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IR	Optimization

• Making	code	“better”
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Overview	of	IR	optimization

• Formalisms	and	Terminology
– Control-flow	graphs
– Basic	blocks

• Local	optimizations
– Speeding	up	small	pieces	of	a	procedure

• Global	optimizations
– Speeding	up	procedure	as	a	whole

• The	dataflow	framework
– Defining	and	implementing	a	wide	class	of	
optimizations
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Program	Analysis

• In	order	to	optimize	a	program,	the	
compiler	has	to	be	able	to	reason	about	the	
properties	of	that	program

• An	analysis	is	called	sound if	it	never	
asserts	an	incorrect	fact	about	a	program

• All	the	analyses	we	will	discuss	in	this	class	
are	sound
– (Why?)
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Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 6



Basic	blocks

• A	basic	block is	a	sequence	of	IR	instructions	
where
– There	is	exactly	one	spot	where	control	enters	the	
sequence,	which	must	be	at	the	start	of	the	
sequence

– There	is	exactly	one	spot	where	control	leaves	the	
sequence,	which	must	be	at	the	end	of	the	
sequence

• Informally,	a	sequence	of	instructions	that	
always	execute	as	a	group
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Control-Flow	Graphs

• A	control-flow	graph	(CFG)	is	a	graph	of	the	
basic	blocks	in	a	function

• The	term	CFG	is	overloaded	– from	here	on	
out,	we'll	mean	“control-flow	graph”	and	not	
“context	free	grammar”

• Each	edge	from	one	basic	block	to	another	
indicates	that	control	can	flow	from	the	end	of	
the	first	block	to	the	start	of	the	second	block

• There	is	a	dedicated	node	for	the	start	and	
end	of	a	function
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Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b						
…
v2	=	a	op	b						

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b
…
v2	=	v1

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations
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Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b					[or:		v1	=	a]
…
v2	=	a	op	b					[or:		v2	=	a]	

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b					[or:		v1	=	a]	
…
v2	=	v1												

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations
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Copy	Propagation

• If	we	have	a	variable	assignment
v1	=	v2
then	as	long	as	v1	and	v2	are	not	
reassigned,	we	can	rewrite	expressions	of	
the	form
a	=	…	v1	…
as
a	=	…	v2	…
provided	that	such	a	rewrite	is	legal
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Dead	Code	Elimination

• An	assignment	to	a	variable	v	is	called	dead
if	the	value	of	that	assignment	is	never	
read	anywhere

• Dead	code	elimination	removes	dead	
assignments	from	IR

• Determining	whether	an	assignment	is	
dead	depends	on	what	variable	is	being	
assigned	to	and	when	it's	being	assigned
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Other	types	of	local	
optimizations

• Arithmetic	Simplification
– Replace	“hard”	operations	with	easier	ones
– e.g.	rewrite	x = 4 * a; as	x = a << 2;

• Constant	Folding
– Evaluate	expressions	at	compile-time	if	they	
have	a	constant	value.

– e.g.	rewrite	x = 4 * 5; as	x = 20;
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Optimizations	and	analyses

• Most	optimizations	are	only	possible	given	
some	analysis	of	the	program's	behavior

• In	order	to	implement	an	optimization,	we	
will	talk	about	the	corresponding	program	
analyses
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Available	expressions

• Both	common	subexpression	elimination	and	copy	
propagation	depend	on	an	analysis	of	the	available	
expressions	in	a	program

• An	expression	is	called	available if	some	variable	in	
the	program	holds	the	value	of	that	expression

• In	common	subexpression	elimination,	we	replace	
an	available	expression	by	the	variable	holding	its	
value

• In	copy	propagation,	we	replace	the	use	of	a	
variable	by	the	available	expression	it	holds
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Finding	available	expressions

• Initially,	no	expressions	are	available
• Whenever	we	execute	a	statement
a	=	b	op c:
– Any	expression	holding	a is	invalidated
– The	expression	a	=	b	op c	becomes	available

