
Compilation
0368-3133

Lecture 3a:

Syntax Analysis:
Top-Down parsing

Noam Rinetzky
1

The Real Anatomy of a Compiler

Executable
code

exe

Source
text

txt
Lexical
Analysis

Sem.
Analysis

Process
text
input

characters Syntax
Analysistokens AST

Intermediate
code

generation

Annotated AST

Intermediate
code

optimization
IR Code

generationIR

Target code
optimization

Symbolic Instructions

SI Machine code
generation

Write
executable

output

MI

2

Lexical
Analysis

Syntax
Analysis

Frontend: Scanning & Parsing
((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical
Analyzer

program text

token stream

Parser
Grammar:
E ® ... | Id
Id ® ‘a’ | ... | ‘z’

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

validsyntax
error

3

From scanning to parsing
((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical
Analyzer

program text

token stream

Parser
Grammar:
E ® ... | Id
Id ® ‘a’ | ... | ‘z’

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

validsyntax
error

4

Reminder
• Context-free languages

– Grammars
– Pushdown Automata

• Terminology
– Derivation
– Sentential form
– Parse trees
– Leftmost/rightmost derivation
– Ambiguous grammars

• Top-down / Botto-up parsers
5

Parsing
• Construct a structured representation of the input

• Challenges
– How do you describe the programming language?
– How do you check validity of an input?

• Is a sequence of tokens a valid program in the language?

– How do you construct the structured representation?
– Where do you report an error?

6

Top-down parsing

7

Predictive parsing
• Given a grammar G and a word w attempt to derive

w using G
• Idea

– Apply production to leftmost nonterminal
– Pick production rule based on next input token

• General grammar
– More than one option for choosing the next

production based on a token
• Restricted grammars (LL)

– Know exactly which single rule to apply
– May require some lookahead to decide

8

Boolean expressions example

9

not (not true or false)

E ® LIT | (E OP E) | not E
LIT ® true | false
OP ® and | or | xor

Boolean expressions example

not (not true or false)

E =>
not E =>
not (E OP E) =>
not (not E OP E) =>
not (not LIT OP E) =>
not (not true OP E) =>
not (not true or E) =>
not (not true or LIT) =>
not (not true or false)

not E

E

(E OP E)

not LIT or LIT

true false

production to
apply known from
next token

E ® LIT | (E OP E) | not E
LIT ® true | false
OP ® and | or | xor

10

Recursive descent parsing

• Define a function for every nonterminal
• Every function work as follows

– Find applicable production rule
– Terminal function checks match with next

input token
– Nonterminal function calls (recursively) other

functions
• If there are several applicable productions

for a nonterminal, use lookahead
11

Implementation via recursion

E → LIT
| (E OP E)
| not E

LIT → true
| false

OP → and
| or
| xor

E() {
if (current Î {TRUE, FALSE}){ LIT(); }
else if (current == LPAREN){ match(LPARENT);

E(); OP(); E();
match(RPAREN); }

else if (current == NOT){ match(NOT); E(); }
else error;

}

LIT() {
if (current == TRUE){ match(TRUE); }
else if (current == FALSE){ match(FALSE); }
else error;

}

OP() {
if (current == AND){ match(AND); }
else if (current == OR){ match(OR); }
else if (current == XOR){ match(XOR); }
else error;

} 12

Recursive descent

• How do you pick the right A-production?
• Generally – try them all and use

backtracking
• In our case – use lookahead

void A() {
choose an A-production, A ® X1X2…Xk;
for (i=1; i≤ k; i++) {
if (Xi is a nonterminal)
call procedure Xi();

elseif (Xi == current)
advance input;

else
report error;

}
}

13

• The function for indexed_elem will never be tried…
– What happens for input of the form ID[expr]

term ® ID | indexed_elem
indexed_elem ® ID [expr]

Problem 1: productions with common prefix

14

Problem 2: null productions

S() {
return A() ; match(token(‘a’)) ; match(token(‘b’))

}
A() {

match(token(‘a’)) || skip
}

S ® A a b
A ® a | e

§ What happens for input “ab”?
§ What happens if you flip order of alternatives and try “aab”?

