
Compilation
0368-3133

Course summary: Putting it all together

Noam Rinetzky

1

The Exam

2

Course Goals

• What is a compiler
• How does it work
• (Reusable) techniques & tools

3

What is a Compiler?

“A compiler is a computer program that
transforms source code written in a
programming language (source language)
into another language (target language).
The most common reason for wanting to
transform source code is to create an
executable program.”

--Wikipedia

4

Compiler

• A program which transforms programs
• Input a program (P)
• Output an object program (O)

– For any x, “O(x)” “=“ “P(x)”
Compiler

Source
text

txt

Executable
code

exe

P O 5

Interpreter

• A program which executes a program
• Input a program (P) + its input (x)
• Output the computed output (P(x))

Interpreter

Source
text

txt

Input

Output

6

Compiler vs. Interpreter
Source

Code

Executable

Code Machine

Source

Code

Intermediate

Code Interpreter

preprocessing

processingpreprocessing

processing

7

Interpreter vs. Compiler

• Conceptually simpler
– “define” the prog. lang.

• Can provide more specific
error report

• Easier to port

• Faster response time

• [More secure]

• How do we know the
translation is correct?

• Can report errors before input
is given

• More efficient code
– Compilation can be expensive
– move computations to

compile-time
• compile-time + execution-time

< interpretation-time is possible

8

Conceptual Structure of a Compiler

Executable
code

exe

Source
text

txt

Semantic
Representation

Backend

Compiler

Frontend

Lexical
Analysis

Syntax
Analysis
Parsing

Semantic
Analysis

Intermediate
Representation

(IR)

Code
Generation

9

Conceptual Structure of a Compiler

Executable
code

exe

Source
text

txt

Semantic
Representation

Backend

Compiler

Frontend

Lexical
Analysis

Syntax
Analysis
Parsing

Semantic
Analysis

Intermediate
Representation

(IR)

Code
Generation

words sentences 10

11

Lexical Analysis

• Partitions the input into stream of tokens
– Numbers
– Identifiers
– Keywords
– Punctuation

• Usually represented as (kind, value) pairs
– (Num, 23)
– (Op, ‘*’)

• “word” in the source language
• “meaningful” to the syntactical analysis

What does Lexical Analysis do?

12

Some basic terminology

• Lexeme (aka symbol) - a series of letters separated
from the rest of the program according to a
convention (space, semi-column, comma, etc.)

• Pattern - a rule specifying a set of strings.
Example: “an identifier is a string that starts with a
letter and continues with letters and digits”
– (Usually) a regular expression

• Token - a pair of (pattern, attributes)

13

Regular languages

• Formal languages
– Σ = finite set of letters
– Word = sequence of letter
– Language = set of words

• Regular languages defined equivalently by
– Regular expressions
– Finite-state automata

14

From regular expressions to NFA

• Step 1: assign expression names and obtain
pure regular expressions R1…Rm

• Step 2: construct an NFA Mi for each
regular expression Ri

• Step 3: combine all Mi into a single NFA

• Ambiguity resolution: prefer longest
accepting word 15

From reg. exp. to automata
• Theorem: there is an algorithm to build an

NFA+Є automaton for any regular expression
• Proof: by induction on the structure of the

regular expression

start

16

R = e

R = f

R = a
a

Basic constructs

17

Composition
R = R1 | R2 e M1

M2e

e

e

R = R1R2

e
M1 M2

e e

18

Repetition

R = R1*

e
M1

e

e

e

19

Scanning with DFA

• Run until stuck
– Remember last accepting state

• Go back to accepting state
• Return token

20

Ambiguity resolution

• Longest word
• Tie-breaker based on order of rules when

words have same length

21

Combine automata: an example.

Combine a, abb, a*b+, abab.

75#

1# 2#
a#

a#

3#
a#

4#
b#

5#
b#

6#

abb#

7# 8#
b#

a*b+#
b#a#

9#
a#

10#
b#

11#
a#

12#
b#

13#

abab#

0#

ε#

ε#

ε#

ε#

22

Syntax Analysis

Frontend: Scanning & Parsing
((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical
Analyzer

program text

token stream

Parser
Grammar:
E ® ... | Id
Id ® ‘a’ | ... | ‘z’

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

validsyntax
error

23

From scanning to parsing
((23 + 7) * x)

) x*)7+23((
RPIdOPRPNumOPNumLPLP

Lexical
Analyzer

program text

token stream

Parser
Grammar:
E ® ... | Id
Id ® ‘a’ | ... | ‘z’

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Abstract Syntax Tree

validsyntax
error

24

Context free grammars (CFG)

• V – non terminals (syntactic variables)
• T – terminals (tokens)
• P – derivation rules

– Each rule of the form V à(T ∪ V)*
• S – start symbol

G = (V,T,P,S)

25

Pushdown Automata (PDA)

• Nondeterministic PDAs define all CFLs

• Deterministic PDAs model parsers.
– Most programming languages have a

deterministic PDA
– Efficient implementation

26

CFG terminology

• Derivation - a sequence of replacements of
non-terminals using the derivation rules

