Compilation
 Lecture 9

Optimizations
Noam Rinetzky

Optimization points

Program Analysis

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called sound if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
- (Why?)

A formalism for IR optimization

- Every phase of the compiler uses some new abstraction:
- Scanning uses regular expressions
- Parsing uses CFGs
- Semantic analysis uses proof systems and symbol tables
- IR generation uses ASTs
- In optimization, we need a formalism that captures the structure of a program in a way amenable to optimization

Visualizing IR

main:

```
_tmp0 = Call _ReadInteger;
\(a=\) tmp0;
    _tmp1 = Call _ReadInteger;
    \(\overline{\mathrm{b}}=\) tmp1;
```

LO:
_tmp2 $=0$;
_tmp3 $=\mathrm{b}==$ _tmp2;
_tmp4 $=0$;
_tmp5 $=$ _tmp3 $==$ tmp4;
$\overline{\text { IfZ }}$ _tmp $\overline{5}$ Goto _LI;
c $=a ;$
$\mathrm{a}=\mathrm{b}$;
_tmp6 $=\mathbf{c} \% \mathrm{a}$;
$\overline{\mathrm{b}}=$ _tmp6;
Goto _L0;
L1:
Push a;
Call _PrintInt;

Visualizing IR

main:

```
_tmp0 \(=\) Call _ReadInteger;
a = _tmp0;
    _tmp1 = Call _ReadInteger;
    \(\overline{\mathrm{b}}=\) _tmp1;
    _tmp2 \(=0\);
    _tmp3 \(=\mathrm{b}==\) _tmp2;
    tmp4 \(=0\);
    _tmp5 \(=\) _tmp3 \(==\) _tmp4;
    IfZ _tmp \(\overline{5}\) Goto _LI;
    c \(=a\);
    \(\mathrm{a}=\mathrm{b}\);
    _tmp6 = c \% a;
    \(\overline{\mathrm{b}}=\)-tmp6;
    Goto _L0;
```

LO:
L1:
Push a;
Call _PrintInt;

Visualizing IR

main:

$$
\begin{aligned}
& \text { tmp0 = Call_ReadInteger; } \\
& \mathrm{a}=\text { tmp0; } \\
& \overline{\operatorname{tmp} 1}=\text { Call _ReadInteger; } \\
& \mathrm{b}=\ldots \text { tmp1; }
\end{aligned}
$$

_L0 :

$$
_\operatorname{tmp} 2=0
$$

$$
\text { tmp3 }=\mathrm{b}==\text { tmp2 }
$$

$$
\text { _tmp4 }=0
$$

$$
\text { _tmp5 }=\text { _tmp3 }==\quad \operatorname{tmp} 4
$$

$$
\bar{I} f Z \quad \text { tmp } \overline{5} \text { Goto _L }
$$

$$
c=a ;
$$

$$
\mathrm{a}=\mathrm{b}
$$

$$
\text { _tmp6 }=c \% a ;
$$

$$
\overline{\mathrm{b}}=-\operatorname{tmp} 6
$$

Goto_LO;
_L1:

Push a;
Call _PrintInt;
start

```
tmp0 = Call _ReadInteger;
a = _tmp0;
tmp1 = Call _ReadInteger;
b = _tmp1;
```


Basic blocks

- A basic block is a sequence of IR instructions where
- There is exactly one spot where control enters the sequence, which must be at the start of the sequence
- There is exactly one spot where control leaves the sequence, which must be at the end of the sequence
- Informally, a sequence of instructions that always execute as a group

Control-Flow Graphs

- A control-flow graph (CFG) is a graph of the basic blocks in a function
- The term CFG is overloaded - from here on out, we'll mean "control-flow graph" and not "context free grammar"
- Each edge from one basic block to another indicates that control can flow from the end of the first block to the start of the second block
- There is a dedicated node for the start and end of a function

Optimization path

Types of optimizations

- An optimization is local if it works on just a single basic block
- An optimization is global if it works on an entire control-flow graph
- An optimization is interprocedural if it works across the control-flow graphs of multiple functions
- We won't talk about this in this course

Local Optimizations

Example

Example

Object x; int a; int b; int c; x = new Object; a $=4$; $c=a+b ;$ x.fn $(a+b)$;	

Example

Example

Example

Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b
...
v2 $=\mathrm{a} o \mathrm{p} \mathrm{b}$
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as v1 = a op b
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b [or: v1 = a]
v2 = a op b [or: v2 = a]
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as $\mathrm{v} 1=\mathrm{aop} \quad$ [or: $\mathrm{v} 1=\mathrm{a}$]
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Common subexpression elimination

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

```
tmp0 \(=4\);
Push tmp0;
_tmp1 = Call _Alloc;
    tmp2 = ObjectC;
* (_tmp1) = _tmp2;
\(\mathbf{x}=\) tmp1;
_tmp3 = 4;
a \(=\) tmp3;
\({ }_{\text {tmp }} \overline{4}=\mathrm{a}+\mathrm{b}\);
c = tmp4;
_tmp5 \(=\mathrm{a}+\mathrm{b}\);
_tmp6 \(=\) * (x) ;
tmp7 = * (_tmp6) ;
Push _tmp5;
Push x;
Call _tmp7;
```


Common subexpression elimination

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

```
tmp0 \(=4\);
Push tmp0;
_tmp1 = Call _Alloc;
    tmp2 = ObjectC;
* (_tmp1) = _tmp2;
\(\mathbf{x}=\) tmp1;
_tmp3 \(=4\);
a \(=\) tmp3;
\({ }_{\text {tmp }} \overline{4}=\mathrm{a}+\mathrm{b}\);
c = tmp4;
_tmp5 \(=\) _tmp4;
_tmp6 \(=\) * (x) ;
tmp7 = * (_tmp6) ;
Push _tmp5;
Push x;
Call _tmp7;
```


Common subexpression elimination

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

```
tmp0 \(=4\);
Push tmp0;
_tmp1 = Call _Alloc;
    tmp2 = ObjectC;
* (_tmp1) = _tmp2;
\(\mathbf{x}=\) tmp1;
_tmp3 = 4;
\(a=\) tmp3;
_tmp4 \(=\mathrm{a}+\mathrm{b}\);
c = tmp4;
_tmp5 \(=\) _tmp4;
-tmp6 \(=\) * (x) ;
_tmp7 = * (_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
```


Common subexpression elimination

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

```
tmp0 \(=4\);
Push tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
* (_tmp1) = _tmp2;
\(\mathbf{x}=\) tmp1;
_tmp3 \(=\) _tmp0;
\(a=\) tmp3;
_tmp4 \(=\mathrm{a}+\mathrm{b}\);
c \(=\) tmp4;
_tmp5 = _tmp4;
_tmp6 \(=\) * (x) ;
_tmp7 = * (_tmp6) ;
Push _tmp5;
Push x;
Call _tmp7;
```


