Compilation 0368-3133

Lecture 3a:

Syntax Analysis:

> Top-Down parsing

Noam Rinetzky

The Real Anatomy of a Compiler

Frontend: Scanning \& Parsing

From scanning to parsing

Reminder

- Context-free languages
- Grammars
- Pushdown Automata
- Terminology
- Derivation
- Sentential form
- Parse trees
- Leftmost/rightmost derivation
- Ambiguous grammars
- Top-down / Botto-up parsers

Parsing

- Construct a structured representation of the input
- Challenges
- How do you describe the programming language?
- How do you check validity of an input?
- Is a sequence of tokens a valid program in the language?
- How do you construct the structured representation?
- Where do you report an error?

Top-down parsing

Predictive parsing

- Given a grammar G and a word w attempt to derive w using G
- Idea
- Apply production to leftmost nonterminal
- Pick production rule based on next input token
- General grammar
- More than one option for choosing the next production based on a token
- Restricted grammars (LL)
- Know exactly which single rule to apply
- May require some lookahead to decide

Boolean expressions example

```
E LIT | (E OP E)| not E
LIT }->\mathrm{ true | false
OP }->\mathrm{ and | or | xor
```


Boolean expressions example

```
E LIT | (E OP E)| not E
LIT }->\mathrm{ true | false
OP }->\mathrm{ and | or | xor
```


Recursive descent parsing

- Define a function for every nonterminal
- Every function work as follows
- Find applicable production rule
- Terminal function checks match with next input token
- Nonterminal function calls (recursively) other functions
- If there are several applicable productions for a nonterminal, use lookahead

Implementation via recursion

Recursive descent

```
void A() {
    choose an A-production, A }->\mp@subsup{\textrm{X}}{1}{}\mp@subsup{\textrm{X}}{2}{}\ldots\mp@subsup{\textrm{X}}{\textrm{k}}{}\mathrm{ ;
    for (i=1; i\leq k; i++) {
        if (Xi is a nonterminal)
            call procedure Xi();
        elseif (Xi == current)
                advance input;
        else
            report error;
    }
```

- How do you pick the right A-production?
- Generally - try them all and use backtracking
- In our case - use lookahead

Problem 1: productions with common prefix

term \rightarrow ID | indexed_elem
indexed_elem \rightarrow ID [expr]

- The function for indexed_elem will never be tried...
- What happens for input of the form ID [expr]

Problem 2: null productions

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} a \mathrm{~b} \\
& \mathrm{~A} \rightarrow \mathrm{a} \mid \varepsilon
\end{aligned}
$$

S() \{

```
    return A() ; match(token('a')) ; match(token('b'))
```

\}
A() \{
match(token('a')) || skip
\}

- What happens for input "ab"?
- What happens if you flip order of alternatives and try "aab"?

Problem 3: left recursion

```
E }->\textrm{E}\mathrm{ - term | term
```

E() \{
return E() ; match(token(${ }^{-}$-' $\left.^{\prime}\right)$) ; term()
||
term()
\}

- What happens with this procedure?
- Recursive descent parsers cannot handle left-recursive grammars

What can we do?

FIRST sets

$X \rightarrow Y Y|Z Z| Y Z \mid 1 Y$
$Y \rightarrow 4 \mid \varepsilon$
Z $\rightarrow 2$
$L(Z)=\{2\}$
$L(Y)=\{4, \varepsilon\}$
$L(X)=\{44,4, \varepsilon, 22,42,2,14,1\}$

FIRST sets

$X \rightarrow Y Y|Z Z| Y Z \mid 1 Y$
$Y \rightarrow 4 \mid \varepsilon$
Z $\rightarrow 2$
$L(Z)=\{2\}$
$L(Y)=\{4, \varepsilon\}$
$L(X)=\{44,4, \varepsilon, 22,42,2,14,1\}$

