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The Exam
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Course Goals

• What is a compiler
• How does it work
• (Reusable) techniques & tools
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What is a Compiler?

“A compiler is a computer program that 
transforms source code written in a 
programming language (source language) 
into another language (target language).
The most common reason for wanting to 
transform source code is to create an 
executable program.”

--Wikipedia
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Compiler

• A program which transforms programs 
• Input a program (P)
• Output an object program (O)

– For any x, “O(x)” “=“ “P(x)”
Compiler

Source
text 

txt

Executable 
code

exe

P O 5



Interpreter

• A program which executes a program
• Input a program (P) + its input (x)
• Output the computed output (P(x))

Interpreter

Source
text 

txt

Input

Output
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Compiler vs. Interpreter
Source

Code

Executable

Code Machine

Source

Code

Intermediate

Code Interpreter

preprocessing

processingpreprocessing

processing
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Interpreter    vs.      Compiler

• Conceptually simpler 
– “define” the prog. lang. 

• Can provide more specific 
error report

• Easier to port

• Faster response time

• [More secure]

• How do we know the 
translation is correct?

• Can report errors before input 
is given

• More efficient code
– Compilation can be expensive 
– move computations to 

compile-time
• compile-time + execution-time 

< interpretation-time is possible
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Conceptual Structure of a Compiler

Executable 
code

exe

Source
text 

txt

Semantic
Representation

Backend

Compiler
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Lexical
Analysis

Syntax 
Analysis
Parsing

Semantic 
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Intermediate
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(IR)

Code
Generation

9
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Lexical Analysis



• Partitions the input into stream of tokens
– Numbers
– Identifiers
– Keywords
– Punctuation 

• Usually represented as (kind, value) pairs
– (Num, 23)
– (Op, ‘*’)

• “word” in the source language
• “meaningful” to the syntactical analysis

What does Lexical Analysis do? 
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Some basic terminology

• Lexeme (aka symbol) - a series of letters separated 
from the rest of the program according to a 
convention (space, semi-column, comma, etc.) 

• Pattern - a rule specifying a set of strings.
Example: “an identifier is a string that starts with a 
letter and continues with letters and digits”
– (Usually) a regular expression

• Token - a pair of (pattern, attributes)
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Regular languages 

• Formal languages
– Σ = finite set of letters
– Word        = sequence of letter
– Language = set of words

• Regular languages defined equivalently by
– Regular expressions
– Finite-state automata
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From regular expressions to NFA

• Step 1: assign expression names and obtain 
pure regular expressions R1…Rm

• Step 2: construct an NFA Mi for each 
regular expression Ri

• Step 3: combine all Mi into a single NFA

• Ambiguity resolution: prefer longest 
accepting word 15



From reg. exp. to automata 
• Theorem: there is an algorithm to build an 

NFA+Є automaton for any regular expression
• Proof: by induction on the structure of the 

regular expression

start 
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R = e

R = f

R = a
a

Basic constructs
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Composition
R = R1 | R2 e M1

M2e

e

e

R = R1R2

e
M1 M2

e e
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Repetition

R = R1*

e
M1

e

e

e
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Scanning with DFA

• Run until stuck
– Remember last accepting state

• Go back to accepting state
• Return token
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Ambiguity resolution

• Longest word
• Tie-breaker based on order of rules when 

words have same length
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Combine automata: an example.  
 

Combine a, abb, a*b+, abab.  
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Syntax Analysis



Frontend: Scanning & Parsing 
((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical 
Analyzer

program text

token stream

Parser
Grammar:
E ® ... | Id
Id ® ‘a’ | ... | ‘z’

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

validsyntax
error
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From scanning to parsing 
((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical 
Analyzer

program text

token stream

Parser
Grammar:
E ® ... | Id
Id ® ‘a’ | ... | ‘z’

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

validsyntax
error
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Context free grammars (CFG)

• V – non terminals (syntactic variables)
• T – terminals (tokens)
• P – derivation rules

– Each rule of the form V à(T ∪ V)*
• S – start symbol 

G = (V,T,P,S)
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Pushdown Automata (PDA)

• Nondeterministic PDAs define all CFLs

• Deterministic PDAs model parsers.
– Most programming languages have a 

deterministic PDA
– Efficient implementation
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CFG terminology

• Derivation - a sequence of replacements of 
non-terminals using the derivation rules

• Language - the set of strings of terminals 
derivable from the start symbol

• Sentential form - the result of a partial 
derivation
– May contain non-terminals