• Language - the set of strings of terminals
derivable from the start symbol

• Sentential form - the result of a partial
derivation
– May contain non-terminals

27

Derivations

• Show that a sentence ω is in a grammar G
– Start with the start symbol
– Repeatedly replace one of the non-terminals

by a right-hand side of a production
– Stop when the sentence contains only

terminals
• Given a sentence αNβ and rule N®µ

αNβ => αµβ
• ω is in L(G) if S =>* ω

28

Ambiguity

x := y+z*w
S ® S ; S
S ® id := E | …
E ® id | E + E | E * E | …

S

id := E

E + E

id

id

E * E

id

S

id := E

E*E

id

id

E + E

id
29

“dangling-else” example
Ambiguous grammar
S ® if E then S
S | if E then S else S

| other

if

S

Sthen

thenif elseE S S

E

E1

E2 S1 S2

if

S

Sthen

thenif

else

E S

SE

E1

E2 S1

S2

if E1 then (if E2 then S1 else S2) if E1 then (if E2 then S1) else S2

This is what we usually
want: match else to closest
unmatched then

if E1 then if E2 then S1 else S2

p. 174

Unambiguous grammar

?

30

Broad kinds of parsers

• Parsers for arbitrary grammars
– Earley’s method, CYK method
– Usually, not used in practice (though might change)

• Top-down parsers
– Construct parse tree in a top-down matter
– Find the leftmost derivation

• Bottom-up parsers
– Construct parse tree in a bottom-up manner
– Find the rightmost derivation in a reverse order

31

Top-Down Parsing: Predictive parsing

• Recursive descent
• LL(k) grammars

32

Predictive parsing
• Given a grammar G and a word w attempt to derive

w using G
• Idea

– Apply production to leftmost nonterminal
– Pick production rule based on next input token

• General grammar
– More than one option for choosing the next

production based on a token
• Restricted grammars (LL)

– Know exactly which single rule to apply
– May require some lookahead to decide

33

Recursive descent parsing

• Define a function for every nonterminal
• Every function work as follows

– Find applicable production rule
– Terminal function checks match with next

input token
– Nonterminal function calls (recursively) other

functions
• If there are several applicable productions

for a nonterminal, use lookahead
34

LL(k) grammars

• A grammar is in the class LL(K) when it can
be derived via:
– Top-down derivation
– Scanning the input from left to right (L)
– Producing the leftmost derivation (L)
– With lookahead of k tokens (k)

• A language is said to be LL(k) when it has an
LL(k) grammar

35

FIRST sets

• FIRST(X) = { t | X à* t β} ∪{ℇ | X à* ℇ}
– FIRST(X) = all terminals that α can appear as

first in some derivation for X
• + ℇ if can be derived from X

• Example:
– FIRST(LIT) = { true, false }
– FIRST((E OP E)) = { ‘(‘ }
– FIRST(not E) = { not }

36

FIRST sets

• No intersection between FIRST sets => can
always pick a single rule

• If the FIRST sets intersect, may need longer
lookahead
– LL(k) = class of grammars in which production

rule can be determined using a lookahead of k
tokens

– LL(1) is an important and useful class

37

LL(1) grammars

• A grammar is in the class LL(K) iff
– For every two productions A ® α and A ® β we have

• FIRST(α) ∩ FIRST(β) = {} // including e
• If e ∈ FIRST(α) then FIRST(β) ∩ FOLLOW(A) = {}
• If e ∈ FIRST(β) then FIRST(α) ∩ FOLLOW(A) = {}

38

FOLLOW sets

• What do we do with nullable (e) productions?

– A ® B C D B ® e C ® e
– Use what comes afterwards to predict the right

production

• For every production rule A ® α

– FOLLOW(A) = set of tokens that can immediately
follow A

• Can predict the alternative Ak for a non-terminal N
when the lookahead token is in the set

– FIRST(Ak) ® (if Ak is nullable then FOLLOW(N))

p. 189

39

FOLLOW sets: Constraints

• $ ∈ FOLLOW(S)

• FIRST(β) – {ℇ} ⊆ FOLLOW(X)
– For each A à α X β

• FOLLOW(A) ⊆ FOLLOW(X)
– For each A à α X β and ℇ ∈ FIRST(β)

40

Prediction Table

• A à α

• T[A,t] = α if t ∈FIRST(α)
• T[A,t] = α if ℇ ∈ FIRST(α) and t ∈ FOLLOW(A)

– t can also be $

• T is not well defined è the grammar is not LL(1)

41

Problem 1: productions with
common prefix

• FIRST(term) = { ID }
• FIRST(indexed_elem) = { ID }

• FIRST/FIRST conflict

term ® ID | indexed_elem
indexed_elem ® ID [expr]

42

Solution: left factoring

• Rewrite the grammar to be in LL(1)

Intuition: just like factoring x*y + x*z into x*(y+z)

term ® ID | indexed_elem
indexed_elem ® ID [expr]

term ® ID after_ID
After_ID ® [expr] | e

43

Problem 2: null productions

• FIRST(S) = { a } FOLLOW(S) = { }
• FIRST(A) = { a , e } FOLLOW(A) = { a }

• FIRST/FOLLOW conflict

S ® A a b
A ® a | e

44

Solution: substitution

S ® A a b
A ® a | e

S ® a a b | a b

Substitute A in S

S ® a after_A
after_A ® a b | b

Left factoring

45

Problem 3: left recursion

• Left recursion cannot be handled with a
bounded lookahead

• What can we do?