Common subexpression elimination

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

```
tmp0 \(=4\);
Push tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
* (_tmp1) = _tmp2;
\(\mathbf{x}=\) tmp1;
_tmp3 \(=\) _tmp0;
a \(=\) tmp3;
_tmp4 \(=\mathrm{a}+\mathrm{b}\);
c = tmp4;
_tmp5 \(=\) _tmp4;
_tmp6 \(=\) * (x) ;
_tmp7 = * (_tmp6) ;
Push _tmp5;
Push x;
Call _tmp7;
```


Common subexpression elimination

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

```
tmp0 \(=4\);
Push tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
* (_tmp1) = _tmp2;
\(\mathbf{x}=\) tmp1;
\({ }_{-}\)tmp3 \(={ }_{-}\)tmp0;
a \(=\) tmp3;
_tmp \(4=a+b\);
c = tmp4;
_tmp5 \(=c\);
_tmp6 \(=\) * (x);
_tmp7 = * (_tmp6);
Push _tmp5;
Push x;
Call _tmp7;
```


Copy Propagation

- If we have a variable assignment v1 = v2
then as long as v 1 and v 2 are not reassigned, we can rewrite expressions of the form
a = ... v1 ...
as
a = ... v2 ...
provided that such a rewrite is legal

Copy Propagation

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

$$
\begin{aligned}
& \text { _tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call_Alloc; } \\
& \text { tmp2 = ObjectC; } \\
& \text { * (_tmp1) = _tmp2; } \\
& \mathbf{x}=\text { tmp1; } \\
& { }_{-} \operatorname{tmp} 3=\text { tmp0 } \text {; } \\
& a=\text { tmp3; } \\
& \text { _tmp4 }=\mathrm{a}+\mathrm{b} \text {; } \\
& \text { c = tmp4; } \\
& \text { _tmp5 }=c \text {; } \\
& \text { _tmp6 }=\text { * (x); } \\
& \text { _tmp7 = * (_tmp6) ; } \\
& \text { Push _tmp5; } \\
& \text { Push x; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

$$
\begin{aligned}
& \text { _tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call_Alloc; } \\
& \text { tmp2 = ObjectC; } \\
& \text { * (_tmp1) }=\text { _tmp2; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& \text { a = _tmp3; } \\
& \text { _tmp4 }=\mathrm{a}+\mathrm{b} \text {; } \\
& \text { c = tmp4; } \\
& \text { _tmp5 }=c \text {; } \\
& \text { _tmp6 }=\text { * (x); } \\
& \text { _tmp7 = * (_tmp6); } \\
& \text { Push _tmp5; } \\
& \text { Push x; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

$$
\begin{aligned}
& \text { tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call _Alloc; } \\
& \text { tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& a=\text { tmp3; } \\
& \text { _tmp4 }=\mathrm{a}+\mathrm{b} \text {; } \\
& \text { c = tmp4; } \\
& \text { _tmp5 }=c \text {; } \\
& \text { _tmp6 }=\text { * (x); } \\
& \text { _tmp7 = * (_tmp6); } \\
& \text { Push _tmp5; } \\
& \text { Push x; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

$$
\begin{aligned}
& \text { tmp0 }=4 \text {; } \\
& \text { Push tmp0; } \\
& \text { _tmp1 = Call _Alloc; } \\
& \text { tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& \text { a }=\text { tmp3; } \\
& \text { _tmp4 }=\mathrm{a}+\mathrm{b} \text {; } \\
& \text { c = tmp4; } \\
& \text { _tmp5 = c; } \\
& \text { _tmp6 = * (_tmp1) ; } \\
& \text { _tmp7 = * (_tmp6) ; } \\
& \text { Push _tmp5; } \\
& \text { Push _tmp1; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```


Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```


Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```


Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```


Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

$$
\begin{aligned}
& \text { tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call_Alloc; } \\
& \text { _tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& -\operatorname{tmp} 3=t^{t m p 0 ;} \\
& \text { a = _tmp3; } \\
& \overline{\operatorname{tmp} 4}=\operatorname{tmp} 3+\mathrm{b} \text {; } \\
& \text { c = _tmp4; } \\
& \text { _tmp5 = c; } \\
& \text { _tmp6 = * (_tmp1) ; } \\
& \text { _tmp7 = *(_tmp6); } \\
& \text { Push c; } \\
& \text { Push _tmp1; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
\[
\begin{aligned}
& \_ \text {tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmpl = Call _Alloc; } \\
& \text { _tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& \text { a = _tmp3; } \\
& \overline{\mathrm{tmp}} 4=\operatorname{tmp} 3+\mathrm{b} \text {; } \\
& \text { C = _tmp4; } \\
& \text { tmp5 = c; } \\
& \text { _tmp6 }=\text { ObjectC; } \\
& \text { _tmp7 = *(_tmp6); } \\
& \text { Push c; } \\
& \text { Push _tmp1; } \\
& \text { Call _tmp7; }
\end{aligned}
\]
```


Copy Propagation

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

$$
\begin{aligned}
& \text { tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call_Alloc; } \\
& \text { tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& \text { a = _tmp3; } \\
& \text { tmp4 }=\text { tmp3 }+\mathrm{b} \text {; } \\
& c=\operatorname{tmp} \overline{4} \text {; } \\
& \text { _tmp5 = c; } \\
& \text { _tmp6 = ObjectC; } \\
& \text { _tmp7 = * (_tmp6) ; } \\
& \text { Push c; } \\
& \text { Push _tmp1; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

Object x;
int a;
int b;
int c;
x = new Object;
a $=4$;
$c=a+b ;$
x.fn $(a+b)$;

$$
\begin{aligned}
& \text { tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call_Alloc; } \\
& \text { tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& \text { a = _tmp3; } \\
& \text { tmp4 }=\text { tmp3 }+\mathrm{b} \text {; } \\
& c=\operatorname{tmp} \overline{4} \text {; } \\
& \text { _tmp5 = c; } \\
& \text { _tmp6 = ObjectC; } \\
& \text { _tmp7 = *(ObjectC); } \\
& \text { Push c; } \\
& \text { Push _tmp1; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

$$
\begin{aligned}
& \text { tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call_Alloc; } \\
& \text { _tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& \text { a = _tmp3; } \\
& \text { tmp4 }=-\operatorname{tmp} 3+b ; \\
& \text { c }=\text { tmp } 4 \text {; } \\
& \text { _tmp5 = c; } \\
& \text { _tmp6 }=\text { ObjectC; } \\
& \text { _tmp7 = *(ObjectC); } \\
& \text { Push c; } \\
& \text { Push _tmp1; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Copy Propagation

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

$$
\begin{aligned}
& _ \text {tmp0 }=4 \text {; } \\
& \text { Push _tmp0; } \\
& \text { _tmp1 = Call_Alloc; } \\
& \text { tmp2 = ObjectC; } \\
& \text { * (_tmp1) = ObjectC; } \\
& \mathbf{x}=\text { tmp1; } \\
& \text { _tmp3 }=\text { _tmp0; } \\
& a=\text { tmp0; } \\
& -\operatorname{tmp} 4=-\operatorname{tmp} 0+b ; \\
& \bar{c}=\text { tmp } 4 \text {; } \\
& \text { _tmp5 = c; } \\
& \text { _tmp6 }=\text { ObjectC; } \\
& \text { _tmp7 = *(ObjectC); } \\
& \text { Push c; } \\
& \text { Push _tmp1; } \\
& \text { Call _tmp7; }
\end{aligned}
$$

Dead Code Elimination

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Dead Code Elimination

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```