27



Derivations 

• Show that a sentence ω is in a grammar G
– Start with the start symbol
– Repeatedly replace one of the non-terminals 

by a right-hand side of a production
– Stop when the sentence contains only 

terminals
• Given a sentence αNβ and rule N®µ

αNβ => αµβ
• ω is in L(G) if S =>* ω
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Ambiguity

x := y+z*w
S ® S ; S
S ® id := E | … 
E ® id | E + E | E * E | …

S

id := E

E + E

id

id

E * E

id

S

id := E

E*E

id

id

E + E

id
29



“dangling-else” example 
Ambiguous grammar 
S ® if E then S 
S    | if E then S else S

| other

if

S

Sthen

thenif elseE S S

E

E1

E2 S1 S2

if

S

Sthen

thenif

else

E S

SE

E1

E2 S1

S2

if E1 then (if E2 then S1 else S2) if E1 then (if E2 then S1) else S2

This is what we usually 
want: match else to closest 
unmatched then 

if E1 then if E2 then S1 else S2

p. 174 

Unambiguous grammar

?
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Broad kinds of parsers 

• Parsers for arbitrary grammars
– Earley’s method, CYK method
– Usually, not used in practice (though might change)

• Top-down parsers  
– Construct parse tree in a top-down matter
– Find the leftmost derivation

• Bottom-up parsers  
– Construct parse tree in a bottom-up manner
– Find the rightmost derivation in a reverse order

31



Top-Down Parsing: Predictive parsing

• Recursive descent
• LL(k) grammars

32



Predictive parsing 
• Given a grammar G and a word w attempt to derive 

w using G
• Idea

– Apply production to leftmost nonterminal
– Pick production rule based on next input token

• General grammar
– More than one option for choosing the next 

production based on a token
• Restricted grammars (LL)

– Know exactly which single rule to apply
– May require some lookahead to decide 
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Recursive descent parsing 

• Define a function for every nonterminal
• Every function work as follows

– Find applicable production rule
– Terminal function checks match with next 

input token
– Nonterminal function calls (recursively) other 

functions
• If there are several applicable productions 

for a nonterminal, use lookahead
34



LL(k) grammars

• A grammar is in the class LL(K) when it can 
be derived via:
– Top-down derivation
– Scanning the input from left to right (L)
– Producing the leftmost derivation (L)
– With lookahead of k tokens (k)

• A language is said to be LL(k) when it has an 
LL(k) grammar
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FIRST sets

• FIRST(X) = { t | X à* t β} ∪{ℇ | X à* ℇ}
– FIRST(X) = all terminals that α can appear as 

first in some derivation for X
• + ℇ if can be derived from X

• Example: 
– FIRST( LIT ) = { true, false }
– FIRST( ( E OP E ) ) = { ‘(‘ }
– FIRST( not E ) = { not }

36



FIRST sets

• No intersection between FIRST sets => can 
always pick a single rule

• If the FIRST sets intersect, may need longer 
lookahead
– LL(k) = class of grammars in which production 

rule can be determined using a lookahead of k 
tokens

– LL(1) is an important and useful class

37



LL(1) grammars

• A grammar is in the class LL(K) iff
– For every two productions A ® α and A ® β we have

• FIRST(α) ∩ FIRST(β) = {}  // including e
• If e ∈ FIRST(α) then FIRST(β) ∩ FOLLOW(A) = {}
• If e ∈ FIRST(β) then FIRST(α) ∩ FOLLOW(A) = {}
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FOLLOW sets

• What do we do with nullable (e) productions?

– A ® B C D   B ® e C ® e
– Use what comes afterwards to predict the right 

production

• For every production rule A ® α

– FOLLOW(A) = set of tokens that can immediately 
follow A

• Can predict the alternative Ak for a non-terminal N 
when the lookahead token is in the set

– FIRST(Ak) ® (if Ak is nullable then FOLLOW(N))

p. 189 
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FOLLOW sets: Constraints

• $ ∈ FOLLOW(S)

• FIRST(β) – {ℇ} ⊆ FOLLOW(X)
– For each A à α X β

• FOLLOW(A) ⊆ FOLLOW(X)
– For each A à α X β  and ℇ ∈ FIRST(β)
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Prediction Table

• A à α 

• T[A,t] = α    if  t ∈FIRST(α)
• T[A,t] = α    if  ℇ ∈ FIRST(α) and t ∈ FOLLOW(A)

– t can also be $

• T is not well defined è the grammar is not LL(1)
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Problem 1: productions with 
common prefix

• FIRST(term) = { ID }
• FIRST(indexed_elem) = { ID }

• FIRST/FIRST conflict

term ® ID | indexed_elem
indexed_elem ® ID [ expr ]
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Solution: left factoring

• Rewrite the grammar to be in LL(1)

Intuition: just like factoring x*y + x*z into x*(y+z)

term ® ID | indexed_elem
indexed_elem ® ID [ expr ]

term ® ID after_ID
After_ID ® [ expr ] | e
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Problem 2: null productions 

• FIRST(S) = { a } FOLLOW(S) = { } 
• FIRST(A) = { a , e } FOLLOW(A) = { a }

• FIRST/FOLLOW conflict

S ® A a b
A ® a | e

44



Solution: substitution

S ® A a b
A ® a | e

S ® a a b | a b

Substitute A in S

S ® a after_A
after_A ® a b | b

Left factoring
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Problem 3: left recursion

• Left recursion cannot be handled with a 
bounded lookahead

• What can we do? 