FIRST sets

- $\operatorname{FIRST}(X)=\{t \mid X \rightarrow * t \beta\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}$
- FIRST(X) = all terminals that α can appear as first in some derivation for X
$\bullet+\varepsilon$ if can be derived from X
- Example:
- FIRST(LIT) $=\{$ true, false $\}$
- FIRST((E OP E)) = \{ ($\}$
$-\operatorname{FIRST}(\operatorname{not} E)=\{$ not $\}$

FIRST sets

- No intersection between FIRST sets => can always pick a single rule
- If the FIRST sets intersect, may need longer lookahead
- LL(k) = class of grammars in which production rule can be determined using a lookahead of k tokens
- $\operatorname{LL}(1)$ is an important and useful class

Computing FIRST sets

- $\operatorname{FIRST}(\mathrm{t})=\{\mathrm{t}\} / /$ "t" non terminal
- $\varepsilon \in \operatorname{FIRST}(X)$ if
$-X \rightarrow \varepsilon$ or
$-X \rightarrow A_{1} . . A_{k}$ and $\varepsilon \in \operatorname{FIRST}\left(A_{i}\right) i=1 . . . k$
- $\operatorname{FIRST}(\alpha) \subseteq \operatorname{FIRST}(X)$ if
$-X \rightarrow A_{1} . . A_{k} \alpha$ and $\varepsilon \in \operatorname{FIRST}\left(A_{i}\right) i=1 . . . k$

Computing FIRST sets

- Assume no null productions $\mathrm{A} \rightarrow \varepsilon$

1. Initially, for all nonterminals A, set $\operatorname{FIRST}(A)=\{t \mid A \rightarrow t \omega$ for some $\omega\}$
2. Repeat the following until no changes occur: for each nonterminal A
for each production $A \rightarrow B \omega$

$$
\text { set } \operatorname{FIRST}(A)=\operatorname{FIRST}(A) \cup \operatorname{FIRST}(B)
$$

- This is known as fixed-point computation

FIRST sets computation example

STMT \rightarrow if EXPR then STMT | while EXPR do STMT EXPR;
EXPR \rightarrow TERM -> id
| zero? TERM
| not EXPR
| ++ id

- -- id

TERM \rightarrow id
| constant

STMT	EXPR	TERM

1. Initialization

STMT	\rightarrow if EXPR then STMT
	\mid while EXPR do STMT
	\mid EXPR ;
EXPR	\rightarrow TERM -> id
	\mid zero? TERM
\mid not EXPR	
$\mid++$ id	
$\mid ~--~ i d ~$	
TERM	\rightarrow id
\mid constant	

STMT	EXPR	TERM
if	zero?	id
while	Not	
++	constant	
	--	

2. Iterate 1

STMT	\rightarrow if EXPR then STMT
	\mid while EXPR do STMT
	\mid EXPR ;
EXPR	\rightarrow TERM -> id
	\mid zero? TERM
\mid not EXPR	
$\mid++$ id	
$\mid ~--~ i d ~$	
TERM	\rightarrow id
\mid constant	

STMT	EXPR	TERM
if while	zero? Not ++ --	id constant
zero? Not ++ --		

2. Iterate 2

STMT	\rightarrow if EXPR then STMT
	\mid while EXPR do STMT
	\mid EXPR ;
EXPR	\rightarrow TERM -> id
	\mid zero? TERM
\mid not EXPR	
$\mid++$ id	
$\mid ~--~ i d ~$	
TERM	\rightarrow id
\mid constant	

STMT	EXPR	TERM
if while	zero? Not ++ --	id constant
zero? Not ++ --	id constant	

2. Iterate 3 - fixed-point

STMT \rightarrow if EXPR then STMT | while EXPR do STMT | EXPR ;
EXPR \rightarrow TERM $->$ id
| zero? TERM
| not EXPR
++ id

- -- id

TERM \rightarrow id
| constant

STMT	EXPR	TERM
if while	zero? Not ++ --	id constant
zero? Not ++ --	id constant	
id constant		