• Idea:	Iterate	across	the	basic	block,	beginning	
with	the	empty	set	of	expressions	and	
updating	available	expressions	at	each	
variable
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Available	expressions	example
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a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Common	sub-expression	elimination
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a = b + 2;

b = x;

d = a + b;

e = d;

d = b;

f = e;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Common	sub-expression	elimination
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a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{  }

{ b = x, d = x, e = a + b, f = a + b }



Live	variables

• The	analysis	corresponding	to	dead	code	
elimination	is	called	liveness	analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again

• Dead	code	elimination	works	by	computing	
liveness	for	each	variable,	then	eliminating	
assignments	to	dead	variables
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Computing	live	variables
• To	know	if	a	variable	will	be	used	at	some	point,	
we	iterate	across	the	statements	in	a	basic	block	
in	reverse	order

• Initially,	some	small	set	of	values	are	known	to	be	
live	(which	ones	depends	on	the	particular	
program)

• When	we	see	the	statement	a	=	b	op	c:
– Just	before	the	statement,	a	is	not	alive,	since	its	value	
is	about	to	be	overwritten

– Just	before	the	statement,	both	b	and	c	are	alive,	since	
we're	about	to	read	their	values

– (what	if	we	have	a	=	a	+	b?) 21



Liveness	analysis
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d } - given

Which	statements	are	dead?
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Dead	Code	Elimination
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }

Which	statements	are	dead?
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Dead	Code	Elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }
24



Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which	statements	are	dead?
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Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?
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Dead	code	elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?
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Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

28



Liveness	analysis	III
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?
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Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?
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Dead	code	elimination
a = b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }
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Dead	code	elimination
a = b;

d = a;

32

If	we	further	apply	
copy	propagation	
this	statement	can	
be	eliminated	too



Formalizing	local	analyses
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vout = fa=b+c(Vin) 

Transfer	Function



Available	Expressions
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vout =	(Vin \ {e	|	e	contains	a})	∪ {a=b+c}	

Expressions	of	the	forms
a=…								and							x=…a…



Live	Variables
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout



Live	Variables
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a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout



Information	for	a	local	analysis

• What	direction	are	we	going?
– Sometimes	forward	(available	expressions)
– Sometimes	backward	(liveness	analysis)

• How	do	we	update	information	after	
processing	a	statement?
– What	are	the	new	semantics?
– What	information	do	we	know	initially?
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Formalizing	local	analyses

• Define	an	analysis	of	a	basic	block	as	a	
quadruple	(D,	V,	F,	I)	where
– D is	a	direction	(forwards	or	backwards)
– V is	a	set	of	values	the	program	can	have	at	any	
point

– F is	a	family	of	transfer	functions	defining	the	
meaning	of	any	expression	as	a	function	f	:	Và V

– I is	the	initial	information	at	the	top	(or	bottom)	of	
a	basic	block
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Available	Expressions

• Direction: Forward
• Values: Sets	of	expressions	assigned	to	variables
• Transfer	functions: Given	a	set	of	variable	
assignments	V	and	statement	a	=	b	+	c:
– Remove	from	V	any	expression	containing	a	as	a	
subexpression

– Add	to	V	the	expression	a	=	b	+	c
– Formally:	Vout =	(Vin \ {e	|	e	contains	a})	∪ {a	=	b	+	c}	

• Initial	value: Empty	set	of	expressions
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Liveness	Analysis

• Direction: Backward
• Values: Sets	of	variables
• Transfer	functions: Given	a	set	of	variable	assignments	V	

and	statement	a	=	b	+	c:
• Remove	a	from	V	(any	previous	value	of	a	is	now	dead.)
• Add	b	and	c	to	V	(any	previous	value	of	b	or	c	is	now	live.)
• Formally:	Vin =	(Vout \ {a})	∪ {b,c}
• Initial	value: Depends	on	semantics	of	language

– E.g.,	function	arguments	and	return	values	(pushes)
– Result	of	local	analysis	of	other	blocks	as	part	of	a	
global	analysis 40



Running	local	analyses

• Given	an	analysis	(D,	V,	F,	I)	for	a	basic	block
• Assume	that	D is	“forward;”	analogous	for	the	
reverse	case

• Initially,	set	OUT[entry]	to	I
• For	each	statement	s,	in	order:

– Set	IN[s]	to	OUT[prev],	where	prev is	the	previous	
statement

– Set	OUT[s]	to	fs(IN[s]),	where	fs is	the	transfer	
function	for	statement	s

41



Global	Optimizations

42



High-level	goals

• Generalize	analysis	mechanism
– Reuse	common	ingredients	for	many	analyses
– Reuse	proofs	of	correctness

• Generalize	from	basic	blocks	to	entire	CFGs
– Go	from	local	optimizations	to	global	
optimizations

43



Global	analysis

• A	global	analysis	is	an	analysis	that	works	
on	a	control-flow	graph	as	a	whole

• Substantially	more	powerful	than	a	local	
analysis
– (Why?)

• Substantially	more	complicated	than	a	local	
analysis
– (Why?)

44



Local	vs.	global	analysis

• Many	of	the	optimizations	from	local	analysis	can	still	
be	applied	globally
– Common	sub-expression	elimination
– Copy	propagation
– Dead	code	elimination

• Certain	optimizations	are	possible	in	global	analysis	that	
aren't	possible	locally:
– e.g.	code	motion:	Moving	code	from	one	basic	block	into	

another	to	avoid	computing	values	unnecessarily
• Example	global	optimizations:

– Global	constant	propagation
– Partial	redundancy	elimination
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Loop	invariant	code	motion	example

46

while (t < 120) {
z = z + x - y;

}

w = x – y;
while (t < 120) {
z = z + w;

}

value	of	expression	x	– y	is	
not	changed	by	loop	body



Why	global	analysis	is	hard

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value	(but	the	analysis	still	needs	to	
terminate!)

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it

47



Global	dead	code	elimination

• Local	dead	code	elimination	needed	to	
know	what	variables	were	live	on	exit	from	
a	basic	block

• This	information	can	only	be	computed	as	
part	of	a	global	analysis

• How	do	we	modify	our	liveness	analysis	to	
handle	a	CFG?

48



CFGs	without	loops

49Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry



CFGs	without	loops

50Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

?

Which	variables	may
be	live	on	some
execution	path?



CFGs	without	loops

51Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}



CFGs	without	loops

52Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry



CFGs	without	loops

53Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry



Major	changes	– part	1

• In	a	local	analysis,	each	statement	has	
exactly	one	predecessor

• In	a	global	analysis,	each	statement	may	
have	multiple	predecessors

• A	global	analysis	must	have	some	means	of	
combining	information	from	all	
predecessors	of	a	basic	block
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CFGs	without	loops

55Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{b, c, d}

{c, d} Need	to	combine	
currently-
computed	value	
with	new	value

Need	to	combine	
currently-
computed	value	
with	new	value



CFGs	without	loops

56Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{c, d}



CFGs	without	loops

57Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}



Major	changes	– part	2

• In	a	local	analysis,	there	is	only	one	possible	
path	through	a	basic	block

• In	a	global	analysis,	there	may	be	many	paths	
through	a	CFG

• May	need	to	recompute	values	multiple	times	
as	more	information	becomes	available

• Need	to	be	careful	when	doing	this	not	to	loop	
infinitely!
– (More	on	that	later)

• Can	order	of	computation	affect	result?
58



CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

59

IfZ x goto Top

x = 1;

Top:

x = 0;

x = 2;



CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

• Sound	approximation:	Assume	that	every	possible	
path	through	the	CFG	corresponds	to	a	valid	execution
– Includes	all	realizable	paths,	but	some	additional	paths	as	
well

– May	make	our	analysis	less	precise	(but	still	sound)
– Makes	the	analysis	feasible;	we'll	see	how	later

60



CFGs	with	loops

61Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;
IfZ ...

Entry

{a}

?