15

Problem 3: left recursion

E() {
return E() ; match(token(‘-’)) ; term()
||
term()

}

E ® E - term | term

§ What happens with this procedure?
§ Recursive descent parsers cannot handle left-recursive grammars

p. 127

16

What can we do?

17

FIRST sets

X à YY | Z Z | Y Z | 1 Y
Y à 4 | ℇ
Z à 2

L(Z) = {2}
L(Y) = {4, ℇ}
L(X) = {44, 4, ℇ, 22, 42, 2, 14, 1}

18

FIRST sets

X à YY | Z Z | Y Z | 1 Y
Y à 4 | ℇ
Z à 2

L(Z) = {2}
L(Y) = {4, ℇ}
L(X) = {44, 4, ℇ, 22, 42, 2, 14, 1}

19

FIRST sets

• FIRST(X) = { t | X à* t β} ∪{ℇ | X à* ℇ}

– FIRST(X) = all terminals that α can appear as

first in some derivation for X

• + ℇ if can be derived from X

• Example:

– FIRST(LIT) = { true, false }

– FIRST((E OP E)) = { (}

– FIRST(not E) = { not } 20

FIRST sets

• No intersection between FIRST sets => can
always pick a single rule

• If the FIRST sets intersect, may need longer
lookahead
– LL(k) = class of grammars in which production

rule can be determined using a lookahead of k
tokens

– LL(1) is an important and useful class

21

Computing FIRST sets
• FIRST (t) = { t } // “t” non terminal

• ℇ∈ FIRST(X) if
– X à ℇ or
– X à A1 .. Ak and ℇ∈ FIRST(Ai) i=1…k

• FIRST(α) ⊆ FIRST(X) if
– Xà A1 .. Ak α and ℇ∈ FIRST(Ai) i=1…k

22

Computing FIRST sets
• Assume no null productions A ® e

1. Initially, for all nonterminals A, set
FIRST(A) = { t | A ® tω for some ω }

2. Repeat the following until no changes occur:
for each nonterminal A
for each production A ® Bω
set FIRST(A) = FIRST(A) ∪ FIRST(B)

• This is known as fixed-point computation

23

FIRST sets computation example
STMT ® if EXPR then STMT

| while EXPR do STMT
| EXPR ;

EXPR ® TERM -> id
| zero? TERM
| not EXPR
| ++ id
| -- id

TERM ® id
| constant

TERMEXPRSTMT

24

1. Initialization

TERMEXPRSTMT
id
constant

zero?
Not
++
--

if
while

STMT ® if EXPR then STMT
| while EXPR do STMT
| EXPR ;

EXPR ® TERM -> id
| zero? TERM
| not EXPR
| ++ id
| -- id

TERM ® id
| constant

25

STMT ® if EXPR then STMT
| while EXPR do STMT
| EXPR ;

EXPR ® TERM -> id
| zero? TERM
| not EXPR
| ++ id
| -- id

TERM ® id
| constant

TERMEXPRSTMT
id
constant

zero?
Not
++
--

if
while

zero?
Not
++
--

26

2. Iterate 1

2. Iterate 2
TERMEXPRSTMT
id
constant

zero?
Not
++
--

if
while

id
constant

zero?
Not
++
--

STMT ® if EXPR then STMT
| while EXPR do STMT
| EXPR ;

EXPR ® TERM -> id
| zero? TERM
| not EXPR
| ++ id
| -- id

TERM ® id
| constant

27

2. Iterate 3 – fixed-point
TERMEXPRSTMT
id
constant

zero?
Not
++
--

if
while

id
constant

zero?
Not
++
--

id
constant

STMT ® if EXPR then STMT
| while EXPR do STMT
| EXPR ;

EXPR ® TERM -> id
| zero? TERM
| not EXPR
| ++ id
| -- id

TERM ® id
| constant

28

FOLLOW sets

• What do we do with nullable (e) productions?