E ® E - term | term

46

Left recursion removal

• L(G1) = β, βα, βαα, βααα, …
• L(G2) = same

N ® Nα | β N ® βN’
N’ ® αN’ | e

G1 G2

E ® E - term |
term

E ® term TE | term
TE ® - term TE | e

§ For our 3rd example:

p. 130

Can be done algorithmically.
Problem: grammar becomes
mangled beyond recognition

47

Bottom-up parsing

48

Bottom-up parsing:

LR(k) Grammars

• A grammar is in the class LR(K) when it can be

derived via:

– Bottom-up derivation

– Scanning the input from left to right (L)

– Producing the rightmost derivation (R)

– With lookahead of k tokens (k)

• A language is said to be LR(k) if it has an LR(k)

grammar

• The simplest case is LR(0), which we will discuss

49

Terminology: Reductions & Handles

• The opposite of derivation is called
reduction
– Let A è α be a production rule
– Derivation: βAµ è βαµ
– Reduction: βαµ è βAµ

• A handle is the reduced substring
– α is the handles for βαµ

50

How does the parser know what to do?

• A state will keep the info gathered on handle(s)
– A state in the “control” of the PDA
– Also (part of) the stack alpha bet

• A table will tell it “what to do” based on current
state and next token
– The transition function of the PDA

• A stack will records the “nesting level”
– Prefixes of handles

51

Set of LR(0) items

Constructing an LR parsing table

• Construct a (determinized) transition
diagram from LR items

• If there are conflicts – stop
• Fill table entries from diagram

52

LR item

53

N ® α•β

Already matched To be matched
Input

Hypothesis about αβ being a possible handle, so far we’ve matched
α, expecting to see β

Types of LR(0) items

54

N ® α•β Shift Item

N ® αβ• Reduce Item

LR(0) automaton example

55

Z ® •E$
E ® •T
E ® •E + T
T ® •i
T ® •(E)

T ® (•E)
E ® •T
E ® •E + T
T ® •i
T ® •(E)

E ® E + T•

T ® (E) •Z ® E$•

Z ® E•$
E ® E•+ T E ® E+•T

T ® •i
T ® •(E)

T ® i•

T ® (E•)
E ® E•+T

E ® T•q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

T

(

i

E

+

$

T

)

+

E

i

T

(
i

(

reduce state shift state

LR(0) conflicts

56

Z ® E $
E ® T
E ® E + T
T ® i
T ® (E)
T ® i[E]

Z ® •E$
E ® •T

E ® •E + T
T ® •i

T ® •(E)
T ® •i[E] T ® i•

T ® i•[E]

q0

q5

T

(

i

E Shift/reduce conflict

…

…

…

LR(0) conflicts

57

Z ® E $
E ® T
E ® E + T
T ® i
V ® i
T ® (E)

Z ® •E$
E ® •T

E ® •E + T
T ® •i

T ® •(E)
T ® •i[E] T ® i•

V ® i•

q0

q5

T

(

i

E reduce/reduce conflict

…

…

…

LR(0) conflicts

• Any grammar with an e-rule cannot be LR(0)
• Inherent shift/reduce conflict

– A ® e• – reduce item
– P ® α•Aβ – shift item
– A ® e• can always be predicted from P ® α•Aβ

58

LR variants

• LR(0) – what we’ve seen so far
• SLR

– Removes infeasible reduce actions via FOLLOW
set reasoning

• LR(1)
– LR(0) with one lookahead token in items

• LALR(0)
– LR(1) with merging of states with same LR(0)

component 59

60

Semantic Analysis

Abstract Syntax Tree

• AST is a simplification of the parse tree

• Can be built by traversing the parse tree
– E.g., using visitors

• Can be built directly during parsing
– Add an action to perform on each production rule
– Similarly to the way a parse tree is constructed

61

Abstract Syntax Tree
• The interface between the parser and the rest of

the compiler
– Separation of concerns
– Reusable, modular and extensible

• The AST is defined by a context free grammar
– The grammar of the AST can be ambiguous!

• Eà E + E
• Is this a problem?