Major	changes	– part	3

• In	a	local	analysis,	there	is	always	a		well	
defined	“first”	statement	to	begin	
processing

• In	a	global	analysis	with	loops,	every	basic	
block	might	depend	on	every	other	basic	
block

• To	fix	this,	we	need	to	assign	initial	values	
to	all	of	the	blocks	in	the	CFG

62



CFGs	with	loops	- initialization

63Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}



CFGs	with	loops	- iteration

64Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

{a}



CFGs	with	loops	- iteration

65Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}



CFGs	with	loops	- iteration

66Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}



CFGs	with	loops	- iteration

67Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}



CFGs	with	loops	- iteration

68Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}



CFGs	with	loops	- iteration

69Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

70Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

71Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

72Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

73Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

74Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

75Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}



CFGs	with	loops	- iteration

76Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



CFGs	with	loops	- iteration

77Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



CFGs	with	loops	- iteration

78Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}



Summary	of	differences

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value
– But	the	analysis	still	needs	to	terminate!

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it
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Global	liveness	analysis
• Initially,	set	IN[s]	=	{	}	for	each	statement	s
• Set	IN[exit]	to	the	set	of	variables	known	to	be	
live	on	exit	(language-specific	knowledge)

• Repeat	until	no	changes	occur:
– For	each	statement	s of	the	form	a	=	b	+	c,	in	any	
order	you'd	like:
• Set	OUT[s]	to	set	union	of	IN[p]	for	each	successor	p of	s
• Set	IN[s]	to	(OUT[s]	– a)	∪ {b,	c}.

• Yet	another	fixed-point	iteration!
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Global	liveness	analysis

81

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2]	∪ IN[s3]

IN[s]=(UT[s] – {a})	∪ {b,	c}



Why	does	this	work?
• To	show	correctness,	we	need	to	show	that

– The	algorithm	eventually	terminates,	and
– When	it	terminates,	it	has	a	sound	answer

• Termination	argument:
– Once	a	variable	is	discovered	to	be	live	during	some	point	of	the	

analysis,	it	always	stays	live
– Only	finitely	many	variables	and	finitely	many	places	where	a	

variable	can	become	live
• Soundness	argument	(sketch):

– Each	individual	rule,	applied	to	some	set,	correctly	updates	
liveness	in	that	set

– When	computing	the	union	of	the	set	of	live	variables,	a	variable	
is	only	live	if	it	was	live	on	some	path	leaving	the	statement
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Abstract	Interpretation

• Theoretical	foundations	of	program	
analysis

• Cousot and	Cousot 1977

• Abstract	meaning	of	programs
– Executed	at	compile	time	
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Another	view	of	local	
optimization

• In	local	optimization,	we	want	to	reason	
about	some	property	of	the	runtime	
behavior	of	the	program

• Could	we	run	the	program	and	just	watch	
what	happens?

• Idea:	Redefine	the	semantics	of	our	
programming	language	to	give	us	
information	about	our	analysis
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Properties	of	local	analysis

• The	only	way	to	find	out	what	a	program	will	
actually	do	is	to	run	it

• Problems:
– The	program	might	not	terminate
– The	program	might	have	some	behavior	we	didn't	
see	when	we	ran	it	on	a	particular	input

• However,	this	is	not	a	problem	inside	a	basic	
block
– Basic	blocks	contain	no	loops
– There	is	only	one	path	through	the	basic	block
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Assigning	new	semantics

• Example:	Available	Expressions
• Redefine	the	statement	a	=	b	+	c	to	mean	
“a	now	holds	the	value	of	b	+	c,	and	any	
variable	holding	the	value	a	is	now	invalid”

• Run	the	program	assuming	these	new	
semantics

• Treat	the	optimizer	as	an	interpreter	for	
these	new	semantics
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Theory	to	the	rescue

• Building	up	all	of	the	machinery	to	design	this	
analysis	was	tricky

• The	key	ideas,	however,	are	mostly	independent	of	
the	analysis:
– We	need	to	be	able	to	compute	functions	describing	
the	behavior	of	each	statement

– We	need	to	be	able	to	merge	several	subcomputations	
together

– We	need	an	initial	value	for	all	of	the	basic	blocks
• There	is	a	beautiful	formalism	that	captures	many	
of	these	properties
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Join	semilattices

• A	join	semilattice	is	a	ordering	defined	on	a	set	of	
elements

• Any	two	elements	have	some	join	that	is	the	smallest	
element	larger	than	both	elements

• There	is	a	unique	bottom	element,	which	is	smaller	
than	all	other	elements

• Intuitively:
– The	join	of	two	elements	represents	combining	information	

from	two	elements	by	an	overapproximation
• The	bottom	element	represents	“no	information	yet”	or	

“the	least	conservative	possible	answer”

88



Join	semilattice	for	liveness

89

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element



What	is	the	join	of	{b}	and	{c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{b}	and	{c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{b}	and	{a,c}?

