Compilation

Lecture 9

Optimizations

Noam Rinetzky

Optimization points

Program Analysis

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called sound if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
 - (Why?)

A formalism for IR optimization

- Every phase of the compiler uses some new abstraction:
 - Scanning uses regular expressions
 - Parsing uses CFGs
 - Semantic analysis uses proof systems and symbol tables
 - IR generation uses ASTs
- In optimization, we need a formalism that captures the structure of a program in a way amenable to optimization

Visualizing IR

```
main:
   _tmp0 = Call _ReadInteger;
   a = tmp0;
    _tmp1 = Call _ReadInteger;
   b = tmp1;
L0:
   _{tmp2} = 0;
   _{tmp3} = b == _{tmp2};
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
   IfZ tmp5 Goto L1;
   c = a;
   a = b;
   _tmp6 = c % a;
   b = tmp6;
   Goto L0;
L1:
   Push a;
   Call PrintInt;
```

Visualizing IR

```
main:
   tmp0 = Call ReadInteger;
   a = tmp0;
    tmp1 = Call _ReadInteger;
   b = tmp1;
L0:
   _{tmp2} = 0;
   _{tmp3} = b == _{tmp2};
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
   IfZ _tmp5 Goto _L1;
   c = a;
   a = b;
   _tmp6 = c % a;
   b = tmp6;
   Goto L0;
L1:
   Push a;
   Call PrintInt;
```

Visualizing IR

```
main:
   tmp0 = Call ReadInteger;
   a = tmp0;
    tmp1 = Call _ReadInteger;
   b = tmp1;
L0:
   tmp2 = 0;
   tmp3 = b == tmp2;
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
   IfZ tmp5 Goto L1;
   c = a;
   a = b;
   tmp6 = c % a;
   b = tmp6;
   Goto L0;
L1:
   Push a;
   Call PrintInt;
```

```
start
   tmp0 = Call ReadInteger;
  a = tmp0;
  _tmp1 = Call _ReadInteger;
  b = tmp1;
    tmp2 = 0;
   tmp3 = b == tmp2;
   tmp4 = 0;
   tmp5 = tmp3 == tmp4;
   IfZ tmp5 Goto L1;
                   Push a;
c = a;
a = b;
                   Call PrintInt
tmp6 = c % a;
b = tmp6;
Goto L0;
                         end
```

Basic blocks

- A basic block is a sequence of IR instructions where
 - There is exactly one spot where control enters the sequence, which must be at the start of the sequence
 - There is exactly one spot where control leaves the sequence, which must be at the end of the sequence
- Informally, a sequence of instructions that always execute as a group

Control-Flow Graphs

- A control-flow graph (CFG) is a graph of the basic blocks in a function
- The term CFG is overloaded from here on out, we'll mean "control-flow graph" and not "context free grammar"
- Each edge from one basic block to another indicates that control can flow from the end of the first block to the start of the second block
- There is a dedicated node for the start and end of a function

Optimization path

Types of optimizations

- An optimization is local if it works on just a single basic block
- An optimization is global if it works on an entire control-flow graph
- An optimization is interprocedural if it works across the control-flow graphs of multiple functions
 - We won't talk about this in this course

Local Optimizations

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = a + b;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
For simplicity, ignore
                                                    Size of Object
                       Popping return value,
                                    tmp0 = 4;
Object x;
                         parameters etc.
int a;
                                   Push tmp0;
              Class Object {
int b;
               method fn(int);
                                    tmp1 = Call Alloc;
int c;
                                   tmp2 = ObjectC;
                                                          Object Class
                                   *(tmp1) = tmp2;
x = new Object;
                                   x = tmp1;
                                   tmp3 = 4;
a = 4;
                                   a = tmp3;
c = a + b;
                                   tmp4 = a + b;
x.fn(a + b);
                                   c = tmp4;
                                    tmp5 = a + b;
                                   tmp6 = *(x);
                                   tmp7 = *(tmp6);
                                   Push tmp5;
                                   Push x;
                                   Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = a + b;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
Object x;
int a;
int b;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = a + b;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
tmp0 = 4;
Object x;
int a;
                                Push tmp0;
             Class Object {
int b;
                                tmp1 = Call Alloc;
             method fn(int);
int c;
                               tmp2 = ObjectC;
                                *(tmp1) = tmp2;
x = new Object;
                                x = tmp1;
                                tmp3 = 4;
a = 4;
c = a + b;
                                a = tmp3;
                                tmp4 = a + b;
x.fn(a + b);
                                c = tmp4;
                                 tmp5 = a + b;
                     Points to ObjectC
                                = tmp6 = *(x);
                                tmp7 = *(tmp6);
                       Start of fn
                                Push tmp5;
                                Push x;
                                Call tmp7;
```

If we have two variable assignments
 v1 = a op b
 ...

v2 = a op b

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b

... v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

If we have two variable assignments v1 = a op b [or: v1 = a]
...
v2 = a op b [or: v2 = a]

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b [or: v1 = a]

... v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = a + b;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = 4;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = tmp4;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call _tmp7;
```

 If we have a variable assignment v1 = v2then as long as v1 and v2 are not reassigned, we can rewrite expressions of the form a = ... v1 ... as a = ... v2 ...provided that such a rewrite is legal

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*(tmp1) = tmp2;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(x);
tmp7 = *(tmp6);
Push tmp5;
Push x;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = a + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push tmp5;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = *(tmp1);
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

Is this transformation OK? What do we need to know?