E ® E - term | term
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Left recursion removal

• L(G1) = β, βα, βαα, βααα, …
• L(G2) = same

N ® Nα | β N ® βN’ 
N’ ® αN’ | e

G1 G2

E ® E - term | 
term

E ® term TE | term
TE ® - term TE | e

§ For our 3rd example:

p. 130 

Can be done algorithmically.
Problem: grammar becomes 
mangled beyond recognition 
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Bottom-up parsing
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Bottom-up parsing:

LR(k) Grammars

• A grammar is in the class LR(K) when it can be 

derived via:

– Bottom-up derivation

– Scanning the input from left to right (L)

– Producing the rightmost derivation (R)

– With lookahead of k tokens (k)

• A language is said to be LR(k) if it has an LR(k) 

grammar

• The simplest case is LR(0), which we will discuss
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Terminology: Reductions & Handles 

• The opposite of derivation is called 
reduction
– Let A è α be a production rule
– Derivation: βAµ è βαµ
– Reduction: βαµ è βAµ

• A handle is the reduced substring
– α is the handles for βαµ 

50 



How does the parser know what to do? 

• A state will keep the info gathered on handle(s)
– A state in the “control” of the PDA
– Also (part of) the stack alpha bet

• A table will tell it “what to do” based on current 
state and next token
– The transition function of the PDA

• A stack will records the “nesting level”
– Prefixes of handles 

51

Set of LR(0) items



Constructing an LR parsing table 

• Construct a (determinized) transition 
diagram from LR items

• If there are conflicts – stop
• Fill table entries from diagram 
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LR item

53 

N ® α•β

Already matched To be matched
Input

Hypothesis about αβ being a possible handle, so far we’ve matched 
α, expecting to see β



Types of LR(0) items
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N ® α•β Shift Item

N ® αβ• Reduce Item



LR(0) automaton example

55

Z ® •E$
E ® •T
E ® •E + T
T ® •i
T ® •(E)

T ® (•E)
E ® •T
E ® •E + T
T ® •i
T ® •(E)

E ® E + T•

T ® (E) •Z ® E$•

Z ® E•$
E ® E•+ T E ® E+•T

T ® •i
T ® •(E)

T ® i•

T ® (E•)
E ® E•+T

E ® T•q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

T

(

i

E

+

$

T

)

+

E

i

T

(
i

(

reduce state shift state 



LR(0) conflicts
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Z ® E $
E ® T 
E ® E + T
T ® i
T ® ( E )
T ® i[E]

Z ® •E$
E ® •T

E ® •E + T
T ® •i

T ® •(E)
T ® •i[E] T ® i•

T ® i•[E]

q0

q5

T

(

i

E Shift/reduce conflict

…

…

…



LR(0) conflicts

57

Z ® E $
E ® T 
E ® E + T
T ® i
V ® i
T ® ( E )

Z ® •E$
E ® •T

E ® •E + T
T ® •i

T ® •(E)
T ® •i[E] T ® i•

V ® i•

q0

q5

T

(

i

E reduce/reduce conflict

…

…

…



LR(0) conflicts 

• Any grammar with an e-rule cannot be LR(0)
• Inherent shift/reduce conflict

– A ® e• – reduce item
– P ® α•Aβ – shift item
– A ® e• can always be predicted from P ® α•Aβ
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LR variants 

• LR(0) – what we’ve seen so far
• SLR

– Removes infeasible reduce actions via FOLLOW 
set reasoning

• LR(1)
– LR(0) with one lookahead token in items

• LALR(0)
– LR(1) with merging of states with same LR(0) 

component  59 
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Semantic Analysis



Abstract Syntax Tree

• AST is a simplification of the parse tree

• Can be built by traversing the parse tree
– E.g., using visitors

• Can be built directly during parsing
– Add an action to perform on each production rule
– Similarly to the way a parse tree is constructed

61



Abstract Syntax Tree
• The interface between the parser and the rest of 

the compiler
– Separation of concerns
– Reusable, modular and extensible

• The AST is defined by a context free grammar
– The grammar of the AST can be ambiguous! 

• Eà E + E
• Is this a problem?