– A ® B C D B ® e C ® e
– Use what comes afterwards to predict the right

production

• For every production rule A ® α

– FOLLOW(A) = set of tokens that can immediately
follow A

• Can predict the alternative Ak for a non-terminal N
when the lookahead token is in the set

– FIRST(Ak) ® (if Ak is nullable then FOLLOW(N))

p. 189

29

FOLLOW sets: Constraints

• $ ∈ FOLLOW(S)

• FIRST(β) – {ℇ} ⊆ FOLLOW(X)
– For each A à α X β

• FOLLOW(A) ⊆ FOLLOW(X)
– For each A à α X β and ℇ ∈ FIRST(β)

30

Example: FOLLOW sets

• Eà TX Xà+ E | ℇ
• Tà (E) | int Y Y à * T | ℇ

31

Terminal + (*) int

FOLLOW int, (int, (int, (_,), $ *,), +, $

Non.
Term.

E T X Y

FOLLOW), $ +,), $ $,) _,), $

Prediction Table

• A à α

• T[A,t] = α if t ∈FIRST(α)
• T[A,t] = α if ℇ ∈ FIRST(α) and t ∈ FOLLOW(A)

– t can also be $

• T is not well defined è the grammar is not LL(1)

32

LL(k) grammars

• A grammar is in the class LL(K) when it can
be derived via:
– Top-down derivation
– Scanning the input from left to right (L)
– Producing the leftmost derivation (L)
– With lookahead of k tokens (k)

• A language is said to be LL(k) when it has an
LL(k) grammar

33

LL(1) grammars

• A grammar is in the class LL(1) iff
– For every two productions A ® α and A ® β we have

• FIRST(α) ∩ FIRST(β) = {} // including e
• If e ∈ FIRST(α) then FIRST(β) ∩ FOLLOW(A) = {}
• If e ∈ FIRST(β) then FIRST(α) ∩ FOLLOW(A) = {}

34

35

Problem: Non LL Grammars

Problem: Non LL Grammars

bool S() {
return A() && match(token(‘a’)) && match(token(‘b’));

}

bool A() {
return match(token(‘a’)) || true;

}

S ® A a b
A ® a | e

§ What happens for input “ab”?
§ What happens if you flip order of alternatives and try “aab”?

36

• FIRST(S) = { a } FOLLOW(S) = { $ }
• FIRST(A) = { a, e } FOLLOW(A) = { a }

• FIRST/FOLLOW conflict

S ® A a b
A ® a | e

37

Problem: Non LL Grammars

Back to problem 1

• FIRST(term) = { ID }
• FIRST(indexed_elem) = { ID }

• FIRST/FIRST conflict

term ® ID | indexed_elem
indexed_elem ® ID [expr]

38

Solution: left factoring

• Rewrite the grammar to be in LL(1)

Intuition: just like factoring x*y + x*z into x*(y+z)

term ® ID | indexed_elem
indexed_elem ® ID [expr]

term ® ID after_ID
After_ID ® [expr] | e

39

S ® if E then S else S
| if E then S
| T

S ® if E then S S’
| T

S’ ® else S | e

Left factoring – another example

40

Back to problem 2

• FIRST(S) = { a } FOLLOW(S) = { }
• FIRST(A) = { a , e } FOLLOW(A) = { a }

• FIRST/FOLLOW conflict

S ® A a b
A ® a | e

41

Solution: substitution

S ® A a b
A ® a | e

S ® a a b | a b

Substitute A in S

S ® a after_A
after_A ® a b | b

Left factoring

42

Back to problem 3

• Left recursion cannot be handled with a
bounded lookahead

• What can we do?

E ® E - term | term

43

Left recursion removal

• L(G1) = β, βα, βαα, βααα, …
• L(G2) = same

N ® Nα | β N ® βN’
N’ ® αN’ | e

G1 G2

E ® E - term |
term

E ® term TE | term
TE ® - term TE | e

§ For our 3rd example:

p. 130

Can be done algorithmically.
Problem: grammar becomes
mangled beyond recognition

44

LL(k) Parsers

• Recursive Descent
– Manual construction
– Uses recursion

• Wanted
– A parser that can be generated automatically
– Does not use recursion

45

Pushdown Automata (PDA)