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(tmp6);
Push c;
Push tmp1;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp3;
tmp4 = tmp3 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
tmp2 = ObjectC;
*( tmp1) = ObjectC;
x = tmp1;
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call _tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0
Push tmp0;
 tmp1 = Call Alloc;
tmp2 = ObjectC;
* ( tmp1) = ObjectC;
x = _{tmp1};
tmp3 = tmp0;
a = tmp0;
tmp4 = tmp0 + b;
c = tmp4;
tmp5 = c;
tmp6 = ObjectC;
 tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call tmp7;
```

```
Object x;
                              tmp0 = 4;
int a;
                              Push tmp0;
                              tmp1 = Call Alloc;
int b;
             values
                              tmp2 = ObjectC;
int c;
             never
                              *( tmp1) = ObjectC;
             read
                              x = tmp1;
x = new
                              tmp3 = tmp0;
Object;
a = 4;
                              a = tmp0;
                              tmp4 = tmp0 + b;
c = a + b;
x.fn(a + b);
                              c = tmp4;
                               tmp5 = c;
                               tmp6 = ObjectC;
             values
                              tmp7 = *(ObjectC);
             never
                              Push c;
             read
                              Push tmp1;
                              Call tmp7;
```

```
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
tmp0 = 4;
Push tmp0;
tmp1 = Call Alloc;
*( tmp1) = ObjectC;
_{tmp4} = _{tmp0} + b;
c = tmp4;
tmp7 = *(ObjectC);
Push c;
Push tmp1;
Call _tmp7;
```

Applying local optimizations

- The different optimizations we've seen so far all take care of just a small piece of the optimization
- Common subexpression elimination eliminates unnecessary statements
- Copy propagation helps identify dead code
- Dead code elimination removes statements that are no longer needed
- To get maximum effect, we may have to apply these optimizations numerous times

```
b = a * a;
c = a * a;
d = b + c;
e = b + b;
```

```
b = a * a;
c = a * a;
d = b + c;
e = b + b;
```

Which optimization should we apply here?

```
b = a * a;
c = b;
d = b + c;
e = b + b;
```

Which optimization should we apply here?

Common sub-expression elimination

```
b = a * a;
c = b;
d = b + c;
e = b + b;
```

Which optimization should we apply here?

```
b = a * a;
c = b;
d = b + b;
e = b + b;
```

Which optimization should we apply here?

```
b = a * a;
c = b;
d = b + b;
e = b + b;
```

Which optimization should we apply here?

```
b = a * a;
c = b;
d = b + b;
e = d;
```

Which optimization should we apply here?

Common sub-expression elimination (again)

Other types of local optimizations

Arithmetic Simplification

- Replace "hard" operations with easier ones
- e.g. rewrite x = 4 * a; as x = a << 2;

Constant Folding

- Evaluate expressions at compile-time if they have a constant value.
- e.g. rewrite x = 4 * 5; as x = 20;

Optimizations and analyses

- Most optimizations are only possible given some analysis of the program's behavior
- In order to implement an optimization, we will talk about the corresponding program analyses

Available expressions

- Both common subexpression elimination and copy propagation depend on an analysis of the available expressions in a program
- An expression is called available if some variable in the program holds the value of that expression
- In common subexpression elimination, we replace an available expression by the variable holding its value
- In copy propagation, we replace the use of a variable by the available expression it holds

Finding available expressions

- Initially, no expressions are available
- Whenever we execute a statement
 a = b op c:
 - Any expression holding a is invalidated
 - The expression a = b op c becomes available
- Idea: Iterate across the basic block, beginning with the empty set of expressions and updating available expressions at each variable

Available expressions example

```
a = b + 2;
 \{ a = b + 2 \}
b = x;
\{b = x\}
d = a + b;
 \{ b = x, d = a + b \}
e = a + b;
 \{b = x, d = a + b, e = a + b\}
d = x;
 \{b = x, d = x, e = a + b\}
f = a + b;
 \{b = x, d = x, e = a + b, f = a + b\}
```

Common sub-expression elimination

```
a = b + 2;
 \{ a = b + 2 \}
b = x;
\{b = x\}
d = a + b;
 \{ b = x, d = a + b \}
e = d;
 \{b = x, d = a + b, e = a + b\}
d = b;
 \{ b = x, d = x, e = a + b \}
f = e;
 \{b = x, d = x, e = a + b, f = a + b\}
```

Common sub-expression elimination

```
a = b + 2;
 \{ a = b + 2 \}
b = x;
\{b = x\}
d = a + b;
 \{ b = x, d = a + b \}
e = a + b;
 \{b = x, d = a + b, e = a + b\}
d = x;
 \{b = x, d = x, e = a + b\}
f = a + b;
 \{b = x, d = x, e = a + b, f = a + b\}
```

Live variables

- The analysis corresponding to dead code elimination is called liveness analysis
- A variable is live at a point in a program if later in the program its value will be read before it is written to again
- Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

Computing live variables

- To know if a variable will be used at some point, we iterate across the statements in a basic block in reverse order
- Initially, some small set of values are known to be live (which ones depends on the particular program)
- When we see the statement a = b op c:
 - Just before the statement, a is not alive, since its value is about to be overwritten
 - Just before the statement, both b and c are alive, since we're about to read their values
 - (what if we have a = a + b?)