• Keep syntactic information
– Why? 62



What we want

symbol kind type properties

x var ?

tomato var ?

potato var Potato

carrot var Carrot

63

Lexical analyzer

Potato potato;
Carrot carrot;
x = tomato + potato + carrot

…<id,tomato>,<PLUS>,<id,potato>,<PLUS>,<id,carrot>,EOF

Parser

‘tomato’ is undefined ‘potato’ used before initialized Cannot add Potato and Carrot

LocationExpr
id=tomato

AddExpr
left right

AddExpr
left right

LocationExpr
id=potato id=carrot

LocationExpr



Context Analysis
• Check properties contexts of in which 

constructs occur
– Properties that cannot be formulated via CFG

• Type checking
• Declare before use

– Identifying the same word “w” re-appearing – wbw
• Initialization 
• …

– Properties that are hard to formulate via CFG
• “break” only appears inside a loop 
• …

• Processing of the AST 
64



Context Analysis

• Identification
– Gather information about each named item in 

the program
– e.g., what is the declaration for each usage

• Context checking
– Type checking
– e.g., the condition in an if-statement is a 

Boolean
65



Scopes
• Typically stack structured scopes 

• Scope entry
– push new empty scope element

• Scope exit
– pop scope element and discard its content

• Identifier declaration
– identifier created inside top scope

• Identifier Lookup
– Search for identifier top-down in scope stack

66



Scope and symbol table

• Scope x Identifier -> properties 
– Expensive lookup

• A better solution 
– hash table over identifiers

67



Types
• What is a type?

– Simplest answer: a set of values + allowed operations
– Integers, real numbers, booleans, …

• Why do we care?
– Code generation: $1 := $1 + $2
– Safety 

• Guarantee that certain errors cannot occur at runtime
– Abstraction

• Hide implementation details 
– Documentation
– Optimization

68



Typing Rules

69

If E1 has type int and E2 has type int, 
then E1 + E2 has type int

E1 : int E2 : int
E1 + E2 : int



Syntax Directed Translation

• Semantic attributes
– Attributes attached to grammar symbols

• Semantic actions
– How to update the attributes

• Attribute grammars

70



Attribute grammars

• Attributes
– Every grammar symbol has attached attributes

• Example: Expr.type
• Semantic actions

– Every production rule can define how to assign 
values to attributes 

• Example: 
Expr à Expr + Term
Expr.type = Expr1.type when (Expr1.type == Term.type)

Error otherwise 
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Example

72

Production Semantic Rule
D à T L L.in = T.type
T à int T.type = integer
T à float T.type = float
L à L1, id L1.in = L.in

addType(id.entry,L.in)
L à id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float



Attribute Evaluation

• Build the AST
• Fill attributes of terminals with values derived 

from their representation
• Execute evaluation rules of the nodes to 

assign values until no new values can be 
assigned
– In the right order such that 

• No attribute value is used before its available
• Each attribute will get a value only once

73



Dependencies

• A semantic equation a = b1,…,bm
requires computation of b1,…,bm to 
determine the value of a

• The value of a depends on b1,…,bm
– We write a à bi

74



Example

75

float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy

1

2

3

4

5

7

8 9

10

6
float float

ent1

ent2

ent3

float

float

float
float

float



Inherited vs. Synthesized Attributes

• Synthesized attributes
– Computed from children of a node

• Inherited attributes
– Computed from parents and siblings of a node

• Attributes of tokens are technically considered as 
synthesized attributes

76



example

77

Production Semantic Rule
D à T L L.in = T.type
T à int T.type = integer
T à float T.type = float
L à L1, id L1.in = L.in

addType(id.entry,L.in)
L à id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float

inherited
synthesized



S-attributed Grammars
• Special class of attribute grammars 
• Only uses synthesized attributes (S-attributed)
• No use of inherited attributes

• Can be computed by any bottom-up parser 
during parsing

• Attributes can be stored on the parsing stack
• Reduce operation computes the (synthesized) 

attribute from attributes of children

78



L-attributed grammars

• L-attributed attribute grammar when every 
attribute in a production A à X1…Xn is
– A synthesized attribute, or
– An inherited attribute of Xj, 1 <= j <=n that only 

depends on 
• Attributes of X1…Xj-1 to the left of Xj, or
• Inherited attributes of A

79
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Three-Address Code IR 

• A popular form of IR
• High-level assembly where instructions 

have at most three operands 

81 

Chapter 8 



Variable assignments 
• var = constant;
• var1 = var2;
• var1 = var2 op var3;
• var1 = constant op var2;
• var1 = var2 op constant;
• var = constant1 op constant2;
• Permitted operators are +, -, *, /, % 

82 

In the impl. var is 
replaced by a pointer 
to the symbol table 

A compiler-generated 
temporary can be 
used instead of a var



Control flow instructions
• Label introduction

_label_name:
Indicates a point in the code that can be jumped to

• Unconditional jump: go to instruction following label L
Goto L;

• Conditional jump: test condition variable t;
if 0, jump to label L

IfZ t Goto L;
• Similarly : test condition variable t;

if not zero, jump to label L
IfNZ t Goto L;

83 



Procedures / Functions 
• A procedure call instruction pushes arguments to 

stack and jumps to the function label
A statement x=f(a1,…,an); looks like

Push a1; … Push an;
Call f;
Pop x; // pop returned value, and copy to it

• Returning a value is done by pushing it to the 
stack (return x;)

Push x;
• Return control to caller (and roll up stack)

Return;

84 



TAC generation 

• At this stage in compilation, we have
– an AST
– annotated with scope information
– and annotated with type information