FOLLOW sets

p. 189

- What do we do with nullable (ε) productions?
$-\mathrm{A} \rightarrow \mathrm{BCD} \mathrm{B} \rightarrow \varepsilon \mathrm{C} \rightarrow \varepsilon$
- Use what comes afterwards to predict the right production
- For every production rule $\mathrm{A} \rightarrow \alpha$
- FOLLOW(A) = set of tokens that can immediately follow A
- Can predict the alternative A_{k} for a non-terminal N when the lookahead token is in the set
$-\operatorname{FIRST}\left(A_{k}\right) \rightarrow\left(\right.$ if A_{k} is nullable then FOLLOW(N))

FOLLOW sets: Constraints

- $\$ \in \operatorname{FOLLOW}(S)$
- $\operatorname{FIRST}(\beta)-\{\varepsilon\} \subseteq \operatorname{FOLLOW}(X)$
- For each $A \rightarrow \alpha \times \beta$
- $\operatorname{FOLLOW}(\mathrm{A}) \subseteq \mathrm{FOLLOW}(X)$
- For each $A \rightarrow \alpha X \beta$ and $\mathcal{E} \in \operatorname{FIRST}(\beta)$

Example: FOLLOW sets

- $\mathrm{E} \rightarrow$ TX

$$
X \rightarrow+E \mid \varepsilon
$$

- $T \rightarrow$ (E) | int Y
$Y \rightarrow{ }^{*} T \mid \varepsilon$

Terminal	+	$($	${ }^{*}$	$)$	int
FOLLOW	int, (int, (int, (-,$), \$$	$\left.{ }^{*},\right),+, \$$

Non. Term.	E	T	\mathbf{X}	Y
FOLLOW), \$,+), \$	\$,)	_ $), \$$

Prediction Table

- $A \rightarrow \alpha$
- $T[A, t]=\alpha$ if $t \in \operatorname{FIRST}(\alpha)$
- $T[A, t]=\alpha$ if $\varepsilon \in \operatorname{FIRST}(\alpha)$ and $t \in \operatorname{FOLLOW}(A)$
- t can also be \$
- T is not well defined \rightarrow the grammar is not $\mathrm{LL}(1)$

LL(k) grammars

- A grammar is in the class $\operatorname{LL}(K)$ when it can be derived via:
- Top-down derivation
- Scanning the input from left to right (L)
- Producing the leftmost derivation (L)
- With lookahead of k tokens (k)
- A language is said to be $L L(k)$ when it has an LL(k) grammar

LL(1) grammars

- A grammar is in the class LL(1) iff
- For every two productions $A \rightarrow \alpha$ and $A \rightarrow \beta$ we have
- $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\{ \} / /$ including ε
- If $\varepsilon \in \operatorname{FIRST}(\alpha)$ then $\operatorname{FIRST}(\beta) \cap \operatorname{FOLLOW}(A)=\{ \}$
- If $\varepsilon \in \operatorname{FIRST}(\beta)$ then $\operatorname{FIRST}(\alpha) \cap \operatorname{FOLLOW}(A)=\{ \}$

Problem: Non LL Grammars

Problem: Non LL Grammars

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} a \mathrm{~b} \\
& \mathrm{~A} \rightarrow \mathrm{a} \mid \varepsilon
\end{aligned}
$$

```
bool S() {
    return A() && match(token('a')) && match(token('b'));
}
bool A() {
    return match(token('a')) || true;
}
```

- What happens for input "ab"?
- What happens if you flip order of alternatives and try "aab"?