```
{ b }
             Liveness analysis
a = b;
 { a, b }
c = a;
 { a, b }
d = a + b;
 { a, b, d }
e = d;
 { a, b, e }
d = a;
 { b, d, e }
f = e;
 { b, d } - given
```

```
Dead Code Elimination
a = b;
 { a, b }
c = a;
 { a, b }
d = a + b;
 { a, b, d }
e = d;
 { a, b, e }
d = a;
 { b, d, e }
f = e;
 { b, d }
```

```
Dead Code Elimination
a = b;
 { a, b }
{ a, b }
d = a + b;
 { a, b, d }
e = d;
 { a, b, e }
d = a;
 { b, d, e }
 { b, d }
```

```
Liveness analysis II
```

```
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

```
Liveness analysis II
```

```
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

```
Dead code elimination
```

```
{ a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b }
d = a;
{ b, d }
```

```
{ b }
        Dead code elimination
a = b;
{ a, b }
d = a + b;
 { a, b, d }
 { a, b }
d = a;
 { b, d }
```

```
{ b }
           Liveness analysis III
a = b;
                  Which statements are dead?
 { a, b }
d = a + b;
 { a, b }
d = a;
 { b, d }
```

```
{ b }
        Dead code elimination
a = b;
                 Which statements are dead?
{ a, b }
d = a + b;
 { a, b }
d = a;
```

{ b, d }

```
Dead code elimination
a = b;
 { a, b }
{ a, b }
d = a;
```

{ b, d }

Dead code elimination

a = b;

If we further apply copy propagation this statement can be eliminated too

$$d = a;$$

Formalizing local analyses

Available Expressions

Live Variables

$$V_{in} = (V_{out} \setminus \{a\}) \cup \{b,c\}$$

Live Variables

$$V_{in} = (V_{out} \setminus \{a\}) \cup \{b,c\}$$

Information for a local analysis

- What direction are we going?
 - Sometimes forward (available expressions)
 - Sometimes backward (liveness analysis)
- How do we update information after processing a statement?
 - What are the new semantics?
 - What information do we know initially?

Formalizing local analyses

- Define an analysis of a basic block as a quadruple (D, V, F, I) where
 - D is a direction (forwards or backwards)
 - V is a set of values the program can have at any point
 - F is a family of transfer functions defining the meaning of any expression as a function f : V → V
 - I is the initial information at the top (or bottom) of a basic block

Available Expressions

- **Direction:** Forward
- Values: Sets of expressions assigned to variables
- Transfer functions: Given a set of variable assignments V and statement a = b + c:
 - Remove from V any expression containing a as a subexpression
 - Add to V the expression a = b + c
 - Formally: $\bigvee_{out} = (\bigvee_{in} \setminus \{e \mid e \text{ contains } \mathbf{a}\}) \cup \{a = b + c\}$
- Initial value: Empty set of expressions

Liveness Analysis

- Direction: Backward
- Values: Sets of variables
- Transfer functions: Given a set of variable assignments V and statement a = b + c:
- Remove a from V (any previous value of a is now dead.)
- Add b and c to V (any previous value of b or c is now live.)
- Formally: V_{in} = (V_{out} \ {a}) ∪ {b, c}
- Initial value: Depends on semantics of language
 - E.g., function arguments and return values (pushes)
 - Result of local analysis of other blocks as part of a global analysis

Running local analyses

- Given an analysis (D, V, F, I) for a basic block
- Assume that **D** is "forward;" analogous for the reverse case
- Initially, set OUT[entry] to I
- For each statement s, in order:
 - Set IN[s] to OUT[prev], where prev is the previous statement
 - Set OUT[s] to f_s(IN[s]), where f_s is the transfer function for statement s

Global Optimizations

High-level goals

- Generalize analysis mechanism
 - Reuse common ingredients for many analyses
 - Reuse proofs of correctness
- Generalize from basic blocks to entire CFGs
 - Go from local optimizations to global optimizations

Global analysis

- A global analysis is an analysis that works on a control-flow graph as a whole
- Substantially more powerful than a local analysis
 - (Why?)
- Substantially more complicated than a local analysis
 - (Why?)

Local vs. global analysis

- Many of the optimizations from local analysis can still be applied globally
 - Common sub-expression elimination
 - Copy propagation
 - Dead code elimination
- Certain optimizations are possible in global analysis that aren't possible locally:
 - e.g. code motion: Moving code from one basic block into another to avoid computing values unnecessarily
- Example global optimizations:
 - Global constant propagation
 - Partial redundancy elimination

Loop invariant code motion example