• To generate TAC for the program, we do 
recursive tree traversal
– Generate TAC for any subexpressions or 

substatements
– Using the result, generate TAC for the overall 

expression 

85 



cgen for binary operators 

86 

cgen(e1 + e2) = {
Choose a new temporary t
Let t1 = cgen(e1)
Let t2 = cgen(e2)
Emit( t = t1 + t2 )
Return t

} 



cgen for if-then-else

87 

cgen(if (e) s1 else s2) Let _t = cgen(e)
Let Ltrue be a new label
Let Lfalse be a new label
Let Lafter be a new label
Emit( IfZ _t Goto Lfalse; )
cgen(s1)
Emit( Goto Lafter; )
Emit( Lfalse: )
cgen(s2)
Emit( Goto Lafter;)
Emit( Lafter: )



IR Optimization

88



Optimization points 

source
code 

Front
end IR Code

generator 
target
code 

User
profile program

change algorithm 

Compiler
intraprocedural IR
Interprocedural IR
IR optimizations 

Compiler
register allocation

instruction selection
peephole transformations 

now 89



Overview of IR optimization 
• Formalisms and Terminology

– Control-flow graphs
– Basic blocks

• Local optimizations
– Speeding up small pieces of a procedure

• Global optimizations
– Speeding up procedure as a whole

• The dataflow framework
– Defining and implementing a wide class of 

optimizations 

90



Visualizing IR 
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start 

end 91



Control-Flow Graphs 

• A control-flow graph (CFG) is a graph of the 
basic blocks in a function

• The term CFG is overloaded – from here on 
out, we'll mean “control-flow graph” and not 
“context free grammar”

• Each edge from one basic block to another 
indicates that control can flow from the end of 
the first block to the start of the second block

• There is a dedicated node for the start and 
end of a function 

92



Common Subexpression Elimination 

• If we have two variable assignments
v1 = a op b      
…
v2 = a op b      

• and the values of v1, a, and b have not changed 
between the assignments, rewrite the code as
v1 = a op b
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations 
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Common Subexpression Elimination 

• If we have two variable assignments
v1 = a op b     [or:  v1 = a]
…
v2 = a op b     [or:  v2 = a] 

• and the values of v1, a, and b have not changed 
between the assignments, rewrite the code as
v1 = a op b     [or:  v1 = a] 
…
v2 = v1            

• Eliminates useless recalculation
• Paves the way for later optimizations 
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Copy Propagation 

• If we have a variable assignment
v1 = v2
then as long as v1 and v2 are not 
reassigned, we can rewrite expressions of 
the form
a = … v1 …
as
a = … v2 …
provided that such a rewrite is legal
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Dead Code Elimination 

• An assignment to a variable v is called dead
if the value of that assignment is never 
read anywhere

• Dead code elimination removes dead 
assignments from IR

• Determining whether an assignment is 
dead depends on what variable is being 
assigned to and when it's being assigned 
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Live variables 

• The analysis corresponding to dead code 
elimination is called liveness analysis

• A variable is live at a point in a program if 
later in the program its value will be read 
before it is written to again

• Dead code elimination works by computing 
liveness for each variable, then eliminating 
assignments to dead variables 
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Local vs. global optimizations 

• An optimization is local if it works on just a 
single basic block

• An optimization is global if it works on an 
entire control-flow graph of a procedure

• An optimization is interprocedural if it 
works across the control-flow graphs of 
multiple procedure
– We won't talk about this in this course 
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Abstract Interpretation

• Theoretical foundations of program 
analysis

• Cousot and Cousot 1977

• Abstract meaning of programs
– Executed at compile time 

99



Join semilattices and ordering 
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c} Greater 

Lower 



A semilattice for constant propagation 
• One possible semilattice for this analysis is 

shown here (for each variable): 
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Undefined

0-1-2 1 2 ......

Not-a-constant

The lattice is infinitely wide 



Monotone transfer functions 

• A transfer function f is monotone iff
if x ⊑y, then f(x) ⊑ f(y)

• Intuitively, if you know less information about a 
program point, you can't “gain back” more 
information about that program point

• Many transfer functions are monotone, including 
those for liveness and constant propagation

• Note: Monotonicity does not mean that 
x ⊑ f(x)
– (This is a different property called extensivity)
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The grand result 

• Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone 
transfer functions always terminates

• Proof sketch:
– The join operator can only bring values up
– Transfer functions can never lower values back 

down below where they were in the past 
(monotonicity)

– Values cannot increase indefinitely (finite height) 
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Code Generation
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From TAC IR to Assembly

• Shown in project & recitation 
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Code generation for procedure calls

• Compile time generation of code for 
procedure invocations

• Activation Records (aka Stack Frames)
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Supporting Procedures

• Stack: a new computing environment 
– e.g., temporary memory for local variables

• Passing information into the new 
environment
– Parameters

• Transfer of control to/from procedure
• Handling return values
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Abstract Activation Record Stack 