Problem: Non LL Grammars

$$
\begin{aligned}
& S \rightarrow A a b \\
& A \rightarrow a \mid \varepsilon
\end{aligned}
$$

- $\operatorname{FIRST}(S)=\{a\} \quad \operatorname{FOLLOW}(S)=\{\$\}$
- $\operatorname{FIRST}(A)=\{a, \varepsilon\} \quad \operatorname{FOLLOW}(A)=\{a\}$
- FIRST/FOLLOW conflict

Back to problem 1

term \rightarrow ID | indexed_elem indexed_elem \rightarrow ID [expr]

- $\operatorname{FIRST}($ term $)=\{$ ID $\}$
- FIRST(indexed_elem) $=\{$ ID $\}$
- FIRST/FIRST conflict

Solution: left factoring

- Rewrite the grammar to be in $\operatorname{LL}(1)$

```
term }->\mathrm{ ID | indexed_elem
indexed_elem }->\mathrm{ ID [ expr ]
```

```
term }->\mathrm{ ID after_ID
After_ID }->[\mathrm{ expr ]| |
```

Intuition: just like factoring $x^{*} y+x^{*} z$ into $x^{*}(y+z)$

Left factoring - another example

$$
\begin{aligned}
& S \rightarrow \text { if } E \text { then } S \text { else } S \\
& \left\lvert\, \begin{array}{l}
\text { if } E \text { then } S \\
\mid T
\end{array}\right. \\
& \hline \begin{array}{c}
S \rightarrow \text { if } E \text { then } S S^{\prime} \\
\mid T
\end{array} \\
& S^{\prime} \rightarrow \text { else } S \mid \varepsilon
\end{aligned}
$$

Back to problem 2

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~A} a \mathrm{~b} \\
& \mathrm{~A} \rightarrow \mathrm{a} \mid \varepsilon
\end{aligned}
$$

- $\operatorname{FIRST}(S)=\{$ a $\} \quad \operatorname{FOLLOW}(S)=\{ \}$
- $\operatorname{FIRST}(A)=\{a, \varepsilon\} \quad \operatorname{FOLLOW}(A)=\{a\}$
- FIRST/FOLLOW conflict

Solution: substitution

$$
\begin{aligned}
& S \rightarrow A a b \\
& A \rightarrow a \mid \varepsilon
\end{aligned}
$$

Substitute A in S

$$
S \rightarrow a \mathrm{ab} \mid a b
$$

Left factoring

```
S }->\mathrm{ a after_A
after A }->\textrm{a b | b
```


Back to problem 3

$$
\mathrm{E} \rightarrow \mathrm{E} \text { - term | term }
$$

- Left recursion cannot be handled with a bounded lookahead
- What can we do?

Left recursion removal

$$
N \rightarrow N \alpha \mid \beta
$$

$$
\begin{aligned}
& N \rightarrow \beta N^{\prime} \\
& N^{\prime} \rightarrow \alpha N^{\prime} \mid \varepsilon
\end{aligned}
$$

G_{1}

- $L\left(G_{1}\right)=\beta, \beta \alpha, \beta \alpha \alpha, \beta \alpha \alpha \alpha, \ldots$
- $L\left(G_{2}\right)=$ same

Can be done algorithmically. Problem: grammar becomes mangled beyond recognition

- For our $3^{\text {rd }}$ example:
$\mathrm{E} \rightarrow \mathrm{E}$ - term | term
$\mathrm{E} \rightarrow$ term TE \mid term $\mathrm{TE} \rightarrow$ - term TE\| ε

LL(k) Parsers

- Recursive Descent
- Manual construction
- Uses recursion
- Wanted
- A parser that can be generated automatically
- Does not use recursion

Pushdown Automata (PDA)

Intuition: PDA

- An ε-NFA with the additional power to manipulate one stack

control (ε-NFA)

Intuition: PDA

- Think of an ε-NFA with the additional power that it can manipulate a stack
- PDA moves are determined by:
- The current state (of its " ε-NFA")
- The current input symbol (or ε)
- The current symbol on top of its stack

Intuition: PDA

Current

stack

control (ε-NFA)

Intuition: PDA

- Moves:
- Change state
- Replace the top symbol by 0...n symbols
- 0 symbols = "pop" ("reduce")
- 0 < symbols = sequence of "pushes" ("shift")
- Nondeterministic choice of next move