```
\(\_\)tmp0 \(=4\);
Push _tmp0;
_tmp1 = Call_Alloc;
_tmp2 = ObjectC;
* (_tmp1) = ObjectC;
\(\mathbf{x}=\) tmp1;
_tmp3 \(=\) _tmp0;
\(a=\) tmp0;
\({ }^{\operatorname{tmp} 4}=-\operatorname{tmp} 0+\mathrm{b}\);
\(\bar{c}=\quad \operatorname{tmp} \overline{4} ;\)
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;
```


Dead Code Elimination

```
Object x;
int a;
int b;
int c;
x = new Object;
a = 4;
c = a + b;
x.fn(a + b);
```


Dead coore Elinnination

Dead Code Elimination

```
Object x;
int a;
int b;
int c;
x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);
```


Applying local optimizations

- The different optimizations we've seen so far all take care of just a small piece of the optimization
- Common subexpression elimination eliminates unnecessary statements
- Copy propagation helps identify dead code
- Dead code elimination removes statements that are no longer needed
- To get maximum effect, we may have to apply these optimizations numerous times

Applying local optimizations example

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{c}=\mathrm{a} * \mathrm{a} \\
& \mathrm{~d}=\mathrm{b}+\mathrm{c} \\
& \mathrm{e}=\mathrm{b}+\mathrm{b}
\end{aligned}
$$

Applying local optimizations

example

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{c}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{d}=\mathrm{b}+\mathrm{c} \\
& \mathrm{e}=\mathrm{b}+\mathrm{b}
\end{aligned}
$$

Which optimization should we apply here?

Applying local optimizations example

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ; \\
& \mathrm{d}=\mathrm{b}+\mathrm{c} \\
& \mathrm{e}=\mathrm{b}+\mathrm{b}
\end{aligned}
$$

Which optimization should we apply here?

Common sub-expression elimination

Applying local optimizations example

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ; \\
& \mathrm{d}=\mathrm{b}+\mathrm{c} ; \\
& \mathrm{e}=\mathrm{b}+\mathrm{b}
\end{aligned}
$$

Which optimization should we apply here?

Applying local optimizations example

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ; \\
& \mathrm{d}=\mathrm{b}+\mathrm{b} \\
& \mathrm{e}=\mathrm{b}+\mathrm{b}
\end{aligned}
$$

Which optimization should we apply here?

Copy propagation

Applying local optimizations

 example$$
\begin{aligned}
& \mathrm{b}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ; \\
& \mathrm{d}=\mathrm{b}+\mathrm{b} \\
& \mathrm{e}=\mathrm{b}+\mathrm{b}
\end{aligned}
$$

Which optimization should we apply here?

Applying local optimizations example

$$
\begin{aligned}
& \mathrm{b}=\mathrm{a} * \mathrm{a} ; \\
& \mathrm{c}=\mathrm{b} ; \\
& \mathrm{d}=\mathrm{b}+\mathrm{b} ; \\
& \mathrm{e}=\mathrm{d} ;
\end{aligned}
$$

Which optimization should we apply here?

Common sub-expression elimination (again)

Other types of local optimizations

- Arithmetic Simplification
- Replace "hard" operations with easier ones
- e.g. rewrite $\mathbf{x}=4$ * a ; as $\mathbf{x}=\mathrm{a} \ll 2$;
- Constant Folding
- Evaluate expressions at compile-time if they have a constant value.
- e.g. rewrite $\mathbf{x}=4 * 5$; as $\mathbf{x}=20$;

Optimizations and analyses

- Most optimizations are only possible given some analysis of the program's behavior
- In order to implement an optimization, we will talk about the corresponding program analyses

Available expressions

- Both common subexpression elimination and copy propagation depend on an analysis of the available expressions in a program
- An expression is called available if some variable in the program holds the value of that expression
- In common subexpression elimination, we replace an available expression by the variable holding its value
- In copy propagation, we replace the use of a variable by the available expression it holds

Finding available expressions

- Initially, no expressions are available
- Whenever we execute a statement a = b op c:
- Any expression holding a is invalidated
- The expression $\mathbf{a}=\mathbf{b}$ op \mathbf{c} becomes available
- Idea: Iterate across the basic block, beginning with the empty set of expressions and updating available expressions at each variable

Available expressions example

$$
\begin{aligned}
& \text { \{ \} } \\
& a=b+2 ; \\
& \{a=b+2\} \\
& \mathrm{b}=\mathrm{x} \text {; } \\
& \{\mathrm{b}=\mathrm{x}\} \\
& d=a+b ; \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{a}+\mathrm{b}\} \\
& e=a+b ; \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{a}+\mathrm{b}, \mathrm{e}=\mathrm{a}+\mathrm{b}\} \\
& \mathrm{d}=\mathrm{x} \text {; } \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}\} \\
& \mathrm{f}=\mathrm{a}+\mathrm{b} \text {; } \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}, \mathrm{f}=\mathrm{a}+\mathrm{b}\}
\end{aligned}
$$

Common sub-expression elimination

 ()$$
a=b+2
$$

$$
\{a=b+2\}
$$

$$
\mathrm{b}=\mathrm{x} ;
$$

$$
\{\mathrm{b}=\mathrm{x}\}
$$

$$
d=a+b
$$

$$
\{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{a}+\mathrm{b}\}
$$

$$
\mathrm{e}=\mathrm{d}
$$

$$
\{b=x, d=a+b, e=a+b\}
$$

$$
\mathrm{d}=\mathrm{b}
$$

$$
\{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}\}
$$

$$
f=e ;
$$

$$
\{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}, \mathrm{f}=\mathrm{a}+\mathrm{b}\}
$$

Common sub-expression elimination

$$
\begin{aligned}
& \text { \{ \} } \\
& a=b+2 ; \\
& \{a=b+2\} \\
& \text { b }=\mathbf{x} \text {; } \\
& \{\mathrm{b}=\mathrm{x}\} \\
& \mathrm{d}=\mathrm{a}+\mathrm{b} \text {; } \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{a}+\mathrm{b}\} \\
& \text { e }=a+b ; \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{a}+\mathrm{b}, \mathrm{e}=\mathrm{a}+\mathrm{b}\} \\
& \mathrm{d}=\mathrm{x} \text {; } \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}\} \\
& \mathrm{f}=\mathrm{a}+\mathrm{b} \text {; } \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}, \mathrm{f}=\mathrm{a}+\mathrm{b}\}
\end{aligned}
$$

Live variables

- The analysis corresponding to dead code elimination is called liveness analysis
- A variable is live at a point in a program if later in the program its value will be read before it is written to again
- Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

Computing live variables

- To know if a variable will be used at some point, we iterate across the statements in a basic block in reverse order
- Initially, some small set of values are known to be live (which ones depends on the particular program)
- When we see the statement $\mathrm{a}=\mathrm{b}$ op c :
- Just before the statement, a is not alive, since its value is about to be overwritten
- Just before the statement, both b and c are alive, since we're about to read their values
- (what if we have $a=a+b$?)

$$
\begin{aligned}
& \text { \{ b \} } \\
& \mathrm{a}=\mathrm{b} \text {; } \\
& \text { \{ a, b \} } \\
& \text { c = a; } \\
& \{\mathrm{a}, \mathrm{~b}\} \\
& d=a+b ; \\
& \text { \{ a, b, d \} } \\
& \text { e = d; } \\
& \text { \{ a, b, e \} } \\
& \text { d = a; } \\
& \text { \{ b, d, e \} } \\
& \text { f = e; } \\
& \text { \{ b, d \} - given }
\end{aligned}
$$