```
while (t < 120) {
    z = z + x - y;
}

value of expression x - y is
    not changed by loop body</pre>
```

Why global analysis is hard

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value (but the analysis still needs to terminate!)
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global dead code elimination

- Local dead code elimination needed to know what variables were live on exit from a basic block
- This information can only be computed as part of a global analysis
- How do we modify our liveness analysis to handle a CFG?

Major changes – part 1

- In a local analysis, each statement has exactly one predecessor
- In a global analysis, each statement may have multiple predecessors
- A global analysis must have some means of combining information from all predecessors of a basic block


```
{a, c, d}
 Entry
                   {a, b, c, d}
{b, c, d}
                                    {a, b, c, d}
a = b + c;
                                     {a, b, c, d}
{a, b, c, d}
                   {a, b, c, d}
                   x = a + b;
                   y = c + d;
                     \{x, y\}
                      Exit
```

Major changes – part 2

- In a local analysis, there is only one possible path through a basic block
- In a global analysis, there may be many paths through a CFG
- May need to recompute values multiple times as more information becomes available
- Need to be careful when doing this not to loop infinitely!
 - (More on that later)
- Can order of computation affect result?

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program
- Sound approximation: Assume that every possible path through the CFG corresponds to a valid execution
 - Includes all realizable paths, but some additional paths as well
 - May make our analysis less precise (but still sound)
 - Makes the analysis feasible; we'll see how later

Major changes – part 3

- In a local analysis, there is always a well defined "first" statement to begin processing
- In a global analysis with loops, every basic block might depend on every other basic block
- To fix this, we need to assign initial values to all of the blocks in the CFG

CFGs with loops - initialization

Summary of differences

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value
 - But the analysis still needs to terminate!
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global liveness analysis

- Initially, set IN[s] = { } for each statement s
- Set IN[exit] to the set of variables known to be live on exit (language-specific knowledge)
- Repeat until no changes occur:
 - For each statement s of the form a = b + c, in any order you'd like:
 - Set OUT[s] to set union of IN[p] for each successor p of s
 - Set IN[s] to $(OUT[s] a) \cup \{b, c\}$.
- Yet another fixed-point iteration!

Global liveness analysis

Why does this work?

- To show correctness, we need to show that
 - The algorithm eventually terminates, and
 - When it terminates, it has a sound answer
- Termination argument:
 - Once a variable is discovered to be live during some point of the analysis, it always stays live
 - Only finitely many variables and finitely many places where a variable can become live
- Soundness argument (sketch):
 - Each individual rule, applied to some set, correctly updates liveness in that set
 - When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

Abstract Interpretation

Theoretical foundations of program analysis

Cousot and Cousot 1977

- Abstract meaning of programs
 - Executed at compile time

Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

Properties of local analysis

- The only way to find out what a program will actually do is to run it
- Problems:
 - The program might not terminate
 - The program might have some behavior we didn't see when we ran it on a particular input
- However, this is not a problem inside a basic block
 - Basic blocks contain no loops
 - There is only one path through the basic block

Assigning new semantics

- Example: Available Expressions
- Redefine the statement a = b + c to mean
 "a now holds the value of b + c, and any
 variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

Theory to the rescue

- Building up all of the machinery to design this analysis was tricky
- The key ideas, however, are mostly independent of the analysis:
 - We need to be able to compute functions describing the behavior of each statement
 - We need to be able to merge several subcomputations together
 - We need an initial value for all of the basic blocks
- There is a beautiful formalism that captures many of these properties

Join semilattices

- A join semilattice is a ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
 - The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

Join semilattice for liveness

What is the join of {b} and {c}?

What is the join of {b} and {c}?

What is the join of {b} and {a,c}?

What is the join of {b} and {a,c}?

What is the join of {a} and {a,b}?

What is the join of {a} and {a,b}?

Formal definitions

- A join semilattice is a pair (V, □), where
- V is a domain of elements
- ☐ is a join operator that is
 - commutative: $x \sqcup y = y \sqcup x$
 - associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
 - idempotent: $x \sqcup x = x$
- If $x \sqcup y = z$, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted \bot such that $\bot \bigsqcup x = x$ for all x

Join semilattices and ordering

Join semilattices and ordering

Join semilattices and orderings

- Every join semilattice (V, □) induces an ordering relationship □ over its elements
- Define $x \sqsubseteq y$ iff $x \sqcup y = y$
- Need to prove
 - Reflexivity: $x \sqsubseteq x$
 - Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y
 - Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