• Keep syntactic information
– Why? 62

What we want

symbol kind type properties

x var ?

tomato var ?

potato var Potato

carrot var Carrot

63

Lexical analyzer

Potato potato;
Carrot carrot;
x = tomato + potato + carrot

…<id,tomato>,<PLUS>,<id,potato>,<PLUS>,<id,carrot>,EOF

Parser

‘tomato’ is undefined ‘potato’ used before initialized Cannot add Potato and Carrot

LocationExpr
id=tomato

AddExpr
left right

AddExpr
left right

LocationExpr
id=potato id=carrot

LocationExpr

Context Analysis
• Check properties contexts of in which

constructs occur
– Properties that cannot be formulated via CFG

• Type checking
• Declare before use

– Identifying the same word “w” re-appearing – wbw
• Initialization
• …

– Properties that are hard to formulate via CFG
• “break” only appears inside a loop
• …

• Processing of the AST
64

Context Analysis

• Identification
– Gather information about each named item in

the program
– e.g., what is the declaration for each usage

• Context checking
– Type checking
– e.g., the condition in an if-statement is a

Boolean
65

Scopes
• Typically stack structured scopes

• Scope entry
– push new empty scope element

• Scope exit
– pop scope element and discard its content

• Identifier declaration
– identifier created inside top scope

• Identifier Lookup
– Search for identifier top-down in scope stack

66

Scope and symbol table

• Scope x Identifier -> properties
– Expensive lookup

• A better solution
– hash table over identifiers

67

Types
• What is a type?

– Simplest answer: a set of values + allowed operations
– Integers, real numbers, booleans, …

• Why do we care?
– Code generation: $1 := $1 + $2
– Safety

• Guarantee that certain errors cannot occur at runtime
– Abstraction

• Hide implementation details
– Documentation
– Optimization

68

Typing Rules

69

If E1 has type int and E2 has type int,
then E1 + E2 has type int

E1 : int E2 : int
E1 + E2 : int

Syntax Directed Translation

• Semantic attributes
– Attributes attached to grammar symbols

• Semantic actions
– How to update the attributes

• Attribute grammars

70

Attribute grammars

• Attributes
– Every grammar symbol has attached attributes

• Example: Expr.type
• Semantic actions

– Every production rule can define how to assign
values to attributes

• Example:
Expr à Expr + Term
Expr.type = Expr1.type when (Expr1.type == Term.type)

Error otherwise

71

Example

72

Production Semantic Rule
D à T L L.in = T.type
T à int T.type = integer
T à float T.type = float
L à L1, id L1.in = L.in

addType(id.entry,L.in)
L à id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float

Attribute Evaluation

• Build the AST
• Fill attributes of terminals with values derived

from their representation
• Execute evaluation rules of the nodes to

assign values until no new values can be
assigned
– In the right order such that

• No attribute value is used before its available
• Each attribute will get a value only once

73

Dependencies

• A semantic equation a = b1,…,bm
requires computation of b1,…,bm to
determine the value of a

• The value of a depends on b1,…,bm
– We write a à bi

74

Example

75

float x,y,z

type in dmy

entry

entry

entry

in

in

dmy

dmy

1

2

3

4

5

7

8 9

10

6
float float

ent1

ent2

ent3

float

float

float
float

float

Inherited vs. Synthesized Attributes

• Synthesized attributes
– Computed from children of a node

• Inherited attributes
– Computed from parents and siblings of a node

• Attributes of tokens are technically considered as
synthesized attributes

76

example

77

Production Semantic Rule
D à T L L.in = T.type
T à int T.type = integer
T à float T.type = float
L à L1, id L1.in = L.in

addType(id.entry,L.in)
L à id addType(id.entry,L.in)

D

float

L

L id1

T

L id2

id3

float x,y,z

float float

float

float

inherited
synthesized

S-attributed Grammars
• Special class of attribute grammars
• Only uses synthesized attributes (S-attributed)
• No use of inherited attributes

• Can be computed by any bottom-up parser
during parsing

• Attributes can be stored on the parsing stack
• Reduce operation computes the (synthesized)

attribute from attributes of children

78

L-attributed grammars

• L-attributed attribute grammar when every
attribute in a production A à X1…Xn is
– A synthesized attribute, or
– An inherited attribute of Xj, 1 <= j <=n that only

depends on
• Attributes of X1…Xj-1 to the left of Xj, or
• Inherited attributes of A

79

80

Intermediate Representation

Three-Address Code IR

• A popular form of IR
• High-level assembly where instructions

have at most three operands

81

Chapter 8

Variable assignments
• var = constant;
• var1 = var2;
• var1 = var2 op var3;
• var1 = constant op var2;
• var1 = var2 op constant;
• var = constant1 op constant2;
• Permitted operators are +, -, *, /, %

82

In the impl. var is
replaced by a pointer
to the symbol table

A compiler-generated
temporary can be
used instead of a var

Control flow instructions
• Label introduction

_label_name:
Indicates a point in the code that can be jumped to

• Unconditional jump: go to instruction following label L
Goto L;

• Conditional jump: test condition variable t;
if 0, jump to label L

IfZ t Goto L;
• Similarly : test condition variable t;

if not zero, jump to label L
IfNZ t Goto L;