```
    (b) Dead Code Elimination
a = b;
    { a, b }
c = a;
{ a, b }
\[
d=a+b ;
\]
    { a, b, d }
e = d;
    { a, b, e }
d = a;
    { b, d, e }
f = e;
    { b, d }
```

$\begin{aligned} & \{b\} \\ & a=b ;\end{aligned}$
$\begin{aligned} & \{a, b\}\end{aligned}$
$\begin{aligned} & \{a, b\} \\ & d=a+b ; \\ & \{a, b, d\} \\ & e=d ; \\ & \{a, b, e\} \\ & d=a ; \\ & \{b, d, e\} \\ & \{b, d i m\end{aligned}$
$\begin{aligned} & \{b, d\}\end{aligned}$

\{ b \} $\mathrm{a}=\mathrm{b}$;
 Liveness analysis II

$$
\begin{gathered}
\{a, b\} \\
d=a+b ; \\
\{a, b, d\} \\
e=d ; \\
\{a, b\} \\
d=a ; \\
\{b, d\}
\end{gathered}
$$

\{ b \}
 $$
\mathrm{a}=\mathrm{b} ;
$$
 Liveness analysis II

$$
\begin{gathered}
\{a, b\} \\
d=a+b ; \\
\{a, b, d\} \\
e=d ; \\
\{a, b\} \\
d=a ; \\
\{b, d\}
\end{gathered}
$$

Which statements are dead?

(b) Dead code elimination $\mathrm{a}=\mathrm{b}$;

$\{a, b\}$
Which statements are dead?
$d=a+b ;$
\{ a, b, d \}
e $=d$;
\{ a, b \}
$\mathrm{d}=\mathrm{a}$;
\{ b, d \}

(b) Dead code elimination $\mathrm{a}=\mathrm{b}$;

$$
\begin{gathered}
\{a, b\} \\
d=a+b ; \\
\{a, b, d\} \\
\{a, b\} \\
d=a ; \\
\{b, d\}
\end{gathered}
$$

\{ b \} $\mathrm{a}=\mathrm{b}$;
 Liveness analysis III

$\{a, b\}$
Which statements are dead?

$$
d=a+b ;
$$

$\{\mathrm{a}, \mathrm{b}$ \}
d = a;
\{ b, d \}

(b) Dead code elimination $\mathrm{a}=\mathrm{b}$;

Which statements are dead?
$\{a, b\}$
$d=a+b ;$
$\{\mathrm{a}, \mathrm{b}$ \}
$\mathrm{d}=\mathrm{a}$;
\{ b, d \}

(b) Dead code elimination $\mathrm{a}=\mathrm{b}$;

$\{a, b\}$
$\{\mathrm{a}, \mathrm{b}$ \}
$\mathrm{d}=\mathrm{a}$;
\{ b, d \}

Dead code elimination

 $a=\mathrm{b}$;$$
d=a ;
$$

Formalizing local analyses

I

Available Expressions

Live Variables

Live Variables

Information for a local analysis

- What direction are we going?
- Sometimes forward (available expressions)
- Sometimes backward (liveness analysis)
- How do we update information after processing a statement?
- What are the new semantics?
- What information do we know initially?

Formalizing local analyses

- Define an analysis of a basic block as a quadruple (D, V, F, I) where
- \mathbf{D} is a direction (forwards or backwards)
- \mathbf{V} is a set of values the program can have at any point
- F is a family of transfer functions defining the meaning of any expression as a function $\mathrm{f}: \mathbf{V} \rightarrow \mathbf{V}$
- I is the initial information at the top (or bottom) of a basic block

Available Expressions

- Direction: Forward
- Values: Sets of expressions assigned to variables
- Transfer functions: Given a set of variable assignments V and statement $\mathrm{a}=\mathrm{b}+\mathrm{c}$:
- Remove from V any expression containing a as a subexpression
- Add to V the expression $\mathrm{a}=\mathrm{b}+\mathrm{c}$
- Formally: $\mathrm{V}_{\text {out }}=\left(\mathrm{V}_{\text {in }} \backslash\{\mathrm{e} \mid \mathrm{e}\right.$ contains a$\left.\}\right) \cup\{\mathrm{a}=\mathrm{b}+\mathrm{c}\}$
- Initial value: Empty set of expressions

Liveness Analysis

- Direction: Backward
- Values: Sets of variables
- Transfer functions: Given a set of variable assignments V and statement $\mathrm{a}=\mathrm{b}+\mathrm{c}$:
- Remove a from V (any previous value of a is now dead.)
- Add b and c to V (any previous value of b or c is now live.)
- Formally: $\mathrm{V}_{\text {in }}=\left(\mathrm{V}_{\text {out }} \backslash\{\mathrm{a}\}\right) \cup\{\mathbf{b}, \mathbf{c}\}$
- Initial value: Depends on semantics of language
- E.g., function arguments and return values (pushes)
- Result of local analysis of other blocks as part of a global analysis

Running local analyses

- Given an analysis (D, V, F, I) for a basic block
- Assume that D is "forward;" analogous for the reverse case
- Initially, set OUT[entry] to I
- For each statement s, in order:
- Set IN[s] to OUT[prev], where prev is the previous statement
- Set OUT[s] to $f_{s}(I N[s])$, where f_{s} is the transfer function for statement s

Global Optimizations

High-level goals

- Generalize analysis mechanism
- Reuse common ingredients for many analyses
- Reuse proofs of correctness
- Generalize from basic blocks to entire CFGs
- Go from local optimizations to global optimizations

Global analysis

- A global analysis is an analysis that works on a control-flow graph as a whole
- Substantially more powerful than a local analysis
- (Why?)
- Substantially more complicated than a local analysis
- (Why?)

Local vs. global analysis

- Many of the optimizations from local analysis can still be applied globally
- Common sub-expression elimination
- Copy propagation
- Dead code elimination
- Certain optimizations are possible in global analysis that aren't possible locally:
- e.g. code motion: Moving code from one basic block into another to avoid computing values unnecessarily
- Example global optimizations:
- Global constant propagation
- Partial redundancy elimination

Loop invariant code motion example

Why global analysis is hard

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value (but the analysis still needs to terminate!)
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global dead code elimination

- Local dead code elimination needed to know what variables were live on exit from a basic block
- This information can only be computed as part of a global analysis
- How do we modify our liveness analysis to handle a CFG?

CFGs without loops

CFGs without loops

CFGs without loops

CFGs without loops

CFGs without loops

Major changes - part 1

- In a local analysis, each statement has exactly one predecessor
- In a global analysis, each statement may have multiple predecessors
- A global analysis must have some means of combining information from all predecessors of a basic block

CFGs without loops

CFGs without loops

CFGs without loops

Major changes - part 2

- In a local analysis, there is only one possible path through a basic block
- In a global analysis, there may be many paths through a CFG
- May need to recompute values multiple times as more information becomes available
- Need to be careful when doing this not to loop infinitely!
- (More on that later)
- Can order of computation affect result?

CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program

CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program
- Sound approximation: Assume that every possible path through the CFG corresponds to a valid execution
- Includes all realizable paths, but some additional paths as well
- May make our analysis less precise (but still sound)
- Makes the analysis feasible; we'll see how later

CFGs with loops

Major changes - part 3

- In a local analysis, there is always a well defined "first" statement to begin processing
- In a global analysis with loops, every basic block might depend on every other basic block
- To fix this, we need to assign initial values to all of the blocks in the CFG

CFGs with loops - initialization

CFGs with loops - iteration

Summary of differences

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value
- But the analysis still needs to terminate!
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global liveness analysis

- Initially, set IN[s] = \{ \} for each statement s
- Set IN[exit] to the set of variables known to be live on exit (language-specific knowledge)
- Repeat until no changes occur:
- For each statement \mathbf{s} of the form $\mathbf{a}=\mathbf{b}+\mathbf{c}$, in any order you'd like:
- Set OUT[s] to set union of $\operatorname{IN}[\mathbf{p}]$ for each successor \mathbf{p} of \mathbf{s}
- Set IN[s] to (OUT[s] - a) $\cup\{\mathbf{b}, \mathbf{c}\}$.
- Yet another fixed-point iteration!

Global liveness analysis

Why does this work?