An example join semilattice

- The set of natural numbers and the max function
- Idempotent
 - $\max\{a, a\} = a$
- Commutative
 - $\max\{a, b\} = \max\{b, a\}$
- Associative
 - $\max\{a, \max\{b, c\}\} = \max\{\max\{a, b\}, c\}$
- Bottom element is 0:
 - $\max\{0, a\} = a$
- What is the ordering over these elements?

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:
 - $x \cup x = x$
- Commutative:
 - $x \cup y = y \cup x$
- Associative:
 - $(x \cup y) \cup z = x \cup (y \cup z)$
- Bottom element:
 - The empty set: $\emptyset \cup x = x$
- What is the ordering over these elements?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- What value do we give to basic blocks we haven't seen yet?
- How do we know that the algorithm always terminates?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
 - Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
 - Use the bottom element
- How do we know that the algorithm always terminates?
 - Actually, we still don't! More on that later

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
 - Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
 - Use the bottom element
- How do we know that the algorithm always terminates?
 - Actually, we still don't! More on that later

A general framework

- A global analysis is a tuple (D, V, \sqsubseteq , F, I), where
 - D is a direction (forward or backward)
 - The order to visit statements within a basic block, not the order in which to visit the basic blocks
 - V is a set of values
 - — ☐ is a join operator over those values
 - F is a set of transfer functions $f: V \rightarrow V$
 - I is an initial value
- The only difference from local analysis is the introduction of the join operator

Running global analyses

- Assume that (D, V, \sqcup, F, I) is a forward analysis
- Set OUT[s] = ⊥ for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement **s** with predecessors $\mathbf{p_1}$, $\mathbf{p_2}$, ..., $\mathbf{p_n}$:
 - Set $IN[s] = OUT[p_1] \sqcup OUT[p_2] \sqcup ... \sqcup OUT[p_n]$
 - Set OUT[s] = f_s (IN[s])
- The order of this iteration does not matter
 - This is sometimes called chaotic iteration

For comparison

- Set OUT[s] = ⊥ for all statements s
- Set OUT[entry] = I

- Repeat until no values change:
 - For each statement s
 with predecessors
 - **p**₁, **p**₂, ... , **p**_n:
 - Set IN[s] = OUT[p₁] ∐
 OUT[p₂] ∐ ... ∐ OUT[pₙ]
 - Set OUT[s] = f_s (IN[s])

- Set IN[s] = {} for all statements s
- Set OUT[exit] = the set of variables known to be live on exit
- Repeat until no values change:
 - For each statement s of the form a=b+c:
 - Set OUT[s] = set union of IN[x] for each successor x of s
 - Set IN[s] = (OUT[s]-{a}) U {b,c}

The dataflow framework

- This form of analysis is called the dataflow framework
- Can be used to easily prove an analysis is sound
- With certain restrictions, can be used to prove that an analysis eventually terminates
 - Again, more on that later

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

Constant propagation analysis

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point
- Every variable will either
 - Never have a value assigned to it,
 - Have a single constant value assigned to it,
 - Have two or more constant values assigned to it, or
 - Have a known non-constant value.
 - Our analysis will propagate this information throughout a CFG to identify locations where a value is constant

Properties of constant propagation

- For now, consider just some single variable x
- At each point in the program, we know one of three things about the value of x:
 - x is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant
 - x is definitely a constant and has value k
 - We have never seen a value for x
- Note that the first and last of these are **not** the same!
 - The first one means that there may be a way for x to have multiple values
 - The last one means that x never had a value at all

Defining a join operator

- The join of any two different constants is Not-a-Constant
 - (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-a-Constant
 - (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of **Undefined** and any other value is that other value
 - (If x has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

A semilattice for constant propagation

 One possible semilattice for this analysis is shown here (for each variable):

The lattice is infinitely wide

A semilattice for constant propagation

 One possible semilattice for this analysis is shown here (for each variable):

- Note:
 - The join of any two different constants is Not-a-Constant
 - The join of Not a Constant and any other value is Not-a-Constant
 - The join of Undefined and any other value is that other value

Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars → {Undefined, 0, 1, -1, 2, -2, ..., Not-a-Constant}
 - Join mapping for variables point-wise
 {x → 1,y → 1,z → 1} ∐ {x → 1,y → 2,z → Not-a-Constant} =
 {x → 1,y → Not-a-Constant,z → Not-a-Constant}
- Transfer functions:
 - $f_{\mathbf{x}=\mathbf{k}}(V) = V|_{X \mapsto k}$ (update V by mapping x to k)
 - $f_{x=a+b}(V) = V|_{x \mapsto Not-a-Constant}$ (assign Not-a-Constant)
- Initial value: x is Undefined
 - (When might we use some other value?)

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
 - In general, we don't

Terminates?

Liveness Analysis

 A variable is live at a point in a program if later in the program its value will be read before it is written to again

Join semilattice definition

- A join semilattice is a pair (V, □), where
- V is a domain of elements
- ☐ is a join operator that is
 - commutative: $x \coprod y = y \coprod x$
 - associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
 - idempotent: $x \sqcup x = x$
- If $x \sqcup y = z$, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted \bot such that $\bot \bigsqcup x = x$ for all x