PDA Formalism

- $\mathrm{PDA}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \$, F\right)$:
-Q : finite set of states
- Σ : Input symbols alphabet
$-\Gamma$: stack symbols alphabet Non terminals
- δ : transition function
- q_{0} : start state
- \$: start symbol
- F: set of final states

The Transition Function

- $\delta(q, a, X)=\left\{\left(p_{1}, \sigma_{1}\right), \ldots,\left(p_{n}, \sigma_{n}\right)\right\}$
- Input: triplet
- A state $q \in \mathrm{Q}$
- An input symbol $a \in \Sigma$ or ε
- A stack symbol $X \in 「$
- Output: set of 0 ... k actions of the form (p, σ)
- A state $p \in \mathrm{Q}$
- σ a sequence $X_{1} \cdots X_{n} \in \Gamma^{*}$ of stack symbols

Actions of the PDA

- Say $(p, \sigma) \in \delta(q, a, X)$
- If the PDA is in state q and X is the top symbol and a is at the front of the input
- Then it can
- Change the state to p.
- Remove a from the front of the input
- (but a may be ε).
- Replace X on the top of the stack by σ.

Example: Deterministic PDA

- Design a PDA to accept $\left\{0^{n} 1^{n} \mid n>1\right\}$.
- The states:
$-q=$ We have not seen 1 so far
- start state
$-p=$ we have seen at least one 1 and no Os since
$-f=$ final state; accept.

Example: Stack Symbols

- \$ = start symbol.
- Also marks the bottom of the stack,
- Indicates when we have counted the same number of 1's as 0's.
- $X=$ "counter"
- used to count the number of $0 s$ we saw

Example: Transitions

- $\delta(q, 0, \$)=\{(q, X \$)\}$.
- $\delta(q, 0, X)=\{(q, X X)\}$.
- These two rules cause one X to be pushed onto the stack for each 0 read from the input.
- $\delta(q, 1, X)=\{(p, \varepsilon)\}$.
- When we see a 1 , go to state p and pop one X.
- $\delta(p, 1, X)=\{(p, \varepsilon)\}$.
- Pop one X per 1.
- $\delta(\mathrm{p}, \varepsilon, \$)=\{(\mathrm{f}, \$)\}$.
- Accept at bottom.

Actions of the Example PDA

Actions of the Example PDA

Actions of the Example PDA

Example: Non Deterministic PDA

- A PDA that accepts palindromes
$-L\left\{p p^{\prime} \in \Sigma^{*} \mid p^{\prime}=\right.$ reverse $\left.(p)\right\}$

LL(k) parsing via pushdown automata

- Pushdown automaton uses
- Prediction stack
- Input stream
- Transition table
- nonterminals x tokens -> production alternative
- Entry indexed by nonterminal N and token t contains the alternative of N that must be predicated when current input starts with t

LL(k) parsing via pushdown automata

- Two possible moves
- Prediction
- When top of stack is nonterminal N, pop N, lookup table[N,t]. If table[$\mathrm{N}, \mathrm{t}]$ is not empty, push table[$\mathrm{N}, \mathrm{t}]$ on prediction stack, otherwise - syntax error
- Match
- When top of prediction stack is a terminal T, must be equal to next input token t. If $(t==T)$, pop T and consume t. If $(t \neq T)$ syntax error
- Parsing terminates when prediction stack is empty
- If input is empty at that point, success. Otherwise, syntax error

Example transition table

(1) $\mathrm{E} \rightarrow$ LIT
(2) $\mathrm{E} \rightarrow(\mathrm{E}$ OP E $)$
(3) $\mathrm{E} \rightarrow \operatorname{not} \mathrm{E}$
(4) LIT \rightarrow true
(5) LIT \rightarrow false
(6) OP \rightarrow and
(7) OP \rightarrow or
(8) OP \rightarrow xor