- To show correctness, we need to show that
- The algorithm eventually terminates, and
- When it terminates, it has a sound answer
- Termination argument:
- Once a variable is discovered to be live during some point of the analysis, it always stays live
- Only finitely many variables and finitely many places where a variable can become live
- Soundness argument (sketch):
- Each individual rule, applied to some set, correctly updates liveness in that set
- When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

Abstract Interpretation

- Theoretical foundations of program analysis
- Cousot and Cousot 1977
- Abstract meaning of programs
- Executed at compile time

Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

Properties of local analysis

- The only way to find out what a program will actually do is to run it
- Problems:
- The program might not terminate
- The program might have some behavior we didn't see when we ran it on a particular input
- However, this is not a problem inside a basic block
- Basic blocks contain no loops
- There is only one path through the basic block

Assigning new semantics

- Example: Available Expressions
- Redefine the statement $\mathbf{a}=\mathbf{b}+\mathbf{c}$ to mean "a now holds the value of $b+c$, and any variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

Theory to the rescue

- Building up all of the machinery to design this analysis was tricky
- The key ideas, however, are mostly independent of the analysis:
- We need to be able to compute functions describing the behavior of each statement
- We need to be able to merge several subcomputations together
- We need an initial value for all of the basic blocks
- There is a beautiful formalism that captures many of these properties

Join semilattices

- A join semilattice is a ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
- The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

Join semilattice for liveness

What is the join of $\{b\}$ and $\{c\}$?

What is the join of $\{b\}$ and $\{a, c\}$?

What is the join of $\{b\}$ and $\{a, c\}$?

What is the join of $\{a\}$ and $\{a, b\}$?

What is the join of $\{a\}$ and $\{a, b\}$?

Formal definitions

- A join semilattice is a pair (V, U), where
- V is a domain of elements
- \sqcup is a join operator that is
- commutative: $x \sqcup y=y \sqcup x$
- associative: $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$
- idempotent: $x \bigsqcup x=x$
- If $x \sqcup y=z$, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted \perp such that $\perp \sqcup \mathrm{x}=\mathrm{x}$ for all x

Join semilattices and ordering

Greater

Lower

Join semilattices and ordering

Join semilattices and orderings

- Every join semilattice (V, ப) induces an ordering relationship \sqsubseteq over its elements
- Define x 〔 y iff x ل $\mathrm{y}=\mathrm{y}$
- Need to prove
- Reflexivity: x ㄷ
- Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$
- Transitivity: If $\mathrm{x} \sqsubseteq \mathrm{y}$ and $\mathrm{y} \sqsubseteq \mathrm{z}$, then $\mathrm{x} \sqsubseteq \mathrm{z}$

An example join semilattice

- The set of natural numbers and the max function
- Idempotent
$-\max \{a, a\}=a$
- Commutative
$-\max \{a, b\}=\max \{b, a\}$
- Associative
$-\max \{a, \max \{b, c\}\}=\max \{\max \{a, b\}, c\}$
- Bottom element is 0:
$-\max \{0, a\}=a$
- What is the ordering over these elements?

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$
-x \cup x=x
$$

- Commutative:
$-x \cup y=y U x$
- Associative:
$-(x \cup y) \cup z=x \cup(y \cup z)$
- Bottom element:
- The empty set: $\emptyset \cup x=x$
- What is the ordering over these elements?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- What value do we give to basic blocks we haven't seen yet?
- How do we know that the algorithm always terminates?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
- Use the bottom element
- How do we know that the algorithm always terminates?
- Actually, we still don't! More on that later

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
- Use the bottom element
- How do we know that the algorithm always terminates?
- Actually, we still don't! More on that later

A general framework

- A global analysis is a tuple (D, V, 드, F, I), where
- D is a direction (forward or backward)
- The order to visit statements within a basic block, not the order in which to visit the basic blocks
- V is a set of values
- \sqcup is a join operator over those values
- F is a set of transfer functions $f: \mathbf{V} \rightarrow \mathbf{V}$
- I is an initial value
- The only difference from local analysis is the introduction of the join operator

Running global analyses

- Assume that ($\mathrm{D}, \mathrm{V}, \mathrm{L}, \mathrm{F}, \mathrm{I}$) is a forward analysis
- Set OUT[s] $=\perp$ for all statements \mathbf{s}
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}$:
- Set IN[s] = OUT[$\left[p_{1}\right] \sqcup \operatorname{OUT}\left[p_{2}\right] \sqcup \ldots \sqcup \operatorname{OUT}\left[p_{n}\right]$
- Set OUT[s] = f_{s} (IN[s])
- The order of this iteration does not matter
- This is sometimes called chaotic iteration

For comparison

- Set OUT[s] = \perp for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}$:
- Set IN[s]=OUT[pp] OUT[$\left.p_{2}\right] \sqcup \ldots$... ப OUT[p $\left.p_{n}\right]$
- Set OUT[s] = $\mathrm{f}_{\mathrm{s}}(\operatorname{IN}[\mathrm{s}])$
- Set IN[s] = \{\} for all statements s
- Set OUT[exit] = the set of variables known to be live on exit
- Repeat until no values change:
- For each statement s of the form $\mathbf{a}=\mathbf{b}+\mathbf{c}$:
- Set OUT[s] = set union of $\operatorname{IN}[\mathbf{x}]$ for each successor \mathbf{x} of \mathbf{s}
- Set $\operatorname{IN}[s]=(O U T[s]-\{a\}) \cup\{b, c\}$

The dataflow framework

- This form of analysis is called the dataflow framework
- Can be used to easily prove an analysis is sound
- With certain restrictions, can be used to prove that an analysis eventually terminates
- Again, more on that later

Global constant propagation

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

Global constant propagation

Global constant propagation

Global constant propagation

Constant propagation analysis

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point
- Every variable will either
- Never have a value assigned to it,
- Have a single constant value assigned to it,
- Have two or more constant values assigned to it, or
- Have a known non-constant value.
- Our analysis will propagate this information throughout a CFG to identify locations where a value is constant

Properties of constant

propagation

- For now, consider just some single variable \mathbf{x}
- At each point in the program, we know one of three things about the value of \mathbf{x} :
- \mathbf{x} is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant
$-\mathbf{x}$ is definitely a constant and has value \mathbf{k}
- We have never seen a value for \mathbf{x}
- Note that the first and last of these are not the same!
- The first one means that there may be a way for \mathbf{x} to have multiple values
- The last one means that \mathbf{x} never had a value at all

Defining a join operator

- The join of any two different constants is Not-a-Constant
- (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-aConstant
- (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of Undefined and any other value is that other value
- (If \mathbf{x} has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

Undefined

The lattice is infinitely wide

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

- Note:
- The join of any two different constants is Not-a-Constant
- The join of Not a Constant and any other value is Not-a-Constant