92

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{b}	and	{a,c}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{a}	and	{a,b}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



What	is	the	join	of	{a}	and	{a,b}?
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}



Formal	definitions

• A	join	semilattice	is	a	pair	(V,	⨆),	where
• V	is	a	domain	of	elements
• ⨆ is	a	join	operator	that	is

– commutative:	x	⨆ y	=	y	⨆ x
– associative:	(x	⨆ y)	⨆ z	=	x	⨆ (y	⨆ z)
– idempotent:	x	⨆ x	=	x

• If	x	⨆ y	=	z,	we	say	that	z	is	the	join
or	(least	upper	bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	⊥ such	that	⊥ ⨆ x	=	x	for	all	x
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Join	semilattices	and	ordering

97

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Greater

Lower



Join	semilattices	and	ordering

98

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least	precise

Most	precise



Join	semilattices	and	orderings

• Every	join	semilattice	(V,	⨆)	induces	an	
ordering	relationship	⊑ over	its	elements

• Define	x	⊑ y	iff	x	⨆ y	=	y
• Need	to	prove

– Reflexivity:	x	⊑ x
– Antisymmetry:	If	x	⊑ y	and	y	⊑ x,	then	x	=	y
– Transitivity:	If	x	⊑ y	and	y	⊑ z,	then	x	⊑ z
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An	example	join	semilattice

• The	set	of	natural	numbers	and	the	max function
• Idempotent

– max{a,	a}	=	a
• Commutative

– max{a,	b}	=	max{b,	a}
• Associative

– max{a,	max{b,	c}}	=	max{max{a,	b},	c}
• Bottom	element	is	0:

– max{0,	a}	=	a
• What	is	the	ordering	over	these	elements?
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A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	∪ x	=	x
• Commutative:

– x	∪ y	=	y	∪ x
• Associative:

– (x	∪ y)	∪ z	=	x	∪ (y	∪ z)
• Bottom	element:

– The	empty	set:	Ø∪ x	=	x
• What	is	the	ordering	over	these	elements?
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Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	
problems	we	encounter	in	global	analysis

• How	do	we	combine	information	from	
multiple	basic	blocks?

• What	value	do	we	give	to	basic	blocks	we	
haven't	seen	yet?

• How	do	we	know	that	the	algorithm	always	
terminates?
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Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later
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Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later
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A	general	framework

• A	global	analysis	is	a	tuple	(D,	V,	⊑,	F,	I),	where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,	not	
the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values
– ⨆ is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	f	:	Và V
– I is	an	initial	value

• The	only	difference	from	local	analysis	is	the	
introduction	of	the	join	operator
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Running	global	analyses

• Assume	that	(D,	V,	⨆,	F,	I)	is	a	forward	analysis
• Set	OUT[s]	=	⊥ for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	⨆ OUT[p2]	⨆ …	⨆ OUT[pn]
• Set	OUT[s]	=	fs (IN[s])

• The	order	of	this	iteration	does	not	matter
– This	is	sometimes	called	chaotic	iteration
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For	comparison
• Set	OUT[s]	=	⊥ for	all	

statements	s
• Set	OUT[entry]	=	I

• Repeat	until	no	values	
change:
– For	each	statement	s

with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	⨆
OUT[p2]	⨆ …	⨆ OUT[pn]

• Set	OUT[s]	=	fs (IN[s])

• Set	IN[s]	=	{} for	all	
statements	s

• Set	OUT[exit]	=	the	set	of	
variables	known	to	be	live	
on	exit

• Repeat	until	no	values	
change:
– For	each	statement	s of	the	

form	a=b+c:
• Set	OUT[s]	=	set	union	of	IN[x]	
for	each	successor	x of	s

• Set	IN[s]	=	(OUT[s]-{a})∪ {b,c}
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The	dataflow	framework

