥ for all statements s
• Set OUT[entry] = I
• Repeat until no values change:

– For each statement s with predecessors
p1, p2, … , pn:

• Set IN[s] = OUT[p1] ⨆ OUT[p2] ⨆ … ⨆ OUT[pn]
• Set OUT[s] = fs (IN[s])

• The order of this iteration does not matter
– This is sometimes called chaotic iteration

147

For comparison
• Set OUT[s] = ⊥ for all

statements s
• Set OUT[entry] = I

• Repeat until no values
change:
– For each statement s

with predecessors
p1, p2, … , pn:

• Set IN[s] = OUT[p1] ⨆
OUT[p2] ⨆ … ⨆ OUT[pn]

• Set OUT[s] = fs (IN[s])

• Set IN[s] = {} for all
statements s

• Set OUT[exit] = the set of
variables known to be live
on exit

• Repeat until no values
change:
– For each statement s of the

form a=b+c:
• Set OUT[s] = set union of IN[x]

for each successor x of s
• Set IN[s] = (OUT[s]-{a}) ∪ {b,c}

148

The dataflow framework

• This form of analysis is called the dataflow
framework

• Can be used to easily prove an analysis is
sound

• With certain restrictions, can be used to
prove that an analysis eventually
terminates
– Again, more on that later

149

Global constant propagation

• Constant propagation is an optimization
that replaces each variable that is known to
be a constant value with that constant

• An elegant example of the dataflow
framework

150

Global constant propagation

151

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global constant propagation

152

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global constant propagation

153

exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry

Constant propagation analysis
• In order to do a constant propagation, we need to

track what values might be assigned to a variable at
each program point

• Every variable will either
– Never have a value assigned to it,
– Have a single constant value assigned to it,
– Have two or more constant values assigned to it, or
– Have a known non-constant value.
– Our analysis will propagate this information

throughout a CFG to identify locations where a value is
constant

154

Properties of constant
propagation

• For now, consider just some single variable x
• At each point in the program, we know one of three

things about the value of x:
– x is definitely not a constant, since it's been assigned two

values or assigned a value that we know isn't a constant
– x is definitely a constant and has value k
– We have never seen a value for x

• Note that the first and last of these are not the same!
– The first one means that there may be a way for x to have

multiple values
– The last one means that x never had a value at all

155

Defining a join operator
• The join of any two different constants is Not-a-Constant

– (If the variable might have two different values on entry to a
statement, it cannot be a constant)

• The join of Not a Constant and any other value is Not-a-
Constant
– (If on some path the value is known not to be a constant, then on

entry to a statement its value can't possibly be a constant)
• The join of Undefined and any other value is that other value

– (If x has no value on some path and does have a value on some
other path, we can just pretend it always had the assigned value)

156

A semilattice for constant propagation
• One possible semilattice for this analysis is

shown here (for each variable):

157

Undefined

0-1-2 1 2

Not-a-constant

The lattice is infinitely wide

A semilattice for constant propagation
• One possible semilattice for this analysis is

shown here (for each variable):

158

Undefined

0-1-2 1 2

Not-a-constant

• Note:
• The join of any two different constants is Not-a-Constant
• The join of Not a Constant and any other value is Not-a-Constant
• The join of Undefined and any other value is that other value

Global constant propagation

159

exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry

Global constant propagation

160

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

x=Undefined
y=Undefined
z=Undefined
w=Undefined

Global constant propagation

161

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

Global constant propagation

162

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
Undefined

entry
Undefined

Global constant propagation

163

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined

Global constant propagation

164

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined

Global constant propagation

165

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

166

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

167

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

y=6 ⨆ y=Undefined
gives what?

Global constant propagation

168

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

169

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

170

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

171

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

172

exit x = 4;
Undefined

x=y=w=6
z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

173

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

174

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

175

exit
x=y=w=z=6
x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

176

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

177

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

178

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

179

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

180

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

181

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

x=6 ⨆ x=4 gives
what?

Global constant propagation

182

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6, x=⊤
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

183

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

184

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

185

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

186

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global analysis
reached fixpoint

Global constant propagation

187

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

188

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global constant propagation

189

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Why y=6?