46

Intuition: PDA

• An ε-NFA with the additional power to
manipulate one stack

47

stack

X

Y

IF

$

Top

control (ε-NFA)

Intuition: PDA

• Think of an ε-NFA with the additional
power that it can manipulate a stack

• PDA moves are determined by:
– The current state (of its �ε-NFA�)
– The current input symbol (or ε)
– The current symbol on top of its stack

48

Intuition: PDA

input

stack

if (oops) then stat:= blah else abort

X

Y

IF

$

Top

Current

control (ε-NFA)

49

Intuition: PDA

• Moves:
– Change state
– Replace the top symbol by 0…n symbols

• 0 symbols = �pop� (“reduce”)
• 0 < symbols = sequence of �pushes� (“shift”)

• Nondeterministic choice of next move

50

PDA Formalism

• PDA = (Q, Σ, Γ, δ, q0, $, F):
– Q: finite set of states
– Σ: Input symbols alphabet
– Γ: stack symbols alphabet
– δ: transition function
– q0: start state
– $: start symbol
– F: set of final states

51

Tokens

Non terminals

The Transition Function

• δ(q, a, X) = { (p1, σ1), … ,(pn, σn)}
– Input: triplet

• A state q ∊ Q
• An input symbol a ∊ Σ or ε
• A stack symbol X ∊ Γ

– Output: set of 0 … k actions of the form (p, σ)
• A state p ∊ Q
• σ a sequence X1⋯Xn ∊ Γ* of stack symbols

52

Actions of the PDA

• Say (p, σ) ∊ δ(q, a, X)
– If the PDA is in state q and X is the top symbol

and a is at the front of the input
– Then it can

• Change the state to p.
• Remove a from the front of the input

– (but a may be ε).

• Replace X on the top of the stack by σ.

53

Example: Deterministic PDA

• Design a PDA to accept {0n1n | n > 1}.
• The states:

– q = We have not seen 1 so far
• start state

– p = we have seen at least one 1 and no 0s since
– f = final state; accept.

54

Example: Stack Symbols

• $ = start symbol.
– Also marks the bottom of the stack,
– Indicates when we have counted the same

number of 1�s as 0�s.
• X = “counter”

– used to count the number of 0s we saw

55

Example: Transitions

• δ(q, 0, $) = {(q, X$)}.

• δ(q, 0, X) = {(q, XX)}.
– These two rules cause one X to be pushed onto the

stack for each 0 read from the input.

• δ(q, 1, X) = {(p, ε)}.
– When we see a 1, go to state p and pop one X.

• δ(p, 1, X) = {(p, ε)}.
– Pop one X per 1.

• δ(p, ε, $) = {(f, $)}.
– Accept at bottom. 56

Actions of the Example PDA

q

0 0 0 1 1 1

$

57

Actions of the Example PDA

q

X
$

0 0 0 1 1 1

58

Actions of the Example PDA

q

X
X
$

0 0 0 1 1 1

59

Actions of the Example PDA

q

X
X
X
$

0 0 0 1 1 1

60

Actions of the Example PDA

p

X
X
$

0 0 0 1 1 1

61

Actions of the Example PDA

p

X
$

0 0 0 1 1 1

62

Actions of the Example PDA

p

$

0 0 0 1 1 1

63

Actions of the Example PDA

f

$

0 0 0 1 1 1

64

Example: Non Deterministic PDA

• A PDA that accepts palindromes
– L {pp’ ∊ Σ* | p’=reverse(p)}

65

• Pushdown automaton uses
– Prediction stack
– Input stream
– Transition table

• nonterminals x tokens -> production alternative
• Entry indexed by nonterminal N and token t

contains the alternative of N that must be
predicated when current input starts with t

LL(k) parsing via pushdown
automata

66

LL(k) parsing via pushdown
automata

• Two possible moves
– Prediction

• When top of stack is nonterminal N, pop N, lookup table[N,t].
If table[N,t] is not empty, push table[N,t] on prediction stack,
otherwise – syntax error