Partial ordering induced by join

- Every join semilattice (V, □) induces an ordering relationship □ over its elements
- Define $x \sqsubseteq y$ iff $x \sqcup y = y$
- Need to prove
 - Reflexivity: $x \sqsubseteq x$
 - Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y
 - Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:
 - x U x = x
- Commutative:
 - $x \cup y = y \cup x$
- Associative:
 - $(x \cup y) \cup z = x \cup (y \cup z)$
- Bottom element:
 - The empty set: $\emptyset \cup x = x$
- Ordering over elements = subset relation

Join semilattice example for liveness

Dataflow framework

- A global analysis is a tuple (D, V, \coprod , F, I), where
 - D is a direction (forward or backward)
 - The order to visit statements within a basic block,
 NOT the order in which to visit the basic blocks
 - V is a set of values (sometimes called domain)
 - — ☐ is a join operator over those values
 - F is a set of transfer functions $f_s: \mathbf{V} \to \mathbf{V}$ (for every statement s)
 - I is an initial value

Running global analyses

- Assume that (D, V, \sqcup, F, I) is a forward analysis
- For every statement s maintain values before IN[s] and after OUT[s]
- Set OUT[s] = ⊥ for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement **s** with predecessors $PRED[s]=\{p_1, p_2, ..., p_n\}$
 - Set $IN[s] = OUT[p_1] \sqcup OUT[p_2] \sqcup ... \sqcup OUT[p_n]$
 - Set OUT[s] = $f_s(IN[s])$
- The order of this iteration does not matter
 - Chaotic iteration

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

A non-terminating analysis

- The following analysis will loop infinitely on any CFG containing a loop:
- Direction: Forward
- Domain: N
- Join operator: max
- Transfer function: f(n) = n + 1
- Initial value: 0

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Choose a block

Choose a block

Why doesn't this terminate?

- Values can increase without bound
- Note that "increase" refers to the lattice ordering, not the ordering on the natural numbers
- The height of a semilattice is the length of the longest increasing sequence in that semilattice
- The dataflow framework is not guaranteed to terminate for semilattices of infinite height
- Note that a semilattice can be infinitely large but have finite height
 - e.g. constant propagation

Height of a lattice

- An increasing chain is a sequence of elements $\bot \sqsubseteq a_1 \sqsubseteq a_2 \sqsubseteq ... \sqsubseteq a_k$
 - The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with *n* program variables:
 - $\{\} \subseteq \{v_1\} \subseteq \{v_1, v_2\} \subseteq ... \subseteq \{v_1, ..., v_n\}$
- For available expressions it is the number of expressions of the form a=b op c
 - For n program variables and m operator types:mn³

Another non-terminating analysis

- This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:
- Direction: Forward
- Domain: Boolean values true and false
- Join operator: Logical OR
- Transfer function: Logical NOT
- Initial value: false

A non-terminating analysis

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?

Monotone transfer functions

- A transfer function f is monotone iff if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does **not** mean that $x \sqsubseteq f(x)$
 - (This is a different property called extensivity)

Liveness and monotonicity

- A transfer function f is monotone iff if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
- Recall our transfer function for $\mathbf{a} = \mathbf{b} + \mathbf{c}$ is $-f_{a=b+c}(V) = (V \{a\}) \cup \{b, c\}$
- Recall that our join operator is set union and induces an ordering relationship
 X □ Y iff X □ Y
- Is this monotone?

Is constant propagation monotone?

- A transfer function f is monotone iff if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$
- Recall our transfer functions
 - $f_{x=k}(V) = V[x \mapsto k]$ (update V by mapping x to k)
 - $f_{x=a+b}(V)$ = V[x→Not-a-Constant] (assign Not-a-Constant)
- Is this monotone?

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
 - The join operator can only bring values up
 - Transfer functions can never lower values back down below where they were in the past (monotonicity)
 - Values cannot increase indefinitely (finite height)

An "optimality" result

- A transfer function f is distributive if $f(a \sqcup b) = f(a) \sqcup f(b)$ for every domain elements a and b
- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths
 - Join over all paths
- Optimal if we ignore program conditions

An "optimality" result

- A transfer function f is distributive if $f(a \sqcup b) = f(a) \sqcup f(b)$ for every domain elements a and b
- If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths
 - Join over all paths
- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

Loop optimizations

- Most of a program's computations are done inside loops
 - Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
 - Loop-invariant code motion
 - (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
 - Reaching definitions
 - (Also useful for improving register allocation)

Loop invariant computation

Loop invariant computation

Code hoisting

What reasoning did we use?

What about now?

Loop-invariant code motion

- d: t = a_1 op a_2
 - d is a program location
- a_1 op a_2 loop-invariant (for a loop L) if computes the same value in each iteration
 - Hard to know in general
- Conservative approximation
 - Each a_i is a constant, or
 - All definitions of a_i that reach d are outside L, or
 - Only one definition of of a_i reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

 A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined

- A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions `
- Join operator: union
- Transfer function:

```
f_{d: a=b \ op \ c}(RD) = (RD - defs(a)) \cup \{d\}

f_{d: \ not-a-def}(RD) = RD
```

- Where defs(a) is the set of locations defining a (statements of the form a=...)
- Initial value: {}

Initialization

Which expressions are loop invariant?

Inferring loop-invariant expressions

- For a statement s of the form $t = a_1$ op a_2
- A variable a_i is immediately loop-invariant if all reaching definitions $IN[s] = \{d_1, ..., d_k\}$ for a_i are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants LOOP-INV = LOOP-INV ∪ {x | d: x = a₁ op a₂, d is in the loop, and both a₁ and a₂ are in LOOP-INV}
 - Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants

Induction variables

j is a linear function of the induction variable with multiplier 4

```
while (i < x) {
    j = a + 4 * i
    a[j] = j
    i = i + 1
}</pre>
```

i is incremented by a loopinvariant expression on each iteration – this is called an induction variable

Strength-reduction

```
Prepare initial value

j = a + 4 * i

while (i < x) Increment by multiplier

a[j] = j

i = i + 1

}
```

Compilation

0368-3133 Lecture 10b

Register Allocation

Noam Rinetzky

Registers

- Dedicated memory locations that
 - can be accessed quickly,
 - can have computations performed on them, and

Registers

Dedicated memory locations that

- can be accessed quickly,
- can have computations performed on them, and

Usages

- Operands of instructions
- Store temporary results
- Can (should) be used as loop indexes due to frequent arithmetic operation
- Used to manage administrative info
 - e.g., runtime stack

Register allocation

Number of registers is limited

- Need to allocate them in a clever way
 - Using registers intelligently is a critical step in any compiler
 - A good register allocator can generate code orders of magnitude better than a bad register allocator

Register Allocation: IR

AST

Source code (program)

Code Generation

Target code (executable)

Simple approach

- Straightforward solution:
 - Allocate each variable in activation record
 - At each instruction, bring values needed into registers, perform operation, then store result to memory

$$x = y + z$$

mov 16(%ebp), %eax mov 20(%ebp), %ebx add %ebx, %eax mov %eax, 24(%ebp)

 Problem: program execution very inefficient moving data back and forth between memory and registers

Register allocation

- In TAC, there is an unlimited number of variables (temporaries)
- On a physical machine there is a small number of registers:
 - x86 has 4 general-purpose registers and a number of specialized registers
 - MIPS has 24 general-purpose registers and 8 special-purpose registers
- Register allocation is the process of assigning variables to registers and managing data transfer in and out of registers

simple code generation

assume machine instructions of the form

```
LD reg, mem
ST mem, reg
OP reg, reg, reg (*)

Fixed number of Registers!
```

- We will assume that we have all registers available for any usage
 - Ignore registers allocated for stack management
 - Treat all registers as general-purpose

Plan

- Goal: Reduce number of temporaries (registers)
 - Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Machine-dependent optimization
 - Use at most K registers
 - K is machine dependent

Generating Compound Expressions

- Use registers to store temporaries
 - Why can we do it?
- Maintain a counter for temporaries in c

```
Initially: c = 0
```

```
• cgen(e<sub>1</sub> op e<sub>2</sub>) = {
    Let A = cgen(e<sub>1</sub>)
    c = c + 1
    Let B = cgen(e<sub>2</sub>)
    c = c + 1
    Emit(_tc = A op B; ) // _tc is a register
    Return _tc
}
```

Improving cgen for expressions

- Observation naïve translation needlessly generates temporaries for leaf expressions
- Observation temporaries used exactly once
 - Once a temporary has been read it can be reused for another sub-expression

```
• cgen(e<sub>1</sub> op e<sub>2</sub>) = {
    Let _t1 = cgen(e<sub>1</sub>)
    Let _t2 = cgen(e<sub>2</sub>)
    Emit( _t1 = _t1 op _t2; )
    Return _t1
}
```

• Temporaries cgen(e₁) can be reused in cgen(e₂)

Register Allocation

- Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Expression trees
 - Basic blocks

- Machine-dependent optimization
 - K registers
 - Some have special purposes
 - Control flow graphs (whole program)

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
 - Minimizes number of temporaries for a single expression

Example (optimized): b*b-4*a*c

Generalizations

- More than two arguments for operators
 - Function calls
- Multiple effected registers
 - Multiplication
- Spilling
 - Need more registers than available
- Register/memory operations

Simple **Spilling** Method

- Heavy tree Needs more registers than available
- A "heavy" tree contains a "heavy" subtree whose dependents are "light"
- Simple spilling
 - Generate code for the light tree
 - Spill the content into memory and replace subtree by temporary
 - Generate code for the resultant tree

Example (optimized): x:=b*b-4*a*c

Example (spilled): x := b*b-4*a*c

t7 := b * b x := t

x := t7 - 4 * a * c

Register Memory Operations

- Add_Mem X, R1
- Mult_Mem X, R1
- No need for registers to store right operands

Example: b*b-4*a*c

Can We do Better?

- Yes: Increase view of code
 - Simultaneously allocate registers for multiple expressions

- But: Lose per expression optimality
 - Works well in practice

Register Allocation

- Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Expression trees
 - Basic blocks

- Machine-dependent optimization
 - K registers
 - Some have special purposes
 - Control flow graphs (whole program)

Basic Blocks

- basic block is a sequence of instructions with
 - single entry (to first instruction), no jumps to the middle of the block
 - single exit (last instruction)
 - code execute as a sequence from first instruction to last instruction without any jumps
- edge from one basic block B1 to another block B2 when the last statement of B1 may jump to B2

control flow graph

B1

B₂

- A directed graph G=(V,E)
- nodes V = basic blocks
- edges E = control flow
 - (B1,B2) ∈ E when control from B1 flows to B2
- Leaders-based construction
 - Target of jump instructions
 - Instructions following jumps

AST for a Basic Block

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
                                               х
                \mathbf{n}
                                                                             n
                                                  \mathbf{n}
                                                                                                  \mathbf{n}
           b
                                      \mathbf{n}
                    \mathbf{n}
```

```
Dependency graph
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
```

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
}
```

Simplified Data Dependency Graph

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	c,R1
Store_Reg	R1,x
Load_Reg	X1,R1
Add_Const	1,R1
Mult_Mem	d,R1
Store Reg	R1.v

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
}
```



```
False
                           True
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
                 z := y + x;
                 y := 0;
```


y, dead or alive?

x, dead or alive?