Dataflow for constant
propagation

• Direction: Forward
• Semilattice: Varsà {Undefined, 0, 1, -1, 2, -2, …, Not-a-

Constant}
– Join mapping for variables point-wise

{x↦1,y ↦ 1,z ↦ 1} ⨆ {x ↦ 1,y ↦ 2,z ↦ Not-a-Constant} =
{x ↦ 1,y ↦ Not-a-Constant,z ↦ Not-a-Constant}

• Transfer functions:
– fx=k(V) = V|x ↦ k (update V by mapping x to k)
– fx=a+b(V) = V|x ↦ Not-a-Constant (assign Not-a-Constant)

• Initial value: x is Undefined
– (When might we use some other value?)

190

Proving termination

• Our algorithm for running these analyses
continuously loops until no changes are
detected

• Given this, how do we know the analyses
will eventually terminate?
– In general, we don‘t

191

Terminates?

192

Liveness Analysis

• A variable is live at a point in a program if
later in the program its value will be read
before it is written to again

193

Join semilattice definition
• A join semilattice is a pair (V, ⨆), where
• V is a domain of elements
• ⨆ is a join operator that is

– commutative: x ⨆ y = y ⨆ x
– associative: (x ⨆ y) ⨆ z = x ⨆ (y ⨆ z)
– idempotent: x ⨆ x = x

• If x ⨆ y = z, we say that z is the join
or (Least Upper Bound) of x and y

• Every join semilattice has a bottom element
denoted ⊥ such that ⊥ ⨆ x = x for all x

194

Partial ordering induced by join

• Every join semilattice (V, ⨆) induces an
ordering relationship ⊑ over its elements

• Define x ⊑ y iff x 7 y = y

• Need to prove
– Reflexivity: x ⊑ x

– Antisymmetry: If x ⊑ y and y ⊑ x, then x = y

– Transitivity: If x ⊑ y and y ⊑ z, then x ⊑ z

195

A join semilattice for liveness
• Sets of live variables and the set union operation
• Idempotent:

– x ∪ x = x
• Commutative:

– x ∪ y = y ∪ x
• Associative:

– (x ∪ y) ∪ z = x ∪ (y ∪ z)
• Bottom element:

– The empty set: Ø ∪ x = x
• Ordering over elements = subset relation

196

Join semilattice example for liveness

197

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom
element

Dataflow framework

• A global analysis is a tuple (D, V, ⨆, F, I),
where
– D is a direction (forward or backward)

• The order to visit statements within a basic block,
NOT the order in which to visit the basic blocks

– V is a set of values (sometimes called domain)
– ⨆ is a join operator over those values
– F is a set of transfer functions fs : V à V

(for every statement s)
– I is an initial value

198

Running global analyses

• Assume that (D, V, ⨆, F, I) is a forward analysis
• For every statement s maintain values before - IN[s] - and after

- OUT[s]
• Set OUT[s] = ⊥ for all statements s
• Set OUT[entry] = I
• Repeat until no values change:

– For each statement s with predecessors
PRED[s]={p1, p2, … , pn}

• Set IN[s] = OUT[p1] ⨆ OUT[p2] ⨆ … ⨆ OUT[pn]
• Set OUT[s] = fs(IN[s])

• The order of this iteration does not matter
– Chaotic iteration

199

Proving termination

• Our algorithm for running these analyses
continuously loops until no changes are
detected

• Problem: how do we know the analyses will
eventually terminate?

200

A non-terminating analysis

• The following analysis will loop infinitely on
any CFG containing a loop:

• Direction: Forward
• Domain: ℕ
• Join operator: max
• Transfer function: f(n) = n + 1
• Initial value: 0

201

A non-terminating analysis

202

start

end

x ++

Initialization

203

start

end

x ++
0

0

Fixed-point iteration

204

start

end

x ++
0

0

Choose a block

205

start

end

x ++
0

0

Iteration 1

206

start

end

x ++
0

0

0

Iteration 1

207

start

end

x ++
1

0

0

Choose a block

208

start

end

x ++
1

0

0

Iteration 2

209

start

end

x ++
1

0

0

Iteration 2

210

start

end

x ++
1

0

1

Iteration 2

211

start

end

x ++
2

0

1

Choose a block

212

start

end

x ++
2

0

1

Iteration 3

213

start

end

x ++
2

0

1

Iteration 3

214

start

end

x ++
2

0

2

Iteration 3

215

start

end

x ++
3

0

2

Why doesn’t this terminate?
• Values can increase without bound
• Note that “increase” refers to the lattice

ordering, not the ordering on the natural
numbers

• The height of a semilattice is the length of the
longest increasing sequence in that semilattice