83

Procedures / Functions
• A procedure call instruction pushes arguments to

stack and jumps to the function label
A statement x=f(a1,…,an); looks like

Push a1; … Push an;
Call f;
Pop x; // pop returned value, and copy to it

• Returning a value is done by pushing it to the
stack (return x;)

Push x;
• Return control to caller (and roll up stack)

Return;

84

TAC generation

• At this stage in compilation, we have
– an AST
– annotated with scope information
– and annotated with type information

• To generate TAC for the program, we do
recursive tree traversal
– Generate TAC for any subexpressions or

substatements
– Using the result, generate TAC for the overall

expression

85

cgen for binary operators

86

cgen(e1 + e2) = {
Choose a new temporary t
Let t1 = cgen(e1)
Let t2 = cgen(e2)
Emit(t = t1 + t2)
Return t

}

cgen for if-then-else

87

cgen(if (e) s1 else s2) Let _t = cgen(e)
Let Ltrue be a new label
Let Lfalse be a new label
Let Lafter be a new label
Emit(IfZ _t Goto Lfalse;)
cgen(s1)
Emit(Goto Lafter;)
Emit(Lfalse:)
cgen(s2)
Emit(Goto Lafter;)
Emit(Lafter:)

IR Optimization

88

Optimization points

source
code

Front
end IR Code

generator
target
code

User
profile program

change algorithm

Compiler
intraprocedural IR
Interprocedural IR
IR optimizations

Compiler
register allocation

instruction selection
peephole transformations

now 89

Overview of IR optimization
• Formalisms and Terminology

– Control-flow graphs
– Basic blocks

• Local optimizations
– Speeding up small pieces of a procedure

• Global optimizations
– Speeding up procedure as a whole

• The dataflow framework
– Defining and implementing a wide class of

optimizations

90

Visualizing IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 91

Control-Flow Graphs

• A control-flow graph (CFG) is a graph of the
basic blocks in a function

• The term CFG is overloaded – from here on
out, we'll mean “control-flow graph” and not
“context free grammar”

• Each edge from one basic block to another
indicates that control can flow from the end of
the first block to the start of the second block

• There is a dedicated node for the start and
end of a function

92

Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b
…
v2 = a op b

• and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
v1 = a op b
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations

93

Common Subexpression Elimination

• If we have two variable assignments
v1 = a op b [or: v1 = a]
…
v2 = a op b [or: v2 = a]

• and the values of v1, a, and b have not changed
between the assignments, rewrite the code as
v1 = a op b [or: v1 = a]
…
v2 = v1

• Eliminates useless recalculation
• Paves the way for later optimizations

94

Copy Propagation

• If we have a variable assignment
v1 = v2
then as long as v1 and v2 are not
reassigned, we can rewrite expressions of
the form
a = … v1 …
as
a = … v2 …
provided that such a rewrite is legal

95

Dead Code Elimination

• An assignment to a variable v is called dead
if the value of that assignment is never
read anywhere

• Dead code elimination removes dead
assignments from IR

• Determining whether an assignment is
dead depends on what variable is being
assigned to and when it's being assigned

96

Live variables

• The analysis corresponding to dead code
elimination is called liveness analysis

• A variable is live at a point in a program if
later in the program its value will be read
before it is written to again

• Dead code elimination works by computing
liveness for each variable, then eliminating
assignments to dead variables

97

Local vs. global optimizations

• An optimization is local if it works on just a
single basic block

• An optimization is global if it works on an
entire control-flow graph of a procedure

• An optimization is interprocedural if it
works across the control-flow graphs of
multiple procedure
– We won't talk about this in this course

98

Abstract Interpretation

• Theoretical foundations of program
analysis

• Cousot and Cousot 1977

• Abstract meaning of programs
– Executed at compile time

99

Join semilattices and ordering

100

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c} Greater

Lower

A semilattice for constant propagation
• One possible semilattice for this analysis is

shown here (for each variable):

101

Undefined

0-1-2 1 2

Not-a-constant

The lattice is infinitely wide

Monotone transfer functions

• A transfer function f is monotone iff
if x ⊑y, then f(x) ⊑ f(y)

• Intuitively, if you know less information about a
program point, you can't “gain back” more
information about that program point

• Many transfer functions are monotone, including
those for liveness and constant propagation

• Note: Monotonicity does not mean that
x ⊑ f(x)
– (This is a different property called extensivity)

102

The grand result

• Theorem: A dataflow analysis with a finite-
height semilattice and family of monotone
transfer functions always terminates

• Proof sketch:
– The join operator can only bring values up
– Transfer functions can never lower values back

down below where they were in the past
(monotonicity)

– Values cannot increase indefinitely (finite height)

103

Code Generation

104

From TAC IR to Assembly

• Shown in project & recitation

105

Code generation for procedure calls

• Compile time generation of code for
procedure invocations

• Activation Records (aka Stack Frames)

106

Supporting Procedures

• Stack: a new computing environment
– e.g., temporary memory for local variables