– Match
• When top of prediction stack is a terminal T, must be equal to

next input token t. If (t == T), pop T and consume t. If (t ≠ T)
syntax error

• Parsing terminates when prediction stack is empty
– If input is empty at that point, success. Otherwise,

syntax error

67

() not true false and or xor $
E 2 3 1 1

LIT 4 5
OP 6 7 8

(1) E → LIT
(2) E → (E OP E)
(3) E → not E
(4) LIT → true
(5) LIT → false
(6) OP → and
(7) OP → or
(8) OP → xor

N
on

te
rm

in
al

s

Input tokens

Which rule
should be used

Example transition table

68

Model of non-recursive
predictive parser

Predictive Parsing
program

Parsing Table

X
Y
Z
$

Stack

$b+a

Output

69

a b c
A A ® aAb A ® c

A ® aAb | caacbb$

Input suffix Stack content Move
aacbb$ A$ predict(A,a) = A ® aAb
aacbb$ aAb$ match(a,a)
acbb$ Ab$ predict(A,a) = A ® aAb
acbb$ aAbb$ match(a,a)
cbb$ Abb$ predict(A,c) = A ® c
cbb$ cbb$ match(c,c)
bb$ bb$ match(b,b)
b$ b$ match(b,b)
$ $ match($,$) – success

Running parser example

70

Erorrs

71

Handling Syntax Errors

• Report and locate the error
• Diagnose the error
• Correct the error
• Recover from the error in order to discover

more errors
– without reporting too many “strange” errors

72

Error Diagnosis

• Line number
– may be far from the actual error

• The current token
• The expected tokens
• Parser configuration

73

Error Recovery

• Becomes less important in interactive
environments

• Example heuristics:
– Search for a semi-column and ignore the statement
– Try to �replace� tokens for common errors
– Refrain from reporting 3 subsequent errors

• Globally optimal solutions
– For every input w, find a valid program w� with a
�minimal-distance� from w

74

a b c
A A ® aAb A ® c

A ® aAb | cabcbb$

Input suffix Stack content Move
abcbb$ A$ predict(A,a) = A ® aAb
abcbb$ aAb$ match(a,a)
bcbb$ Ab$ predict(A,b) = ERROR

Illegal input example

75

Error handling in LL parsers

• Now what?
– Predict b S anyway “missing token b inserted in line XXX”

S ® a c | b Sc$

a b c
S S ® a c S ® b S

Input suffix Stack content Move
c$ S$ predict(S,c) = ERROR

76

Error handling in LL parsers

• Result: infinite loop

S ® a c | b Sc$

a b c
S S ® a c S ® b S

Input suffix Stack content Move
bc$ S$ predict(b,c) = S ® bS
bc$ bS$ match(b,b)
c$ S$ Looks familiar?

77

Error handling and recovery

• x = a * (p+q * (-b * (r-s);

• Where should we report the error?

• The valid prefix property

78

The Valid Prefix Property

• For every prefix tokens
– t1, t2, …, ti that the parser identifies as legal:

• there exists tokens ti+1, ti+2, …, tn such that t1, t2, …, tn
is a syntactically valid program

• If every token is considered as single character:
– For every prefix word u that the parser identifies as legal

there exists w such that u.w is a valid program

79

Recovery is tricky

• Heuristics for dropping tokens, skipping to
semicolon, etc.

80

Building the Parse Tree

81

Adding semantic actions

• Can add an action to perform on each
production rule

• Can build the parse tree
– Every function returns an object of type Node
– Every Node maintains a list of children
– Function calls can add new children

82

Building the parse tree

Node E() {
result = new Node();
result.name = “E”;
if (current Î {TRUE, FALSE}) // E ® LIT
result.addChild(LIT());

else if (current == LPAREN) // E ® (E OP E)
result.addChild(match(LPAREN));
result.addChild(E());
result.addChild(OP());
result.addChild(E());
result.addChild(match(RPAREN));

else if (current == NOT) // E ® not E
result.addChild(match(NOT));
result.addChild(E());

else error;
return result;

} 83

static int Parse_Expression(Expression **expr_p) {

Expression *expr = *expr_p = new_expression() ;