- The join of Undefined and any other value is that other value

Global constant propagation

Dataflow for constant

propagation

- Direction: Forward
- Semilattice: Vars \rightarrow \{Undefined, $0,1,-1,2,-2, \ldots$, Not-aConstant $\}$
- Join mapping for variables point-wise

$$
\{x \mapsto 1, y \mapsto 1, z \mapsto 1\} \sqcup\{x \mapsto 1, y \mapsto 2, z \mapsto \text { Not-a-Constant }\}=
$$

$$
\{\mathrm{x} \mapsto 1, \mathrm{y} \mapsto \text { Not-a-Constant,z } \mapsto \text { Not-a-Constant }\}
$$

- Transfer functions:
$-\mathrm{f}_{\mathrm{x}=\mathrm{k}}(\mathrm{V})=\left.\mathrm{V}\right|_{\mathrm{x} \mapsto \mathrm{k}}$ (update V by mapping x to k)
$-\mathrm{f}_{\mathrm{x}=\mathrm{a}+\mathrm{b}}(\mathrm{V})=\left.\mathrm{V}\right|_{\mathrm{x} \rightarrow \text { Not-a-Constant }}$ (assign Not-a-Constant)
- Initial value: \mathbf{x} is Undefined
- (When might we use some other value?)

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
- In general, we don't

Terminates?

Liveness Analysis

- A variable is live at a point in a program if later in the program its value will be read before it is written to again

Join semilattice definition

- A join semilattice is a pair (V, U), where
- V is a domain of elements
- \sqcup is a join operator that is
- commutative: $x \sqcup y=y \sqcup x$
- associative: $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$
- idempotent: $x \bigsqcup x=x$
- If $x \sqcup y=z$, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted \perp such that $\perp \sqcup \mathrm{x}=\mathrm{x}$ for all x

Partial ordering induced by join

- Every join semilattice (V, ப) induces an ordering relationship \sqsubseteq over its elements
- Define $x \sqsubseteq y$ iff $x \sqcup y=y$
- Need to prove
- Reflexivity: x ㄷ
- Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$
- Transitivity: If $\mathrm{x} \sqsubseteq \mathrm{y}$ and $\mathrm{y} \sqsubseteq \mathrm{z}$, then $\mathrm{x} \sqsubseteq \mathrm{z}$

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$
-x \cup x=x
$$

- Commutative:
$-x \cup y=y U x$
- Associative:
$-(x \cup y) \cup z=x \cup(y \cup z)$
- Bottom element:
- The empty set: $\varnothing \cup x=x$
- Ordering over elements = subset relation

Join semilattice example for liveness

Dataflow framework

- A global analysis is a tuple (D, V, ப, F, I), where
- D is a direction (forward or backward)
- The order to visit statements within a basic block, NOT the order in which to visit the basic blocks
- V is a set of values (sometimes called domain)
$-\bigsqcup$ is a join operator over those values
- F is a set of transfer functions $f_{\mathrm{s}}: \mathbf{V} \rightarrow \mathbf{V}$ (for every statement s)
- I is an initial value

Running global analyses

- Assume that ($\mathrm{D}, \mathrm{V}, \mathrm{L}, \mathrm{F}, \mathrm{I}$) is a forward analysis
- For every statement s maintain values before - IN[s] - and after - OUT[s]
- Set OUT[s] = \perp for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement \mathbf{s} with predecessors PRED[s]=\{ $\left.\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right\}$

- Set OUT[s] $=f_{s}(\operatorname{IN}[\mathbf{s}])$
- The order of this iteration does not matter
- Chaotic iteration

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

A non-terminating analysis

- The following analysis will loop infinitely on any CFG containing a loop:
- Direction: Forward
- Domain: \mathbb{N}
- Join operator: max
- Transfer function: $f(n)=n+1$
- Initial value: 0

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Iteration 1

Iteration 1

Choose a block

Iteration 2

Iteration 2

Iteration 2

Choose a block

Iteration 3

Iteration 3

Iteration 3

Why doesn't this terminate?

- Values can increase without bound
- Note that "increase" refers to the lattice ordering, not the ordering on the natural numbers
- The height of a semilattice is the length of the longest increasing sequence in that semilattice
- The dataflow framework is not guaranteed to terminate for semilattices of infinite height
- Note that a semilattice can be infinitely large but have finite height
- e.g. constant propagation

Height of a lattice

- An increasing chain is a sequence of elements
\perp ㄷ․ $\mathrm{a}_{1} \subseteq \mathrm{a}_{2} \subseteq \ldots$ ㄷ.. a_{k}
- The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with n program variables:
$-\{ \} \subseteq\left\{\mathrm{v}_{1}\right\} \subseteq\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\} \subseteq \ldots \subseteq\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- For available expressions it is the number of expressions of the form $a=b$ op c
- For n program variables and m operator types:mn ${ }^{3}$

Another non-terminating analysis

- This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:
- Direction: Forward
- Domain: Boolean values true and false
- Join operator: Logical OR
- Transfer function: Logical NOT
- Initial value: false

A non-terminating analysis

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Iteration 1

Iteration 1

Iteration 2

Iteration 2

Iteration 3

Iteration 3

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?

Monotone transfer functions

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y \text {, then } f(x) \sqsubseteq f(y)
$$

- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does not mean that $\mathrm{x} \sqsubseteq f(\mathrm{x})$
- (This is a different property called extensivity)

Liveness and monotonicity

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y, \text { then } f(x) \sqsubseteq f(y)
$$

- Recall our transfer function for $\mathbf{a}=\mathbf{b}+\mathbf{c}$ is

$$
-f_{a}=b+c(V)=(V-\{a\}) \cup\{b, c\}
$$

- Recall that our join operator is set union and induces an ordering relationship

$$
X \subseteq Y \text { iff } X \subseteq Y
$$

- Is this monotone?

Is constant propagation monotone?

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y \text {, then } f(x) \sqsubseteq f(y)
$$

- Recall our transfer functions
$-\mathrm{f}_{\mathrm{x}=\mathrm{k}}(\mathrm{V})=\mathrm{V}[\mathrm{x} \mapsto \mathrm{k}]$ (update V by mapping x to k)
$-\mathrm{f}_{\mathrm{x}=\mathrm{a}+\mathrm{b}}(\mathrm{V})=\mathrm{V}[\mathrm{x} \mapsto$ Not-a-Constant] (assign Not-aConstant)
- Is this monotone?

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
- The join operator can only bring values up
- Transfer functions can never lower values back down below where they were in the past (monotonicity)
- Values cannot increase indefinitely (finite height)

An "optimality" result

- A transfer function f is distributive if

$$
f(a \sqcup b)=f(a) \sqcup f(b)
$$

for every domain elements a and b

- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths
- Join over all paths
- Optimal if we ignore program conditions

An "optimality" result

- A transfer function f is distributive if

$$
f(a \sqcup b)=f(a) \sqcup f(b)
$$

for every domain elements a and b

- If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths
- Join over all paths
- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

Loop optimizations

- Most of a program's computations are done inside loops
- Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
- Loop-invariant code motion
- (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
- Reaching definitions
- (Also useful for improving register allocation)

Loop invariant computation

Loop invariant computation

Code hoisting

What reasoning did we use?

What about now?

Loop-invariant code motion

- $d: \mathrm{t}=a_{1}$ op a_{2}
- d is a program location
- a_{1} op a_{2} loop-invariant (for a loop L) if computes the same value in each iteration
- Hard to know in general