• Passing information into the new
environment
– Parameters

• Transfer of control to/from procedure
• Handling return values

107

Abstract Activation Record Stack

108

Stack frame for
procedure

Prock+1(a1,…,aN)

Prock

Prock+2

…

…

Prock+1

main

Proc1

Proc2

Prock

Prock+1

Prock+2

Stack
grows this

way

…

…

Abstract Stack Frame

109

Param N
Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual

arguments)

Locals and
temporaries

Prock

Prock+2

…

…

Stack frame for
procedure

Prock+1(a1,…,aN)

Static (lexical) Scoping

110

main ()
{

int a = 0 ;
int b = 0 ;
{

int b = 1 ;
{

int a = 2 ;
printf (“%d %d\n”, a, b)

}
{

int b = 3 ;
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}
printf (“%d %d\n”, a, b) ;

}

0B

1B

3B3B

2B

Declaration Scopes
a=0 B0,B1,B3
b=0 B0
b=1 B1,B2
a=2 B2
b=3 B3

a name refers to
its (closest)

enclosing scope

known at
compile time

Dynamic Scoping
• Each identifier is associated with a global stack of

bindings
• When entering scope where identifier is declared

– push declaration on identifier stack
• When exiting scope where identifier is declared

– pop identifier stack
• Evaluating the identifier in any context binds to

the current top of stack
• Determined at runtime

111

Call Sequences

112

call

ca
ll
er

ca
ll
ee

return

ca
ll
er

Caller push code

Callee push code

(prologue)

Callee pop code

(epilogue)

Caller pop code

Push caller-save registers
Push actual parameters (in reverse order)

push return address (+ other admin info)
Jump to call address

Push current base-pointer
bp = sp

Push local variables
Push callee-save registers

Pop callee-save registers
Pop callee activation record

Pop old base-pointer

pop return address
Jump to address

Pop return value + parameters
Pop caller-save registers

…

…

“To Callee-save or to Caller-save?”

• Callee-saved registers need only be saved
when callee modifies their value

• Some heuristics and conventions are
followed

113

Nested Procedures
• problem: a routine may need to access variables of

another routine that contains it statically
• solution: lexical pointer (a.k.a. access link) in the

activation record
• lexical pointer points to the last activation record of

the nesting level above it
– in our example, lexical pointer of d points to activation

records of c
• lexical pointers created at runtime
• number of links to be traversed is known at compile

time

114

Lexical Pointers

115

a

a

c

b

c

d

y

y

z

z

Possible call sequence:
p à a à a à c à b à c à d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){
y := x + z

};
… b() … d() …

}
… a() … c() …

}
a()

}

Register allocation

Register allocation

• Number of registers is limited

• Need to allocate them in a clever way
– Using registers intelligently is a critical step in

any compiler
• A good register allocator can generate code orders

of magnitude better than a bad register allocator

Sethi-Ullman translation

• Algorithm by Ravi Sethi and Jeffrey D. Ullman
to emit optimal TAC
– Minimizes number of temporaries

• Main data structure in algorithm is a stack of
temporaries
– Stack corresponds to recursive invocations of _t = cgen(e)
– All the temporaries on the stack are live

• Live = contain a value that is needed later on

118

Example

119

_t0 = cgen(a+(b+(c*d)))
+ and * are commutative operators

b

c d

*

+

+

a_t0

_t1

_t2

4 temporaries

_t2

_t1

left child first

b

c d

*

+

+

a

_t0

2 temporary

_t0

_t0

right child first
_t0_t0

_t1

_t1

_t1

_t3

AST for a Basic Block
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Dependency graph{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Simplified Data
Dependency Graph

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Pseudo Register Target Code

“Global” Register Allocation
• Input:

– Sequence of machine instructions (“assembly”)
• Unbounded number of temporary variables

– aka symbolic registers

– “machine description”
• # of registers, restrictions

• Output
– Sequence of machine instructions using machine

registers (assembly)
– Some MOV instructions removed

Variable Liveness

• A statement x = y + z
– defines x
– uses y and z

• A variable x is live at a program point if its
value (at this point) is used at a later point

y = 42
z = 73
x = y + z
print(x);

x is live, y dead, z dead
x undef, y live, z live
x undef, y live, z undef

x is dead, y dead, z dead

(showing state after the statement)

Main idea
• For every node n in CFG, we have out[n]

– Set of temporaries live out of n
• Two variables interfere if they appear in the

same out[n] of any node n
– Cannot be allocated to the same register

• Conversely, if two variables do not interfere
with each other, they can be assigned the
same register
– We say they have disjoint live ranges

• How to assign registers to variables?