• This	form	of	analysis	is	called	the	dataflow	
framework

• Can	be	used	to	easily	prove	an	analysis	is	
sound

• With	certain	restrictions,	can	be	used	to	
prove	that	an	analysis	eventually	
terminates
– Again,	more	on	that	later
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Global	constant	propagation

• Constant	propagation	is	an	optimization	
that	replaces	each	variable	that	is	known	to	
be	a	constant	value	with	that	constant

• An	elegant	example	of	the	dataflow	
framework
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Global	constant	propagation
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exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry



Global	constant	propagation
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exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry



Global	constant	propagation
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exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry



Constant	propagation	analysis

• In	order	to	do	a	constant	propagation,	we	need	to	
track	what	values	might	be	assigned	to	a	variable	at	
each	program	point

• Every	variable	will	either
– Never	have	a	value	assigned	to	it,
– Have	a	single	constant	value	assigned	to	it,
– Have	two	or	more	constant	values	assigned	to	it,	or
– Have	a	known	non-constant	value.
– Our	analysis	will	propagate	this	information	
throughout	a	CFG	to	identify	locations	where	a	value	is	
constant
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Properties	of	constant	
propagation

• For	now,	consider	just	some	single	variable	x
• At	each	point	in	the	program,	we	know	one	of	three	

things	about	the	value	of	x:
– x is	definitely	not	a	constant,	since	it's	been	assigned	two	

values	or	assigned	a	value	that	we	know	isn't	a	constant
– x is	definitely	a	constant	and	has	value	k
– We	have	never	seen	a	value	for	x

• Note	that	the	first	and	last	of	these	are	not the	same!
– The	first	one	means	that	there	may	be	a	way	for	x to	have	

multiple	values
– The	last	one	means	that	x never	had	a	value	at	all
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Defining	a	join	operator
• The	join	of	any	two	different	constants	is	Not-a-Constant

– (If	the	variable	might	have	two	different	values	on	entry	to	a	
statement,	it	cannot	be	a	constant)

• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-
Constant
– (If	on	some	path	the	value	is	known	not	to	be	a	constant,	then	on	

entry	to	a	statement	its	value	can't	possibly	be	a	constant)
• The	join	of	Undefined and	any	other	value	is	that	other	value

– (If	x has	no	value	on	some	path	and	does	have	a	value	on	some	
other	path,	we	can	just	pretend	it	always	had	the	assigned	value)
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A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):
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Undefined

0-1-2 1 2 ......

Not-a-constant

The lattice is infinitely wide



A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

117

Undefined

0-1-2 1 2 ......

Not-a-constant

• Note:
• The	join	of	any	two	different	constants	is	Not-a-Constant
• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-Constant
• The	join	of	Undefined and	any	other	value	is	that	other	value



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

x=Undefined
y=Undefined
z=Undefined
w=Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
Undefined

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

y=6	⨆ y=Undefined	
gives		what?



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

x=y=w=6
z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined



Global	constant	propagation

137

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

x=6	⨆ x=4	gives		
what?



Global	constant	propagation

141

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6, x=⊤
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined
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exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined
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exit
y=w=6 
x = 4;
x=4, y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined
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exit
y=w=6 
x = 4;
x=4, y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	analysis
reached	fixpoint
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Why	y=6?



Dataflow	for	constant	
propagation

• Direction:	Forward
• Semilattice:	Varsà {Undefined,	0,	1,	-1,	2,	-2,	…,	
Not-a-Constant}
– Join	mapping	for	variables	point-wise
{x↦1,y	↦ 1,z ↦ 1}	⨆ {x ↦ 1,y ↦ 2,z ↦ Not-a-Constant}	=	
{x ↦ 1,y	↦ Not-a-Constant,z ↦ Not-a-Constant}

• Transfer	functions:
– fx=k(V)	=	V|x ↦ k (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|x ↦ Not-a-Constant (assign	Not-a-Constant)

• Initial	value:	x	is	Undefined
– (When	might	we	use	some	other	value?)
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Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Given	this,	how	do	we	know	the	analyses	
will	eventually	terminate?
– In	general,	we	don‘t

150



Terminates?
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