Which rule should be used

Nonterminals

	$\mathbf{1}$)	not	true	false	and	or	xor	\$
E	2		3	1	1				
LIT				4	5				
OP						6	7	8	

Model of non-recursive predictive parser

Running parser example

aacbb\$

$$
\mathrm{A} \rightarrow \mathrm{aAb} \quad \mid \quad \mathrm{c}
$$

Input suffix	Stack content	Move
aacbb\$	A\$	$\operatorname{predict}(\mathrm{A}, \mathrm{a})=\mathrm{A} \rightarrow \mathrm{aAb}$
aacbb\$	aAb\$	match(a,a)
acbb\$	Ab\$	$\operatorname{predict}(\mathrm{A}, \mathrm{a})=\mathrm{A} \rightarrow \mathrm{aAb}$
acbb\$	aAbb\$	match(a,a)
cbb\$	Abb\$	$\operatorname{predict}(\mathrm{A}, \mathrm{c})=\mathrm{A} \rightarrow \mathrm{c}$
cbb\$	cbb\$	match(c, c)
bb\$	bb\$	match(b,b)
b\$	b\$	match(b,b)
\$	\$	match(\$,\$) - success

	a	b	\mathbf{c}
A	$\mathrm{A} \rightarrow \mathrm{aAb}$		$\mathrm{A} \rightarrow \mathrm{c}$

Erorrs

Handling Syntax Errors

- Report and locate the error
- Diagnose the error
- Correct the error
- Recover from the error in order to discover more errors
- without reporting too many "strange" errors

Error Diagnosis

- Line number
- may be far from the actual error
- The current token
- The expected tokens
- Parser configuration

Error Recovery

- Becomes less important in interactive environments
- Example heuristics:
- Search for a semi-column and ignore the statement
- Try to "replace" tokens for common errors
- Refrain from reporting 3 subsequent errors
- Globally optimal solutions
- For every input w, find a valid program w' with a "minimal-distance" from w

Illegal input example

abcbb\$

$$
\mathrm{A} \rightarrow \mathrm{aAb} \quad \mid \quad \mathrm{c}
$$

Input suffix	Stack content	Move
abcbb\$	A\$	$\operatorname{predict}(\mathrm{A}, \mathrm{a})=\mathrm{A} \rightarrow \mathrm{aAb}$
abcbb\$	$\mathrm{aAb} \$$	$\operatorname{match}(\mathrm{a}, \mathrm{a})$
bcbb\$	Ab\$	$\operatorname{predict}(\mathrm{A}, \mathrm{b})=$ ERROR

	a	b	\mathbf{c}
A	$\mathrm{A} \rightarrow \mathrm{aAb}$		$\mathrm{A} \rightarrow \mathrm{c}$

Error handling in LL parsers

c\$

$$
S \rightarrow a \quad c \mid b s
$$

Input suffix	Stack content	Move
$\mathrm{c} \$$	S\$	$\operatorname{predict}(\mathrm{S}, \mathrm{c})=$ ERROR

- Now what?
- Predict b S anyway "missing token b inserted in line XXX"

	a	b	c
S	$\mathrm{S} \rightarrow \mathrm{ac}$	$\mathrm{S} \rightarrow \mathrm{b} \mathrm{S}$	

Error handling in LL parsers

$$
c \$
$$

$$
S \rightarrow a \quad c \mid b s
$$

Input suffix	Stack content	Move
$b c \$$	S\$	$\operatorname{predict}(\mathrm{b}, \mathrm{c})=\mathrm{S} \rightarrow \mathrm{bS}$
$\mathrm{bc} \$$	$\mathrm{bS} \$$	match(b,b)
$\mathrm{c} \$$	$\mathrm{~S} \$$	Looks familiar?