108

Stack frame for 
procedure

Prock+1(a1,…,aN) 

Prock 

Prock+2 

… 

… 

Prock+1 

main

Proc1

Proc2

Prock

Prock+1

Prock+2

Stack 
grows this 

way

…

…



Abstract Stack Frame 
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Param N 
Param N-1 

… 
Param 1 
_t0 

… 
_tk 
x 

… 
y 

Parameters
(actual 

arguments) 

Locals and 
temporaries 

Prock 

Prock+2 

… 

… 

Stack frame for 
procedure

Prock+1(a1,…,aN) 



Static (lexical) Scoping
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main ( )
{

int a = 0 ;
int b = 0 ;
{

int b = 1 ;
{

int a = 2 ;
printf (“%d %d\n”, a, b)

}
{

int b = 3 ;
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}

0B

1B

3B3B

2B

Declaration Scopes
a=0 B0,B1,B3
b=0 B0
b=1 B1,B2
a=2 B2
b=3 B3

a name refers to 
its (closest) 

enclosing scope

known at 
compile time



Dynamic Scoping
• Each identifier is associated with a global stack of 

bindings
• When entering scope where identifier is declared

– push declaration on identifier stack
• When exiting scope where identifier is declared

– pop identifier stack
• Evaluating the identifier in any context binds to 

the current top of stack
• Determined at runtime
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Call Sequences
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call

ca
ll
er

ca
ll
ee

return

ca
ll
er

Caller push code

Callee push code

(prologue)

Callee pop code

(epilogue)

Caller pop code

Push caller-save registers
Push actual parameters (in reverse order)

push return address (+ other admin info)
Jump to call address

Push current base-pointer
bp = sp

Push local variables
Push callee-save registers

Pop callee-save registers
Pop callee activation record

Pop old base-pointer

pop return address
Jump to address

Pop return value + parameters
Pop caller-save registers

…

…



“To Callee-save or to Caller-save?”

• Callee-saved registers need only be saved 
when callee modifies their value

• Some heuristics and conventions are 
followed

113



Nested Procedures
• problem: a routine may need to access variables of 

another routine that contains it statically
• solution: lexical pointer (a.k.a. access link) in the 

activation record
• lexical pointer points to the last activation record of 

the nesting level above it
– in our example, lexical pointer of d points to activation 

records of c
• lexical pointers created at runtime
• number of links to be traversed is known at compile 

time
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Lexical Pointers 
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a

a

c

b

c

d

y

y

z

z

Possible call sequence:
p à a à a à c à b à c à d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){ 
y := x + z 

};
… b() … d() … 

}
… a() … c() …

}
a()

}



Register allocation



Register allocation

• Number of registers is limited

• Need to allocate them in a clever way
– Using registers intelligently is a critical step in 

any compiler
• A good register allocator can generate code orders 

of magnitude better than a bad register allocator 



Sethi-Ullman translation 

• Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC
– Minimizes number of temporaries

• Main data structure in algorithm is a stack of 
temporaries
– Stack corresponds to recursive invocations of _t = cgen(e)
– All the temporaries on the stack are live

• Live = contain a value that is needed later on 
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Example
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_t0 = cgen( a+(b+(c*d)) )
+ and * are commutative operators

b

c d

*

+

+

a_t0

_t1

_t2

4 temporaries

_t2

_t1

left child first

b

c d

*

+

+

a

_t0

2 temporary

_t0

_t0

right child first
_t0_t0

_t1

_t1

_t1

_t3



AST for a Basic Block
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Dependency graph{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Simplified Data 
Dependency Graph

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Pseudo Register Target Code



“Global” Register Allocation
• Input: 

– Sequence of machine instructions (“assembly”)
• Unbounded number of temporary variables 

– aka symbolic registers

– “machine description”
• # of registers, restrictions 

• Output
– Sequence of machine instructions using machine 

registers (assembly)
– Some MOV instructions removed



Variable Liveness

• A statement x = y + z
– defines x
– uses y and z

• A variable x is live at a program point if its 
value (at this point) is used at a later point 

y = 42
z = 73
x = y + z
print(x);

x is live, y dead, z dead
x undef, y live, z live
x undef, y live, z undef

x is dead, y dead, z dead

(showing state after the statement)



Main idea
• For every node n in CFG, we have out[n]

– Set of temporaries live out of n
• Two variables interfere if they appear in the 

same out[n] of any node n
– Cannot be allocated to the same register

• Conversely, if two variables do not interfere 
with each other, they can be assigned the 
same register
– We say they have disjoint live ranges

• How to assign registers to variables? 