/* try to parse a digit */

if (Token.class == DIGIT) {

expr->type=�D�; expr->value=Token.repr –�0�;

get_next_token();

return 1; }

/* try parse parenthesized expression */

if (Token.class == �(�) {

expr->type=�P�; get_next_token();

if (!Parse_Expression(&expr->left)) Error(�missing expression�);

if (!Parse_Operator(&expr->oper)) Error(�missing operator�);

if (Token.class != �)�) Error(�missing)�);

get_next_token();

return 1; }

return 0;

} 84

Parser for Fully Parenthesized Expers

Earley Parsing

85
Jay Earley, PhD

Earley Parsing

• Invented by Jay Earley [PhD. 1968]

• Handles arbitrary context free grammars
– Can handle ambiguous grammars

• Complexity O(N3) when N = |input|
• Uses dynamic programming

– Compactly encodes ambiguity
86

Dynamic programming

• Break a problem P into subproblems P1…Pk

– Solve P by combining solutions for P1…Pk

– Memo-ize (store) solutions to subproblems
instead of re-computation

• Bellman-Ford shortest path algorithm
– Sol(x,y,i) = minimum of

• Sol(x,y,i-1)

• Sol(t,y,i-1) + weight(x,t) for edges (x,t)

87

Earley Parsing

• Dynamic programming implementation of
a recursive descent parser
– S[N+1] Sequence of sets of “Earley states”

• N = |INPUT|
• Earley state (item) s is a sentential form + aux info

– S[i] All parse tree that can be produced (by a
RDP) after reading the first i tokens

• S[i+1] built using S[0] … S[i]

88

Earley Parsing

• Parse arbitrary grammars in O(|input|3)
– O(|input|2) for unambigous grammer
– Linear for most LR(k) langaues (next lesson)

• Dynamic programming implementation of a
recursive descent parser
– S[N+1] Sequence of sets of “Earley states”

• N = |INPUT|
• Earley states is a sentential form + aux info

– S[i] All parse tree that can be produced (by an RDP)
after reading the first i tokens

• S[i+1] built using S[0] … S[i] 89

Earley States

• s = < constituent, back >
– constituent (dotted rule) for Aàαβ

Aà•αβ predicated constituents
Aàα•β in-progress constituents
Aàαβ• completed constituents

– back previous Early state in derivation

90

Earley States

• s = < constituent, back >
– constituent (dotted rule) for Aàαβ

Aà•αβ predicated constituents
Aàα•β in-progress constituents
Aàαβ• completed constituents

– back previous Early state in derivation

91

Earley Parser

Input = x[1…N]

S[0] = <E’à •E, 0>; S[1] = … S[N] = {}

for i = 0 ... N do

until S[i] does not change do

foreach s ∈ S[i]

if s = <Aà…•a…, b> and a=x[i+1] then // scan

S[i+1] = S[i+1] ∪ {<Aà…a•…, b> }

if s = <Aà … •X …, b> and Xàα then // predict

S[i] = S[i] ∪ {<Xà•α, i > }

if s = < Aà … • , b> and <Xà…•A…, k> ∈ S[b] then // complete

S[i] = S[i] ∪{<Xà…A•…, k> }

93

Example

94

PRACTICAL EARLEY PARSING 621

S0

S′ → •E , 0
E→ •E + E , 0
E→ •n , 0

n

S1

E→ n• , 0
S′ → E• , 0
E→ E • +E , 0

+

S2

E→ E + •E , 0
E→ •E + E , 2
E→ •n , 2

n

S3

E→ n• , 2
E→ E + E• , 0
E→ E • +E , 2
S′ → E• , 0

FIGURE 1. Earley sets for the grammar E → E + E | n and
the input n + n. Items in bold are ones which correspond to the
input’s derivation.

Earley recommended using lookahead for the COMPLETER

step [2]; it was later shown that a better approach was to use
lookahead for the PREDICTOR step [8]; later it was shown
that prediction lookahead was of questionable value in an
Earley parser which uses finite automata [9] as ours does.

In terms of implementation, the Earley sets are built in
increasing order as the input is read. Also, each set is
typically represented as a list of items, as suggested by
Earley [1, 2]. This list representation of a set is particularly
convenient, because the list of items acts as a ‘work queue’
when building the set: items are examined in order, applying
SCANNER, PREDICTOR and COMPLETER as necessary;
items added to the set are appended onto the end of the list.