Interference graph

• Nodes of the graph = variables
• Edges connect variables that interfere with

one another
• Nodes will be assigned a color

corresponding to the register assigned to
the variable

• Two colors can’t be next to one another in
the graph

Graph coloring

• This problem is equivalent to graph-
coloring, which is NP-hard if there are at
least three registers

• No good polynomial-time algorithms (or
even good approximations!) are known for
this problem
– We have to be content with a heuristic that is

good enough for RIGs that arise in practice

Coloring by simplification [Kempe 1879]

• How to find a k-coloring of a graph
• Intuition:

– Suppose we are trying to k-color a graph and
find a node with fewer than k edges

– If we delete this node from the graph and color
what remains, we can find a color for this node
if we add it back in

– Reason: fewer than k neighbors � some color
must be left over

Coloring by simplification [Kempe 1879]

• How to find a k-coloring of a graph
• Phase 1: Simplification

– Repeatedly simplify graph
– When a variable (i.e., graph node) is

removed, push it on a stack
• Phase 2: Coloring

– Unwind stack and reconstruct the graph as
follows:

– Pop variable from the stack
– Add it back to the graph
– Color the node for that variable with a

color that it doesn’t interfere with

simplify

color

Handling precolored nodes

• Some variables are pre-assigned to
registers
– Eg: mul on x86/pentium

• uses eax; defines eax, edx
– Eg: call on x86/pentium

• Defines (trashes) caller-save registers eax, ecx, edx

• To properly allocate registers, treat these
register uses as special temporary variables
and enter into interference graph as
precolored nodes

Optimizing move instructions
• Code generation produces a lot of extra mov

instructions
mov t5, t9

• If we can assign t5 and t9 to same register, we can get
rid of the mov
– effectively, copy elimination at the register allocation level

• Idea: if t5 and t9 are not connected in inference graph,
coalesce them into a single variable; the move will be
redundant

• Problem: coalescing nodes can make a graph
un-colorable
– Conservative coalescing heuristic

Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X Y

Z

X ¬ Y
Y ¬ Z

Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X,Y

Z

X ¬ Y
Y ¬ Z

Constrained Moves

• A instruction T ¬ S is constrained
– if S and T interfere

• May happen after coalescing

• Constrained MOVs are not coalesced

X,Y

Z

X ¬ Y
Y ¬ Z

Graph Coloring with Coalescing
Build: Construct the interference graph

Simplify: Recursively remove non-MOV nodes with
less than K neighbors; Push removed nodes into stack

Potential-Spill: Spill some nodes and remove nodes
Push removed nodes into stack

Select: Assign actual registers (from simplify/spill
stack)

Actual-Spill: Spill some potential spills and repeat the
process

Coalesce: Conservatively merge unconstrained MOV
related nodes with fewer than K �heavy� neighbors

Freeze: Give-Up Coalescing on some MOV related
nodes with low degree of interference edges

Special case:
merged node

has less than k
neighbors

All non-MOV
related nodes
are “heavy”

A Complete Example
Callee-saved registers

Caller-saved registers

A Complete Example

A Complete Example

Spill c

r2 & b

a & e

(Alt: ae+r1)

c

c

c

Deg. of
r1,ae,d < K

A Complete Example

ae & r1

pop d

Simplify d

(Alt: ae+r1)

(Alt: …)c

dc

c

d

pop c …

freeze r1ae-d

A Complete Example

c1&r3, c2 &r3

a&e, b&r2

A Complete Example
ae & r1

Simplify d

Pop d d

gen code“opt”

Compiling OO Programs

143

Features of OO languages

• Inheritance
– Subclass gets (inherits) properties of superclass

• Method overriding
– Multiple methods with the same name with

different signatures
• Abstract (aka virtual) methods
• Polymorphism

– Multiple methods with the same name and
different signatures but with different
implementations

144

Compiling OO languages

• “Translation into C”
• Powerful runtime environment

• Adding “gluing” code

145

Runtime Environment

• Mediates between the OS and the
programming language

• Hides details of the machine from the
programmer
– Ranges from simple support functions all the

way to a full-fledged virtual machine
• Handles common tasks

– Runtime stack (activation records)
– Memory management

• Runtime type information
146

Handling Single Inheritance

• Simple type extension

147

class A {
field a1;
field a2;
method m1() {…}
method m2() {…}

}

class B extends A {
field b1;
method m3() {…}

}

Adding fields
Fields aka Data members, instance variables

• Adds more information to the inherited
class
– “Prefixing” fields ensures consistency

148

class A {
field a1;
field a2;
method m1() {…}
method m2() {…}

}

class B extends A {
field b1;
method m2() {…}
method m3() {…}

}

typedef struct {
field a1;
field a2;

} A;

void m1A_A(A* this){…}
void m2A_A(A* this){…}

typedef struct {
field a1;
field a2;
field b1;

} B;

void m2A_B(B* this) {…}
void m3B_B(B* this) {…}

Method Overriding

• Redefines functionality
– More specific
– Can access additional fields

149

class A {
field a1;
field a2;
method m1() {…}
method m2() {…}

}

class B extends A {
field b1;
method m2() {

… b1 …
}
method m3() {…}

}

Handling Polymorphism

• When a class B extends a class A

– variable of type pointer to A may actually refer

to object of type B

• Upcasting from a subclass to a superclass

• Prefixing fields guarantees validity

150

class B *b = …;

class A *a = b ;

a1

a2

b1

Pointer to B

Pointer to A inside B

(also)

classA *a = convert_ptr_to_B_to_ptr_A(b) ;

A

B

Dynamic Binding

• An object (“pointer”) o declared to be of
class A can actually be (“refer”) to a class B

• What does �o.m()�mean?
– Static binding
– Dynamic binding

• Depends on the programming language
rules

• How to implement dynamic binding?