- Conservative approximation
- Each a_{i} is a constant, or
- All definitions of a_{i} that reach d are outside L, or
- Only one definition of of a_{i} reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

Reaching definitions analysis

- A definition $d: t=\ldots$ reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined

Reaching definitions analysis

- A definition $d: t=\ldots$ reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions
- Join operator: union
- Transfer function:

$$
\begin{aligned}
& f_{\text {d: } a=b \text { op }(}(\mathrm{RD})=(\operatorname{RD}-\operatorname{defs}(a)) \cup\{d\} \\
& f_{d: \text { not-a-def }}(\mathrm{RD})=\operatorname{RD}
\end{aligned}
$$

- Where $\operatorname{defs}(a)$ is the set of locations defining a (statements of the form $a=$...)
- Initial value: $\}$

Reaching definitions analysis

Reaching definitions analysis

Initialization

Iteration 1

Iteration 1

Iteration 2

Iteration 2

Iteration 2

Iteration 2

Iteration 3

Iteration 3

Iteration 4

Iteration 4

Iteration 4

Iteration 5

Iteration 6

Which expressions are loop invariant?

Inferring loop-invariant expressions

- For a statement s of the form $t=a_{1}$ op a_{2}
- A variable a_{i} is immediately loop-invariant if all reaching definitions $\operatorname{IN}[s]=\left\{\mathrm{d}_{1}, \ldots, \mathrm{~d}_{k}\right\}$ for a_{i} are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants
LOOP-INV $=$ LOOP-INV $\cup\left\{x \mid \mathrm{d}: \mathrm{x}=a_{1}\right.$ op $a_{2}, \mathrm{~d}$ is in the loop, and both a_{1} and a_{2} are in LOOP-INV
- Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants

Computing LOOP-INV

Induction variables

j is a linear function of the induction variable with multiplier 4

i is incremented by a loopinvariant expression on each iteration - this is called an induction variable

Strength-reduction

Compilation 0368-3133
 Lecture 10b

Register Allocation Noam Rinetzky

Registers

- Dedicated memory locations that
- can be accessed quickly,
- can have computations performed on them, and

Registers

- Dedicated memory locations that
- can be accessed quickly,
- can have computations performed on them, and
- Usages
- Operands of instructions
- Store temporary results
- Can (should) be used as loop indexes due to frequent arithmetic operation
- Used to manage administrative info
- e.g., runtime stack

Register allocation

- Number of registers is limited
- Need to allocate them in a clever way
- Using registers intelligently is a critical step in any compiler
- A good register allocator can generate code orders of magnitude better than a bad register allocator

Register Allocation: IR

Source code (program)

Lexical	Syntax Analysis Analysis	AST	Symbol Table etc.

Inter.	Code
Rep.	Generation
(IR)	

Target code
 (executable)

Simple approach

- Straightforward solution:
- Allocate each variable in activation record
- At each instruction, bring values needed into registers, perform operation, then store result to memory
$x=y+z$

mov 16(\%ebp), \%eax mov 20(\%ebp), \%ebx add \%ebx, \%eax mov \%eax, 24(\%ebp)

- Problem: program execution very inefficientmoving data back and forth between memory and registers

Register allocation

- In TAC, there is an unlimited number of variables (temporaries)
- On a physical machine there is a small number of registers:
- x86 has 4 general-purpose registers and a number of specialized registers
- MIPS has $\mathbf{2 4}$ general-purpose registers and 8 special-purpose registers
- Register allocation is the process of assigning variables to registers and managing data transfer in and out of registers

simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg,reg,reg (*)

Fixed number of Registers!

- We will assume that we have all registers available for any usage
- Ignore registers allocated for stack management
- Treat all registers as general-purpose

Plan

- Goal: Reduce number of temporaries (registers)
- Machine-agnostic optimizations
- Assume unbounded number of registers
- Machine-dependent optimization
- Use at most K registers
- K is machine dependent

Generating Compound Expressions

- Use registers to store temporaries
- Why can we do it?
- Maintain a counter for temporaries in c
- Initially: c=0
- $\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let $A=\operatorname{cgen}\left(\mathrm{e}_{1}\right)$
$\mathrm{c}=\mathrm{c}+1$
Let $B=\operatorname{cgen}\left(e_{2}\right)$
$\mathrm{c}=\mathrm{c}+1$
Emit(_tc = A op B;) // _tc is a register
Return _tc

Improving cgen for expressions

- Observation - naïve translation needlessly generates temporaries for leaf expressions
- Observation - temporaries used exactly once
- Once a temporary has been read it can be reused for another sub-expression
- cgen $\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let _t1 = $\operatorname{cgen}\left(\mathrm{e}_{1}\right)$
Let _t2 $=\operatorname{cgen}\left(\mathrm{e}_{2}\right)$
Emit (_t1 =_t1 op _t2;)
Return _t1
\}

- Temporaries $\operatorname{cgen}\left(\mathrm{e}_{1}\right)$ can be reused in $\operatorname{cgen}\left(\mathrm{e}_{2}\right)$

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees
- Basic blocks
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (whole program)

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
- Minimizes number of temporaries for a single expression

Example (optimized): b*b-4*a*c

Generalizations

- More than two arguments for operators
- Function calls
- Multiple effected registers
- Multiplication
- Spilling
- Need more registers than available
- Register/memory operations

Simple Spilling Method

- Heavy tree - Needs more registers than available
- A "heavy" tree contains a "heavy" subtree whose dependents are "light"
- Simple spilling
- Generate code for the light tree
- Spill the content into memory and replace subtree by temporary
- Generate code for the resultant tree

Example (optimized): x:=b*b-4*a*c

Example (spilled): x := b*b-4*a*c

$$
\text { t7 : }=\mathrm{b} * \mathrm{~b}
$$

$$
x:=t 7-4 * a * c
$$

Register Memory Operations

- Add_Mem X, R1
- Mult_Mem X, R1

- No need for registers to store right operands

Example: b*b-4*a*c

Can We do Better?

- Yes: Increase view of code
- Simultaneously allocate registers for multiple expressions
- But: Lose per expression optimality
- Works well in practice

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees
- Basic blocks
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (whole program)

Basic Blocks

- basic block is a sequence of instructions with
- single entry (to first instruction), no jumps to the middle of the block
- single exit (last instruction)
- code execute as a sequence from first instruction to last instruction without any jumps
- edge from one basic block B1 to another block B2 when the last statement of B1 may jump to B2

control flow graph

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- nodes $\mathrm{V}=$ basic blocks
- edges $\mathrm{E}=$ control flow
- $(B 1, B 2) \in E$ when control from B1

$$
\mathrm{t}_{1}:=4^{*} \mathrm{i}
$$ flows to B2

$$
\mathrm{t}_{3}:=4^{*} \mathrm{i}
$$

- Leaders-based construction
- Target of jump instructions
- Instructions following jumps

$$
\begin{aligned}
& \text { prod }:=0 \\
& \mathrm{i}:=1
\end{aligned}
$$

$$
\mathrm{t}_{2}:=\mathrm{a}\left[\mathrm{t}_{1}\right]
$$

$$
\mathrm{t}_{4}:=\mathrm{b}\left[\mathrm{t}_{3}\right]
$$

$$
\mathrm{t}_{5}:=\mathrm{t}_{2} * \mathrm{t}_{4}
$$

$$
\mathrm{t}_{6}:=\operatorname{prod}+\mathrm{t}_{5}
$$

$$
\text { prod }:=\mathrm{t}_{6}
$$

$$
\mathrm{t}_{7}:=\mathrm{i}+1
$$

$$
\mathrm{i}:=\mathrm{t}_{7}
$$

$$
\text { if } \mathrm{i}<=20 \text { goto } \mathrm{B}_{2}
$$

AST for a Basic Block