• The dataflow framework is not guaranteed to
terminate for semilattices of infinite height

• Note that a semilattice can be infinitely large
but have finite height
– e.g. constant propagation

216

0

1

2

3

4

...

Height of a lattice

• An increasing chain is a sequence of elements
⊥⊑ a1 ⊑ a2 ⊑ … ⊑ ak
– The length of such a chain is k

• The height of a lattice is the length of the maximal
increasing chain

• For liveness with n program variables:
– {}⊆{v1} ⊆ {v1,v2} ⊆ … ⊆ {v1,…,vn}

• For available expressions it is the number of
expressions of the form a=b op c
– For n program variables and m operator types:mn3

217

Another non-terminating
analysis

• This analysis works on a finite-height
semilattice, but will not terminate on
certain CFGs:

• Direction: Forward
• Domain: Boolean values true and false
• Join operator: Logical OR
• Transfer function: Logical NOT
• Initial value: false

218

A non-terminating analysis

219

start

end

x = !x

A non-terminating analysis

220

start

end

x = !x

Initialization

221

start

end

x = !xfalse

false

Fixed-point iteration

222

start

end

x = !xfalse

false

Choose a block

223

start

end

x = !xfalse

false

Iteration 1

224

start

end

x = !xfalse

false

false

Iteration 1

225

start

end

x = !xtrue

false

false

Iteration 2

226

start

end

x = !xtrue

false

true

Iteration 2

227

start

end

x = !xfalse

false

true

Iteration 3

228

start

end

x = !xfalse

false

false

Iteration 3

229

start

end

x = !xtrue

false

false

Why doesn’t it terminate?
• Values can loop indefinitely
• Intuitively, the join operator keeps pulling

values up
• If the transfer function can keep pushing

values back down again, then the values
might cycle forever

230

false

true

false

true

false

...

Why doesn’t it terminate?
• Values can loop indefinitely
• Intuitively, the join operator keeps pulling

values up
• If the transfer function can keep pushing

values back down again, then the values
might cycle forever

• How can we fix this?

231

false

true

false

true

false

...

Monotone transfer functions

• A transfer function f is monotone iff
if x ⊑ y, then f(x) ⊑ f(y)

• Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

• Many transfer functions are monotone, including
those for liveness and constant propagation

• Note: Monotonicity does not mean that x ⊑ f(x)
– (This is a different property called extensivity)

232

Liveness and monotonicity

• A transfer function f is monotone iff
if x ⊑ y, then f(x) ⊑ f(y)

• Recall our transfer function for a = b + c is
– fa = b + c(V) = (V – {a}) ∪ {b, c}

• Recall that our join operator is set union
and induces an ordering relationship

X ⊑ Y iff X ⊆Y
• Is this monotone?

233

Is constant propagation monotone?
• A transfer function f is monotone iff

if x ⊑y, then f(x) ⊑ f(y)
• Recall our transfer functions

– fx=k(V) = V[x↦k] (update V by mapping x to k)
– fx=a+b(V) = V[x↦Not-a-Constant] (assign Not-a-

Constant)
• Is this monotone?

234Undefined

0-1-2 1 2

Not-a-constant

The grand result

• Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone
transfer functions always terminates

• Proof sketch:
– The join operator can only bring values up
– Transfer functions can never lower values back

down below where they were in the past
(monotonicity)

– Values cannot increase indefinitely (finite height)

235

An “optimality” result

• A transfer function f is distributive if
f(a ⨆ b) = f(a) ⨆ f(b)

for every domain elements a and b
• If all transfer functions are distributive then

the fixed-point solution is the solution that
would be computed by joining results from all
(potentially infinite) control-flow paths
– Join over all paths

• Optimal if we ignore program conditions

236

An “optimality” result
• A transfer function f is distributive if

f(a ⨆ b) = f(a) ⨆ f(b)
for every domain elements a and b

• If all transfer functions are distributive then the
fixed-point solution is equal to the solution
computed by joining results from all (potentially
infinite) control-flow paths
– Join over all paths

• Optimal if we pretend all control-flow paths can be
executed by the program

• Which analyses use distributive functions?