Interference graph

• Nodes of the graph = variables
• Edges connect variables that interfere with 

one another
• Nodes will be assigned a color

corresponding to the register assigned to 
the variable

• Two colors can’t be next to one another in 
the graph



Graph coloring

• This problem is equivalent to graph-
coloring, which is NP-hard if there are at 
least three registers

• No good polynomial-time algorithms (or 
even good approximations!) are known for 
this problem
– We have to be content with a heuristic that is 

good enough for RIGs that arise in practice



Coloring by simplification [Kempe 1879] 

• How to find a k-coloring of a graph
• Intuition:

– Suppose we are trying to k-color a graph and 
find a node with fewer than k edges

– If we delete this node from the graph and color 
what remains, we can find a color for this node 
if we add it back in

– Reason: fewer than k neighbors � some color 
must be left over



Coloring by simplification [Kempe 1879] 

• How to find a k-coloring of a graph
• Phase 1: Simplification

– Repeatedly simplify graph 
– When a variable (i.e., graph node) is 

removed, push it on a stack
• Phase 2: Coloring

– Unwind stack and reconstruct the graph as 
follows:

– Pop variable from the stack
– Add it back to the graph
– Color the node for that variable with a 

color that it doesn’t interfere with

simplify 

color 



Handling precolored nodes

• Some variables are pre-assigned to 
registers
– Eg: mul on x86/pentium

• uses eax; defines eax, edx
– Eg: call on x86/pentium

• Defines (trashes) caller-save registers eax, ecx, edx

• To properly allocate registers, treat these 
register uses as special temporary variables 
and enter into interference graph as 
precolored nodes



Optimizing move instructions 
• Code generation produces a lot of extra mov

instructions
mov t5, t9

• If we can assign t5 and t9 to same register, we can get 
rid of the mov
– effectively, copy elimination at the register allocation level 

• Idea: if t5 and t9 are not connected in inference graph, 
coalesce them into a single variable; the move will be 
redundant

• Problem: coalescing nodes can make a graph
un-colorable
– Conservative coalescing heuristic 



Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X Y

Z

X ¬ Y
Y ¬ Z     



Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X,Y

Z

X ¬ Y
Y ¬ Z     



Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X,Y

Z

X ¬ Y
Y ¬ Z     



Graph Coloring with Coalescing
Build: Construct the interference graph

Simplify: Recursively remove non-MOV nodes with 
less than K neighbors; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill 
stack)

Actual-Spill: Spill some potential spills and repeat the 
process

Coalesce: Conservatively merge unconstrained MOV 
related nodes with fewer than K �heavy� neighbors 

Freeze: Give-Up Coalescing on some MOV related 
nodes with low degree of interference edges

Special case: 
merged node 

has less than k 
neighbors 

All non-MOV 
related nodes 
are “heavy”



A Complete Example
Callee-saved registers

Caller-saved registers



A Complete Example



A Complete Example

Spill c

r2 & b

a & e

(Alt: ae+r1)

c

c

c

Deg. of 
r1,ae,d < K



A Complete Example

ae & r1

pop d

Simplify d

(Alt: ae+r1)

(Alt: …)c

dc

c

d

pop c …

freeze r1ae-d



A Complete Example

c1&r3, c2 &r3

a&e, b&r2



A Complete Example
ae & r1

Simplify d

Pop d d

gen code“opt”



Compiling OO Programs
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Features of OO languages

• Inheritance
– Subclass gets (inherits) properties of superclass 

• Method overriding
– Multiple methods with the same name with 

different signatures
• Abstract (aka virtual) methods
• Polymorphism

– Multiple methods with the same name and 
different signatures but with different 
implementations
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Compiling OO languages

• “Translation into C”
• Powerful runtime environment

• Adding “gluing” code
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Runtime Environment

• Mediates between the OS and the 
programming language

• Hides details of the machine from the 
programmer
– Ranges from simple support functions all the 

way to a full-fledged virtual machine
• Handles common tasks 

– Runtime stack (activation records)
– Memory management

• Runtime type information
146



Handling Single Inheritance

• Simple type extension

147

class A {
field a1;
field a2;
method m1() {…}
method m2() {…}

}

class B extends A {
field b1;
method m3() {…}

}



Adding fields
Fields aka Data members, instance variables

• Adds more information to the inherited 
class
– “Prefixing” fields ensures consistency 

148

class A {
field a1;
field a2;
method m1() {…}
method m2() {…}

}

class B extends A {
field b1;
method m2() {…}
method m3() {…}

}

typedef struct {
field a1;
field a2;

} A;

void m1A_A(A* this){…}
void m2A_A(A* this){…}

typedef struct {
field a1;
field a2;
field b1;

} B;

void m2A_B(B* this) {…}
void m3B_B(B* this) {…}



Method Overriding

• Redefines functionality
– More specific
– Can access additional fields
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class A {
field a1;
field a2;
method m1() {…}
method m2() {…}

}

class B extends A {
field b1;
method m2() {

… b1 …
}
method m3() {…}

}



Handling Polymorphism

• When a class B extends a class A

– variable of type pointer to A may actually refer 

to object of type B

• Upcasting from a subclass to a superclass

• Prefixing fields guarantees validity
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class B *b = …;

class A *a = b ;

a1

a2

b1

Pointer to B

Pointer to A inside B 

(also)

classA *a = convert_ptr_to_B_to_ptr_A(b) ;