Register Allocation for B.B.

- Dependency graphs for basic blocks
- Transformations on dependency graphs
- From dependency graphs into code
 - Instruction selection
 - linearizations of dependency graphs
 - Register allocation
 - At the basic block level

Dependency graphs

- TAC imposes an order of execution
 - But the compiler can reorder assignments as long as the program results are not changed

- Define a partial order on assignments
 - a < b ⇔ a must be executed before b</p>
 - Represented as a directed graph
 - Nodes are assignments
 - Edges represent dependency
 - Acyclic for basic blocks

Running Example

Sources of dependency

- Data flow inside expressions
 - Operator depends on operands
 - Assignment depends on assigned expressions
- Data flow between statements
 - From assignments to their use

Pointers complicate dependencies

Sources of dependency

- Order of subexpresion evaluation is immaterial
 - As long as inside dependencies are respected
- The order of uses of a variable X are immaterial as long as:
 - X is used between dependent assignments
 - Before next assignment to X

Creating Dependency Graph from AST

- Nodes AST becomes nodes of the graph
- Replaces arcs of AST by dependency arrows
 - Operator → Operand
 - Create arcs from assignments to uses
 - Create arcs between assignments of the same variable
- Select output variables (roots)
- Remove; nodes and their arrows

Running Example

Dependency Graph Simplifications

- Short-circuit assignments
 - Connect variables to assigned expressions
 - Connect expression to uses
- Eliminate nodes not reachable from roots

Running Example

Cleaned-Up Data Dependency Graph

Common Subexpressions

- Repeated subexpressions
- Examples

```
x = a * a + 2 * a * b + b * b;
y = a * a - 2 * a * b + b * b;
n[i] := n[i] +m[i]
```

- Can be eliminated by the compiler
 - In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

- Linearize the dependency graph
 - Instructions must follow dependency
- Many solutions exist
- Select the one with small runtime cost
- Assume infinite number of registers
 - Symbolic registers
 - Assign registers later
 - May need additional spill
 - Possible Heuristics
 - Late evaluation
 - Ladders

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	c,R1
Store_Reg	R1,x
Load_Reg	X1,R1
Add_Const	1,R1
Mult_Mem	d,R1
Store Req	R1,y

Non optimized vs Optimized Code

```
a,R1
Load Mem
Add Const
           1,R1
Load_Reg
           R1,X1
Load_Reg
           X1,R1
Mult_Reg
           X1,R1
Add Mem
           b,R1
Add Mem
           c,R1
Store_Reg
           R1,x
Load Reg
           X1,R1
Add Const
           1,R1
Mult Mem
           d,R1
Store Reg
           R1,y
```

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
}
```

```
Load Mem
           a,R1
Add Const
           1,R1
Load Reg
           R1,R2
           R2,R1
Load Reg
Mult_Reg
           R2,R1
Add_Mem
           b,R1
Add_Mem
           c,R1
Store Reg
           R1,x
Load_Reg
           R2,R1
Add Const
           1,R1
Mult_Mem
           d,R1
Store Req
           R1,y
```

```
ıd Mem
         a,R1
l Const
         1,R1
         R1,R2
ıd Reg
         R1,R2
.t Req
l Mem
         b,R2
l_Mem
         c,R2
         R2,x
re Reg
l Const
         1,R1
.t Mem
         d,R1
re Req
         R1,y
```

Register Allocation

- Maps symbolic registers into physical registers
 - Reuse registers as much as possible
 - Graph coloring (next)
 - Undirected graph
 - Nodes = Registers (Symbolic and real)
 - Edges = Interference
 - May require spilling

Register Allocation for Basic Blocks

- Heuristics for code generation of basic blocks
- Works well in practice
- Fits modern machine architecture
- Can be extended to perform other tasks
 - Common subexpression elimination
- But basic blocks are small
- Can be generalized to a procedure

Problem	Technique	Quality
Expression trees, using register-register or memory-register instructions	Weighted trees; Figure 4.30	
with sufficient registers: with insufficient registers:		Optimal Optimal
Dependency graphs, using register-register or memory-register instruc- tions	Ladder sequences; Section 4.2.5.2	Heuristic
Expression trees, using any instructions with cost function with sufficient registers: with insufficient registers:	Bottom-up tree rewrit- ing; Section 4.2.6	Optimal Heuristic
Register allocation when all interferences are known	Graph coloring; Section 4.2.7	Heuristic

The End