237

Loop optimizations
• Most of a program’s computations are done inside

loops
– Focus optimizations effort on loops

• The optimizations we’ve seen so far are independent of
the control structure

• Some optimizations are specialized to loops
– Loop-invariant code motion
– (Strength reduction via induction variables)

• Require another type of analysis to find out where
expressions get their values from
– Reaching definitions

• (Also useful for improving register allocation)

238

Loop invariant computation

239

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

Loop invariant computation

240

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

t*4 and y+z
have same value on
each iteration

Code hoisting

241

x < w

endx = x + 1

start

y = …
t = …
z = …
y = t * 4
w = y + z

What reasoning did we use?

242

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

y is defined inside loop but it
is loop invariant since t*4 is
loop-invariant

Both t and z are defined
only outside of loop

constants are trivially
loop-invariant

What about now?

243

y = t * 4
x < y + z

endx = x + 1
t = t + 1

start
y = …
t = …
z = …

Now t is not loop-invariant
and so are t*4 and y

Loop-invariant code motion

• d: t = a1 op a2
– d is a program location

• a1 op a2 loop-invariant (for a loop L) if computes the
same value in each iteration
– Hard to know in general

• Conservative approximation
– Each ai is a constant, or
– All definitions of ai that reach d are outside L, or
– Only one definition of of ai reaches d, and is loop-invariant

itself
• Transformation: hoist the loop-invariant code outside

of the loop

244

Reaching definitions analysis
• A definition d: t = … reaches a program location if there is a

path from the definition to the program location, along which
the defined variable is never redefined

245

Reaching definitions analysis
• A definition d: t = … reaches a program location if there is a

path from the definition to the program location, along which
the defined variable is never redefined

• Direction: Forward
• Domain: sets of program locations that are definitions `
• Join operator: union
• Transfer function:

fd: a=b op c(RD) = (RD - defs(a)) ∪ {d}
fd: not-a-def(RD) = RD

– Where defs(a) is the set of locations defining a (statements of the
form a=...)

• Initial value: {}

246

Reaching definitions analysis

247

d4: y = t * 4

d4:x < y + z

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end
{}

Reaching definitions analysis

248

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end
{}

Initialization

249

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

Iteration 1

250

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

{}

Iteration 1

251

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{}

{}

{}

Iteration 2

252

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration 2

253

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration 2

254

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}

Iteration 2

255

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration 3

256

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration 3

257

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration 4

258

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration 4

259

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration 4

260

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration 5

261

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration 6

262

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Which expressions are loop invariant?

263

t is defined only in
d2 – outside of loop

z is defined only in
d3 – outside of loop

y is defined only in d4 – inside
of loop but depends on t and
4, both loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{d2, d3, d4, d5}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x is defined only in d5 –
inside of loop so is not a
loop-invariant

Inferring loop-invariant
expressions

• For a statement s of the form t = a1 op a2
• A variable ai is immediately loop-invariant if all

reaching definitions IN[s]={d1,…,dk} for ai are
outside of the loop

• LOOP-INV = immediately loop-invariant variables
and constants
LOOP-INV = LOOP-INV 4 {x | d: x = a1 op a2, d is in
the loop, and both a1 and a2 are in LOOP-INV}
– Iterate until fixed-point