A

B



Dynamic Binding

• An object (“pointer”) o declared to be of 
class A can actually be (“refer”) to a class  B

• What does �o.m()�mean?
– Static binding 
– Dynamic binding 

• Depends on the programming language 
rules  

• How to implement dynamic binding?
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Virtual function table
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typedef struct {
field a1;
field a2;

} A;

void m1A_A(A* this){…}
void m2A_A(A* this, int x){…}

typedef struct {
field a1;
field a2;
field b1;

} B;

void m2A_B(A* thisA, int x){
Class_B *this =

convert_ptr_to_A_to_ptr_to_B(thisA);
…

}

void m3B_B(B* this){…}

p.m2(3); p®dispatch_table®m2A(  , 3);

a1
a2

Runtime object

b1

vtablep

convert_ptr_to_B_to_ptr_to_A(p)

m1A_A
m2A_B

(Runtime) Dispatch Table

m3B_B



Multiple Inheritance
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class C {
field c1;
field c2;
method m1(){…}
method m2(){…}

}

class D {
field d1;

method m3() {…}
method m4(){…}

}

class E extends C, D {
field e1;

method m2() {…}    
method m4() {…}
method m5(){…}

}



Multiple Inheritance 

• Allows unifying behaviors
• But raises semantic difficulties

– Ambiguity of classes
– Repeated inheritance

• Hard to implement
– Semantic analysis
– Code generation

• Prefixing no longer work
• Need to generate code for downcasts

• Hard to use
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A simple implementation

• Merge dispatch tables of superclases 
• Generate code for upcasts and downcasts
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A simple implementation 
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class C {
field c1;
field c2;
method m1(){…}
method m2(){…}

}

class D {
field d1;

method m3() {…}
method m4(){…}

}

class E extends C, D {
field e1;

method m2() {…}    
method m4() {…}
method m5(){…}

}

d1
e1

Runtime object

m3D_D
m4D_E

(Runtime) Dispatch Table

m5E_E

vtable

c1
c2

vtable

Pointer to  
- E
- C inside E

Pointer to  
- D inside E

m1C_C
m2C_E



Dependent multiple Inheritance
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class C extends A {
field c1;
field c2;
method m1(){…}
method m2(){…}

}

class D extends A {
field d1;

method m3(){…}
method m4(){…}

}

class E extends C, D {
field e1;

method m2() {…}    
method m4() {…}
method m5(){…}

}

class A{
field a1;
field a2;
method m1(){…}
method m3(){…}

}



Interface Types

• Java supports limited form of multiple 
inheritance

• Interface consists of several methods but 
no fields

• A class can implement multiple interfaces
158

public interface Comparable {
public int compare(Comparable o);

}



Interface Types

• Implementation: record with 2 pointers:
– A separate dispatch table per interface 
– A pointer to the object
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a1
a2

interface tablevtable

i. table
object

vtable
field1
field2

a1
b1
a2



Memory Management

• Manual memory management
• Automatic memory management
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• A data structure records the location and size 
of free cells of memory.

• The allocator considers each free cell in turn, 
and according to some policy, chooses one to 
allocate.

• Three basic types of free-list allocation:
– First-fit
– Next-fit
– Best-fit

Free-list Allocation



Memory chunks
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Free list
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free

• Free too late – waste memory (memory 
leak)

• Free too early – dangling pointers / crashes
• Free twice – error
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Garbage collection

• approximate reasoning about object 
liveness

• use reachability to approximate liveness
• assume reachable objects are live

– non-reachable objects are dead
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Garbage Collection – Classical Techniques

• reference counting
• mark and sweep
• copying
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GC using Reference Counting

• add a reference-count field to every object
– how many references point to it

• when (rc==0) the object is non reachable
– non reachable => dead
– can be collected (deallocated)
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The Mark-and-Sweep Algorithm 
[McCarthy 1960]

• Marking phase
– mark roots
– trace all objects transitively reachable from roots 
– mark every traversed object

• Sweep phase
– scan all objects in the heap
– collect all unmarked objects
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Mark&Sweep in Depth 
mark(Obj)=
if mark_bit(Obj) == unmarked

mark_bit(Obj)=marked
for C in Children(Obj)

mark(C)

• How much memory does it consume?
– Recursion depth? 
– Can you traverse the heap without worst-case O(n) 

stack?
• Deutch-Schorr-Waite algorithm for graph marking without 

recursion or stack (works by reversing pointers)
169



Copying GC

• partition the heap into two parts 
– old space
– new space

• Copying GC algorithm 
– copy all reachable objects from old space to 

new space
– swap roles of old/new space

170



Example

old new

Roots

A

D

C

B

E
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Example

old new

Roots

A

D

C

B

E

A

C
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The Exam
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