- Result: infinite loop

	a	b	c
S	$\mathrm{S} \rightarrow$ a c	$\mathrm{S} \rightarrow \mathrm{bS}$	

Error handling and recovery

- $x=a *\left(p+q\right.$ * $\left(-b^{*}(r-s)\right.$;
- Where should we report the error?
- The valid prefix property

The Valid Prefix Property

- For every prefix tokens
$-t_{1}, t_{2}, \ldots, t_{i}$ that the parser identifies as legal:
- there exists tokens $t_{i+1}, t_{i+2}, \ldots, t_{n}$ such that $t_{1}, t_{2}, \ldots, t_{n}$ is a syntactically valid program
- If every token is considered as single character:
- For every prefix word u that the parser identifies as legal there exists w such that u.w is a valid program

Recovery is tricky

- Heuristics for dropping tokens, skipping to semicolon, etc.

Building the Parse Tree

Adding semantic actions

- Can add an action to perform on each production rule
- Can build the parse tree
- Every function returns an object of type Node
- Every Node maintains a list of children
- Function calls can add new children

Buildingthe tarsetree

```
Node E() {
    result = new Node();
    result.name = "E";
    if (current \in {TRUE, FALSE}) // E -> LIT
    result.addChild(LIT());
    else if (current == LPAREN) // E > ( E OP E )
    result.addChild(match(LPAREN)) ;
    result.addChild(E()) ;
    result.addChild(OP());
    result.addChild(E());
    result.addChild(match(RPAREN));
    else if (current == NOT) // E -> not E
    result.addChild(match (NOT)) ;
    result.addChild(E()) ;
    else error;
    return result;

\section*{Parser for Fully Parenthesized Expers}
```

static int Parse_Expression(Expression **expr_p) {
Expression *expr = *expr_p = new_expression() ;
/* try to parse a digit */
if (Token.class == DIGIT) {
expr->type= 'D'; expr->value=Token.repr -'0';
get_next_token();
return 1; }
/* try parse parenthesized expression */
if (Token.class == '(') {
expr->type= 'P'; get_next_token();
if (!Parse_Expression(\&expr->left)) Error("missing expression");
if (!Parse_Operator(\&expr->oper)) Error("missing operator");
if (Token.class != ')') Error("missing)");
get_next_token();
return 1; }
return 0;

```

\section*{Earley Parsing}


Jay Earley, PhD

\section*{Earley Parsing}
- Invented by Jay Earley [PhD. 1968]
- Handles arbitrary context free grammars
- Can handle ambiguous grammars
- Complexity \(\mathrm{O}\left(\mathrm{N}^{3}\right)\) when \(\mathrm{N}=\mid\) input \(\mid\)
- Uses dynamic programming
- Compactly encodes ambiguity

\section*{Dynamic programming}
- Break a problem \(P\) into subproblems \(P_{1} \ldots P_{k}\)
- Solve \(P\) by combining solutions for \(P_{1} \ldots P_{k}\)
- Memo-ize (store) solutions to subproblems instead of re-computation
- Bellman-Ford shortest path algorithm
- Sol \((x, y, i)=\) minimum of
- Sol(x,y,i-1)
- Sol( \(t, y, i-1\) ) + weight \((x, t)\) for edges ( \(x, t\) )

\section*{Earley Parsing}
- Dynamic programming implementation of a recursive descent parser
\(-S[N+1]\) Sequence of sets of "Earley states"
- \(N=\mid\) INPUT \(\mid\)
- Earley state (item) s is a sentential form + aux info
- S[i] All parse tree that can be produced (by a RDP) after reading the first i tokens
- \(\mathrm{S}[\mathrm{i}+1]\) built using \(\mathrm{S}[0]\)... \(\mathrm{S}[\mathrm{i}]\)

\section*{Earley Parsing}
- Parse arbitrary grammars in \(\mathrm{O}\left(\mid\right.\) input \(\left.\left.\right|^{3}\right)\)
- O(|input| \(\left.\right|^{2}\) ) for unambigous grammer
- Linear for most LR(k) langaues (next lesson)
- Dynamic programming implementation of a recursive descent parser
- S[N+1] Sequence of sets of "Earley states"
- N = |INPUT|
- Earley states is a sentential form + aux info
- S[i] All parse tree that can be produced (by an RDP) after reading the first i tokens
- \(\mathrm{S}[i+1]\) built using \(\mathrm{S}[0]\)... \(\mathrm{S}[i]\)

\section*{Earley States}
- \(s=\) constituent, back >
- constituent (dotted rule) for \(A \rightarrow \alpha \beta\)
\(A \rightarrow \bullet \alpha \beta\) predicated constituents
\(A \rightarrow \alpha \bullet \beta\) in-progress constituents
\(A \rightarrow \alpha \beta \cdot\) completed constituents
- back previous Early state in derivation

\section*{Earley States}
- \(s=\) constituent, back >
- constituent (dotted rule) for \(A \rightarrow \alpha \beta\)
\(A \rightarrow \bullet \alpha \beta\) predicated constituents
\(A \rightarrow \alpha \bullet \beta\) in-progress constituents
\(A \rightarrow \alpha \beta \cdot\) completed constituents
- back previous Early state in derivation

\section*{Earley Parser}

Input \(=x[1\)...N]
\(S[0]=\left\langle E^{\prime} \rightarrow \bullet E, 0\right\rangle ; S[1]=\ldots S[N]=\{ \}\)
for \(\mathrm{i}=0\)... N do
until \(S[i]\) does not change do foreach \(s \in S[i]\)
```