• An expression is loop-invariant if all operands are
loop-invariants

264

Computing LOOP-INV

265

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {T}

Computing LOOP-INV

266

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t}

Computing LOOP-INV

267

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}

Computing LOOP-INV

268

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}

Computing LOOP-INV

269

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

(immediately)
LOOP-INV = {t, z}

270

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}
LOOP-INV = {t, z}

d4: y = t * 4

x < y + z

d5: x = x + 1

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Computing LOOP-INV

Computing LOOP-INV

271

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

LOOP-INV = {t, z, y}

Induction variables

272

while (i < x) {
j = a + 4 * i
a[j] = j
i = i + 1

}
i is incremented by a loop-
invariant expression on each
iteration – this is called an
induction variable

j is a linear function of
the induction variable
with multiplier 4

Strength-reduction

273

j = a + 4 * i
while (i < x) {

j = j + 4
a[j] = j
i = i + 1

}

Prepare initial
value

Increment by
multiplier

Compilation
0368-3133

Lecture 10b

Register Allocation
Noam Rinetzky

274

Registers

• Dedicated memory locations that
– can be accessed quickly,
– can have computations performed on them, and

Registers

• Dedicated memory locations that
– can be accessed quickly,
– can have computations performed on them, and

• Usages
– Operands of instructions
– Store temporary results
– Can (should) be used as loop indexes due to frequent

arithmetic operation
– Used to manage administrative info

• e.g., runtime stack

Register allocation

• Number of registers is limited

• Need to allocate them in a clever way
– Using registers intelligently is a critical step in

any compiler
• A good register allocator can generate code orders

of magnitude better than a bad register allocator

Register Allocation: IR

279

Source
code

(program)

Lexical
Analysis

Syntax
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target code

(executable)

Simple approach

• Problem: program execution very inefficient–
moving data back and forth between memory
and registers

x = y + z

mov 16(%ebp), %eax
mov 20(%ebp), %ebx
add %ebx, %eax
mov %eax, 24(%ebp)

• Straightforward solution:
• Allocate each variable in activation record
• At each instruction, bring values needed into

registers, perform operation, then store result to
memory

Register allocation
• In TAC, there is an unlimited number of

variables (temporaries)
• On a physical machine there is a small number

of registers:
– x86 has 4 general-purpose registers and a number

of specialized registers
– MIPS has 24 general-purpose registers and 8

special-purpose registers

• Register allocation is the process of assigning
variables to registers and managing data
transfer in and out of registers

simple code generation

• assume machine instructions of the form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• We will assume that we have all registers
available for any usage
– Ignore registers allocated for stack management
– Treat all registers as general-purpose

Fixed number of
Registers!

Plan

• Goal: Reduce number of temporaries
(registers)
– Machine-agnostic optimizations

• Assume unbounded number of registers
– Machine-dependent optimization

• Use at most K registers
• K is machine dependent

Generating Compound Expressions
• Use registers to store temporaries

– Why can we do it?

• Maintain a counter for temporaries in c
• Initially: c = 0
• cgen(e1 op e2) = {

Let A = cgen(e1)
c = c + 1
Let B = cgen(e2)
c = c + 1
Emit(_tc = A op B;) // _tc is a register
Return _tc

}

Why
Naïve?

Improving cgen for expressions
• Observation – naïve translation needlessly generates

temporaries for leaf expressions
• Observation – temporaries used exactly once

– Once a temporary has been read it can be reused for
another sub-expression

• cgen(e1 op e2) = {
Let _t1 = cgen(e1)
Let _t2 = cgen(e2)
Emit(_t1 =_t1 op _t2;)
Return _t1

}
• Temporaries cgen(e1) can be reused in cgen(e2)

Register Allocation

• Machine-agnostic optimizations
• Assume unbounded number of registers

– Expression trees
– Basic blocks

• Machine-dependent optimization
• K registers
• Some have special purposes

– Control flow graphs (whole program)

Sethi-Ullman translation

• Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC
– Minimizes number of temporaries for a single

expression

Example (optimized): b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Generalizations

• More than two arguments for operators
– Function calls

• Multiple effected registers
– Multiplication

• Spilling
– Need more registers than available

• Register/memory operations

Simple Spilling Method

• Heavy tree – Needs more registers than
available

• A “heavy” tree contains a “heavy” subtree
whose dependents are “light”

• Simple spilling
– Generate code for the light tree
– Spill the content into memory and replace

subtree by temporary
– Generate code for the resultant tree

Example (optimized): x:=b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Example (spilled): x := b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c

Register Memory Operations

• Add_Mem X, R1
• Mult_Mem X, R1
• No need for registers to store right

operands

Hidden Registers

Example: b*b-4*a*c

-

b b 4

a c

0 1

1

0 1

10

1

2

Mult_Mem Mult_Mem

Mult_Mem

Can We do Better?