3. THE PROBLEM OF ϵ

At any given point i in the parse, we have two partially-
constructed sets. SCANNER may add items to Si+1
and Si may have items added to it by PREDICTOR and
COMPLETER. It is this latter possibility, adding items to
Si while representing sets as lists, which causes grief with
ϵ-rules.

When COMPLETER processes an item [A→ •, j] which
corresponds to the ϵ-rule A → ϵ, it must look through
Sj for items with the dot before an A. Unfortunately,
for ϵ-rule items, j is always equal to i—COMPLETER

is thus looking through the partially-constructed set Si .3

Since implementations process items in Si in order, if an
item [B → . . . • A . . . , k] is added to Si after COMPLETER

has processed [A → •, j], COMPLETER will never add
[B → . . . A • . . . , k] to Si . In turn, items resulting directly
and indirectly from [B → . . . A• . . . , k] will be omitted too.
This effectively prunes potential derivation paths, which can
cause correct input to be rejected. Figure 2 gives an example
of this happening.

3j = i for ϵ-rule items because they can only be added to an Earley
set by PREDICTOR, which always bestows added items with the parent
pointer i.

S′ → S

S → AAAA

A → a
A → E

E → ϵ

S0

S′ → •S , 0
S → •AAAA , 0
A→ •a , 0
A→ •E , 0
E→ • , 0
A→ E• , 0
S → A • AAA , 0

a

S1

A→ a• , 0
S → A • AAA , 0
S → AA • AA , 0
A→ •a , 1
A→ •E , 1
E→ • , 1
A→ E• , 1
S → AAA • A , 0

FIGURE 2. An unadulterated Earley parser, representing sets
using lists, rejects the valid input a. Missing items in S0 sound
the death knell for this parse.

Two methods of handling this problem have been
proposed. Grune and Jacobs aptly summarize one approach:

‘The easiest way to handle this mare’s nest is
to stay calm and keep running the Predictor and
Completer in turn until neither has anything more
to add.’ [10, p. 159]

Aho and Ullman [11] specify this method in their presen-
tation of Earley parsing and it is used by ACCENT [12], a
compiler–compiler which generates Earley parsers.

The other approach was suggested by Earley [1, 2].
He proposed having COMPLETER note that the dot needed
to be moved over A, then looking for this whenever future
items were added to Si . For efficiency’s sake, the collection
of non-terminals to watch for should be stored in a data
structure which allows fast access. We used this method
initially for the Earley parser in the SPARK toolkit [13].

In our opinion, neither approach is very satisfactory.
Repeatedly processing Si , or parts thereof, involves a lot
of activity for little gain; Earley’s solution requires an
extra, dynamically-updated data structure and the unnatural
mating of COMPLETER with the addition of items. Ideally,
we want a solution which retains the elegance of Earley’s
algorithm, only processes items in Si once and has no run-
time overhead from updating a data structure.

4. AN ‘IDEAL’ SOLUTION

Our solution involves a simple modification to PREDICTOR,
based on the idea of nullability. A non-terminal A is said
to be nullable if A ⇒∗ ϵ; terminal symbols, of course,
can never be nullable. The nullability of non-terminals in
a grammar may be easily precomputed using well-known
techniques [14, 15]. Using this notion, our PREDICTOR can
be stated as follows (our modification is in bold):

If [A→ . . . • B . . . , j] is in Si , add [B → •α, i]
to Si for all rules B → α. If B is nullable,
also add [A→ . . . B • . . . , j] to Si .

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002

if s = <Aà…•a…, b> and a=x[i+1] then // scan
S[i+1] = S[i+1] ∪ {<Aà…a•…, b> }

if s = <Aà … •X …, b> and Xàα then // predict
S[i] = S[i] ∪ {<Xà•α, i > }

if s = < Aà … • , b> and <Xà…•A…, k> ∈ S[b] then // complete
S[i] = S[i] ∪{<Xà…A•…, k> }