```
int n;
```

```
n := a + 1;
```

n := a + 1;
x := b + n * n + c;
x := b + n * n + c;
n := n + 1;
n := n + 1;
y := d * n;

```
y := d * n;
```

Dependency graph

```
int n;
n := a + 1;
```

Simplified Data Dependency Graph

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1, X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	C,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n; y \(:=d\) * \(n\);
```


Question: Why "y"?

$$
\mathrm{x}
$$

Question: Why " y "?

Question: Why " y "?

Question: Why " y "?

y, dead or alive?

x , dead or alive?

Register Allocation for B.B.

- Dependency graphs for basic blocks
- Transformations on dependency graphs
- From dependency graphs into code
- Instruction selection
- linearizations of dependency graphs
- Register allocation
- At the basic block level

Dependency graphs

- TAC imposes an order of execution
- But the compiler can reorder assignments as long as the program results are not changed
- Define a partial order on assignments
$-\mathrm{a}<\mathrm{b} \Leftrightarrow \mathrm{a}$ must be executed before b
- Represented as a directed graph
- Nodes are assignments
- Edges represent dependency
- Acyclic for basic blocks

Running Example

Sources of dependency

- Data flow inside expressions
- Operator depends on operands
- Assignment depends on assigned expressions
- Data flow between statements
- From assignments to their use
- Pointers complicate dependencies

Sources of dependency

- Order of subexpresion evaluation is immaterial
- As long as inside dependencies are respected
- The order of uses of a variable X are immaterial as long as:
- X is used between dependent assignments
- Before next assignment to X

Creating Dependency Graph from AST

- Nodes AST becomes nodes of the graph
- Replaces arcs of AST by dependency arrows
- Operator \rightarrow Operand
- Create arcs from assignments to uses
- Create arcs between assignments of the same variable
- Select output variables (roots)
- Remove ; nodes and their arrows

Running Example

Dependency Graph Simplifications

- Short-circuit assignments
- Connect variables to assigned expressions
- Connect expression to uses
- Eliminate nodes not reachable from roots

Running Example

Cleaned-Up Data Dependency Graph

Common Subexpressions

- Repeated subexpressions
- Examples

$$
\begin{aligned}
& x=a^{*} a+2 * a * b+b^{*} b ; \\
& y=a * a-2 * a * b+b{ }^{*} b ; \\
& n[i]:=n[i]+m[i]
\end{aligned}
$$

- Can be eliminated by the compiler
- In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

- Linearize the dependency graph
- Instructions must follow dependency
- Many solutions exist
- Select the one with small runtime cost
- Assume infinite number of registers
- Symbolic registers
- Assign registers later
- May need additional spill
- Possible Heuristics
- Late evaluation
- Ladders

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1, X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	c,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

Non optimized vs Optimized Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1, X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	C,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1, Y

Load_Mem	a,R1
Add_Const	$1, R 1$
Load_Reg	R1,R2
Load_Reg	R2,R1
Mult_Reg	R2,R1
Add_Mem	b, R1
Add_Mem	C,R1
Store_Reg	R1, X
Load_Reg	R2,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

1d_Mem	a, R1
l_Const	1,R1
dd_Reg	R1, R2
.t_Reg	R1, R2
l_Mem	b, R2
l_Mem	c, R2
re_Reg	R2, x
L_Const	1, R1
.t_Mem	d, R1
re_Reg	R1, Y

Register Allocation

- Maps symbolic registers into physical registers
- Reuse registers as much as possible
- Graph coloring (next)
- Undirected graph
- Nodes = Registers (Symbolic and real)
- Edges = Interference
- May require spilling

Register Allocation for Basic Blocks

- Heuristics for code generation of basic blocks
- Works well in practice
- Fits modern machine architecture
- Can be extended to perform other tasks
- Common subexpression elimination
- But basic blocks are small
- Can be generalized to a procedure

Problem
Technique
Quality
Expression trees, using register-register or memory-register instructions
with sufficient registers:
with insufficient registers:
Dependency graphs, using register-register or memory-register instructions

Expression trees, using any Bottom-up tree rewritinstructions with cost func- ing:
tion
with sufficient registers:
with insufficient registers:
Register allocation when all interferences are known

Weighted trees;
Figure 4.30

Optimal
Optimal
Ladder sequences; Heuristic
Section 4.2.5.2

Section 4.2.6
Optimal
Heuristic
Graph coloring; Heuristic Section 4.2.7

The End