if s=<A->···...a..., b> and a=x[i+1] then // scan
S[i+1]=S[i+1]\cup{<A }->···..a\bullet···..,b>
if }s=\langleA->···...X ...,b> and X->\alpha the
S[i] = S[i] \cup{<X->\bullet\alpha, i> }
if s=<A-> ...\bullet,b> and <X 首.\bulletA..., k> \inS[b] then // complete

```


\section*{Example}

\[
\begin{aligned}
& \text { if } s=\langle A \rightarrow \ldots \bullet a \ldots, b\rangle \text { and } a=x[i+1] \text { then } \\
& S[i+1]=S[i+1] \cup\{<A \rightarrow \ldots a \cdot \ldots, b\rangle\} \\
& \text { if } s=\langle A \rightarrow \ldots \bullet X \ldots, b\rangle \text { and } X \rightarrow \alpha \text { then // predict } \\
& S[i]=S[i] \cup\{<X \rightarrow \bullet \alpha, i>\} \\
& \text { if } s=\langle A \rightarrow \ldots \bullet, b\rangle \text { and }\langle X \rightarrow \ldots \bullet A \ldots, k\rangle \in S[b] \text { then // complete } \\
& S[i]=S[i] \cup\{<X \rightarrow \ldots A \bullet \ldots, k>\}
\end{aligned}
\]
\(S_{1}\)
\[
\begin{array}{ll}
\mathbf{E} \rightarrow \mathbf{n} \bullet & , \mathbf{0} \\
S^{\prime} \rightarrow E \bullet & , 0 \\
E \rightarrow E \bullet+E & , 0
\end{array}
\]
\[
S_{2}
\]
\[
+\begin{array}{ll}
E \rightarrow E+\bullet E & , 0 \\
E \rightarrow \bullet E+E & , 2 \\
E \rightarrow \bullet n & , 2
\end{array}
\]
\[
S_{3}
\]
\[
\begin{array}{ll}
\hline \mathbf{E} \rightarrow \mathbf{n} \bullet & , \mathbf{2} \\
\mathbf{E} \rightarrow \mathbf{E}+\mathbf{E} \bullet & , \mathbf{0} \\
E \rightarrow E \bullet+E & , 2 \\
\mathbf{S}^{\prime} \rightarrow \mathbf{E} \bullet & , \mathbf{0} \\
\hline
\end{array}
\]

FIGURE 1. Earley sets for the grammar \(E \rightarrow E+E \mid n\) and the input \(\mathrm{n}+\mathrm{n}\). Items in bold are ones which correspond to the input's derivation.```