151

Virtual function table

152

typedef struct {
field a1;
field a2;

} A;

void m1A_A(A* this){…}
void m2A_A(A* this, int x){…}

typedef struct {
field a1;
field a2;
field b1;

} B;

void m2A_B(A* thisA, int x){
Class_B *this =

convert_ptr_to_A_to_ptr_to_B(thisA);
…

}

void m3B_B(B* this){…}

p.m2(3); p®dispatch_table®m2A(, 3);

a1
a2

Runtime object

b1

vtablep

convert_ptr_to_B_to_ptr_to_A(p)

m1A_A
m2A_B

(Runtime) Dispatch Table

m3B_B

Multiple Inheritance

153

class C {
field c1;
field c2;
method m1(){…}
method m2(){…}

}

class D {
field d1;

method m3() {…}
method m4(){…}

}

class E extends C, D {
field e1;

method m2() {…}
method m4() {…}
method m5(){…}

}

Multiple Inheritance

• Allows unifying behaviors
• But raises semantic difficulties

– Ambiguity of classes
– Repeated inheritance

• Hard to implement
– Semantic analysis
– Code generation

• Prefixing no longer work
• Need to generate code for downcasts

• Hard to use
154

A simple implementation

• Merge dispatch tables of superclases
• Generate code for upcasts and downcasts

155

A simple implementation

156

class C {
field c1;
field c2;
method m1(){…}
method m2(){…}

}

class D {
field d1;

method m3() {…}
method m4(){…}

}

class E extends C, D {
field e1;

method m2() {…}
method m4() {…}
method m5(){…}

}

d1
e1

Runtime object

m3D_D
m4D_E

(Runtime) Dispatch Table

m5E_E

vtable

c1
c2

vtable

Pointer to
- E
- C inside E

Pointer to
- D inside E

m1C_C
m2C_E

Dependent multiple Inheritance

157

class C extends A {
field c1;
field c2;
method m1(){…}
method m2(){…}

}

class D extends A {
field d1;

method m3(){…}
method m4(){…}

}

class E extends C, D {
field e1;

method m2() {…}
method m4() {…}
method m5(){…}

}

class A{
field a1;
field a2;
method m1(){…}
method m3(){…}

}

Interface Types

• Java supports limited form of multiple
inheritance

• Interface consists of several methods but
no fields

• A class can implement multiple interfaces
158

public interface Comparable {
public int compare(Comparable o);

}

Interface Types

• Implementation: record with 2 pointers:
– A separate dispatch table per interface
– A pointer to the object

159

a1
a2

interface tablevtable

i. table
object

vtable
field1
field2

a1
b1
a2

Memory Management

• Manual memory management
• Automatic memory management

160

• A data structure records the location and size
of free cells of memory.

• The allocator considers each free cell in turn,
and according to some policy, chooses one to
allocate.

• Three basic types of free-list allocation:
– First-fit
– Next-fit
– Best-fit

Free-list Allocation

Memory chunks

162

Free list

163

free

• Free too late – waste memory (memory
leak)

• Free too early – dangling pointers / crashes
• Free twice – error

164

Garbage collection

• approximate reasoning about object
liveness

• use reachability to approximate liveness
• assume reachable objects are live

– non-reachable objects are dead

165

Garbage Collection – Classical Techniques

• reference counting
• mark and sweep
• copying

166

GC using Reference Counting

• add a reference-count field to every object
– how many references point to it

• when (rc==0) the object is non reachable
– non reachable => dead
– can be collected (deallocated)

167

The Mark-and-Sweep Algorithm
[McCarthy 1960]

• Marking phase
– mark roots
– trace all objects transitively reachable from roots
– mark every traversed object

• Sweep phase
– scan all objects in the heap
– collect all unmarked objects

168

Mark&Sweep in Depth
mark(Obj)=
if mark_bit(Obj) == unmarked

mark_bit(Obj)=marked
for C in Children(Obj)

mark(C)

• How much memory does it consume?
– Recursion depth?
– Can you traverse the heap without worst-case O(n)

stack?
• Deutch-Schorr-Waite algorithm for graph marking without

recursion or stack (works by reversing pointers)
169

Copying GC

• partition the heap into two parts
– old space
– new space

• Copying GC algorithm
– copy all reachable objects from old space to

new space
– swap roles of old/new space

170

Example

old new

Roots

A

D

C

B

E

171

Example

old new

Roots

A

D

C

B

E

A

C

172

The Exam

173