• Yes: Increase view of code
– Simultaneously allocate registers for multiple

expressions

• But: Lose per expression optimality
– Works well in practice

Register Allocation

• Machine-agnostic optimizations
• Assume unbounded number of registers

– Expression trees
– Basic blocks

• Machine-dependent optimization
• K registers
• Some have special purposes

– Control flow graphs (whole program)

Basic Blocks
• basic block is a sequence of instructions with

– single entry (to first instruction), no jumps to the middle
of the block

– single exit (last instruction)
– code execute as a sequence from first instruction to last

instruction without any jumps
• edge from one basic block B1 to another block B2

when the last statement of B1 may jump to B2

control flow graph

• A directed graph G=(V,E)

• nodes V = basic blocks

• edges E = control flow
– (B1,B2) Î E when control from B1

flows to B2

• Leaders-based construction
– Target of jump instructions

– Instructions following jumps

B1

B2
t1 := 4 * i
t2 := a [t1]
t3 := 4 * i
t4 := b [t3]
t5 := t2 * t4

t6 := prod + t5

prod := t6

t7 := i + 1
i := t7

if i <= 20 goto B2

prod := 0
i := 1

B1

B2

…

…

False

True

AST for a Basic Block
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Dependency graph{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Simplified Data
Dependency Graph

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Pseudo Register Target Code

Question: Why “y”?
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Question: Why “y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

Question: Why “y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

Question: Why “y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

y, dead or alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

x, dead or alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

Register Allocation for B.B.

• Dependency graphs for basic blocks
• Transformations on dependency graphs
• From dependency graphs into code

– Instruction selection
• linearizations of dependency graphs

– Register allocation
• At the basic block level

Dependency graphs
• TAC imposes an order of execution

– But the compiler can reorder assignments as
long as the program results are not changed

• Define a partial order on assignments
– a < b Û a must be executed before b
– Represented as a directed graph

• Nodes are assignments
• Edges represent dependency

– Acyclic for basic blocks

Running Example

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Sources of dependency

• Data flow inside expressions
– Operator depends on operands
– Assignment depends on assigned expressions

• Data flow between statements
– From assignments to their use

– Pointers complicate dependencies

Sources of dependency

• Order of subexpresion evaluation is
immaterial
– As long as inside dependencies are respected

• The order of uses of a variable X are
immaterial as long as:
– X is used between dependent assignments
– Before next assignment to X

Creating Dependency Graph
from AST

• Nodes AST becomes nodes of the graph
• Replaces arcs of AST by dependency arrows

– Operator ® Operand
– Create arcs from assignments to uses
– Create arcs between assignments of the same

variable
• Select output variables (roots)
• Remove ; nodes and their arrows

Running Example

Dependency Graph
Simplifications

• Short-circuit assignments
– Connect variables to assigned expressions
– Connect expression to uses

• Eliminate nodes not reachable from roots

Running Example

Cleaned-Up Data Dependency Graph

Common Subexpressions

• Repeated subexpressions
• Examples

x = a * a + 2 * a * b + b * b;
y = a * a – 2 * a * b + b * b;
n[i] := n[i] +m[i]

• Can be eliminated by the compiler
– In the case of basic blocks rewrite the DAG

From Dependency Graph into Code
• Linearize the dependency graph

– Instructions must follow dependency
• Many solutions exist
• Select the one with small runtime cost
• Assume infinite number of registers

– Symbolic registers
– Assign registers later

• May need additional spill
– Possible Heuristics

• Late evaluation
• Ladders

Pseudo Register Target Code

Non optimized vs Optimized Code

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Register Allocation

• Maps symbolic registers into physical
registers
– Reuse registers as much as possible
– Graph coloring (next)

• Undirected graph
• Nodes = Registers (Symbolic and real)
• Edges = Interference
• May require spilling

Register Allocation for Basic Blocks

• Heuristics for code generation of basic
blocks

• Works well in practice
• Fits modern machine architecture
• Can be extended to perform other tasks

– Common subexpression elimination
• But basic blocks are small
• Can be generalized to a procedure

The End

