Compilation
 Lecture 9

Optimizations
Noam Rinetzky

Optimization points

IR Optimization

- Making code "better"

Overview of IR optimization

- Formalisms and Terminology
- Control-flow graphs
- Basic blocks
- Local optimizations
- Speeding up small pieces of a procedure
- Global optimizations
- Speeding up procedure as a whole
- The dataflow framework
- Defining and implementing a wide class of optimizations

Program Analysis

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called sound if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
- (Why?)

Visualizing IR

main:

$$
\begin{aligned}
& \text { tmp0 = Call_ReadInteger; } \\
& \mathrm{a}=\text { tmp0; } \\
& \overline{\mathrm{tmp}}=\mathrm{Call} \text { ReadInteger; } \\
& \mathrm{b}=\text { tmp1; }
\end{aligned}
$$

LO:
$-\operatorname{tmp} 2=0 ;$
_tmp3 $=\mathrm{b}==$ _tmp2;
-tmp4 $=0$;
_tmp5 $=$ _tmp3 $==$ _tmp4;
$\bar{I} f Z \quad$ tmp $\overline{5}$ Goto _LI;
c $=a ;$
$\mathrm{a}=\mathrm{b}$;
_tmp6 $=c$ \% $a ;$
$\overline{\mathrm{b}}=$ _tmp 6 ;
Goto _L0;
L1:
Push a;
Call PrintInt;

```
tmp0 = Call _ReadInteger;
a = _tmp0;
\overline{b}
b = _tmp1;
```


Basic blocks

- A basic block is a sequence of IR instructions where
- There is exactly one spot where control enters the sequence, which must be at the start of the sequence
- There is exactly one spot where control leaves the sequence, which must be at the end of the sequence
- Informally, a sequence of instructions that always execute as a group

Control-Flow Graphs

- A control-flow graph (CFG) is a graph of the basic blocks in a function
- The term CFG is overloaded - from here on out, we'll mean "control-flow graph" and not "context free grammar"
- Each edge from one basic block to another indicates that control can flow from the end of the first block to the start of the second block
- There is a dedicated node for the start and end of a function

Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b
...
v2 = a op b
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as v1 = a op b
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b [or: v1 = a]
...
$\mathrm{v} 2=\mathrm{aop} \mathrm{b} \quad$ [or: $\mathrm{v} 2=\mathrm{a}$]
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as v1 = a op b [or: v1 = a]
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Copy Propagation

- If we have a variable assignment v1 = v2
then as long as v 1 and v 2 are not reassigned, we can rewrite expressions of the form
a = ... v1 ...
as
a = ... v2 ...
provided that such a rewrite is legal

Dead Code Elimination

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Other types of local optimizations

- Arithmetic Simplification
- Replace "hard" operations with easier ones
- e.g. rewrite $\mathbf{x}=4$ * a ; as $\mathbf{x}=\mathrm{a} \ll 2$;
- Constant Folding
- Evaluate expressions at compile-time if they have a constant value.
- e.g. rewrite $\mathbf{x}=4 * 5$; as $\mathbf{x}=20$;

Optimizations and analyses

- Most optimizations are only possible given some analysis of the program's behavior
- In order to implement an optimization, we will talk about the corresponding program analyses

Available expressions

- Both common subexpression elimination and copy propagation depend on an analysis of the available expressions in a program
- An expression is called available if some variable in the program holds the value of that expression
- In common subexpression elimination, we replace an available expression by the variable holding its value
- In copy propagation, we replace the use of a variable by the available expression it holds

Finding available expressions

- Initially, no expressions are available
- Whenever we execute a statement a = bop c:
- Any expression holding a is invalidated
- The expression $\mathbf{a}=\mathbf{b}$ op \mathbf{c} becomes available
- Idea: Iterate across the basic block, beginning with the empty set of expressions and updating available expressions at each variable

Available expressions example

$$
\begin{aligned}
& \text { \{ \} } \\
& \mathrm{a}=\mathrm{b}+2 \text {; } \\
& \{a=b+2\} \\
& \mathrm{b}=\mathrm{x} \text {; } \\
& \{\mathrm{b}=\mathrm{x}\} \\
& d=a+b ; \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{a}+\mathrm{b}\} \\
& e=a+b ; \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{a}+\mathrm{b}, \mathrm{e}=\mathrm{a}+\mathrm{b}\} \\
& \mathrm{d}=\mathrm{x} \text {; } \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}\} \\
& \mathrm{f}=\mathrm{a}+\mathrm{b} \text {; } \\
& \{\mathrm{b}=\mathrm{x}, \mathrm{~d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}, \mathrm{f}=\mathrm{a}+\mathrm{b}\}
\end{aligned}
$$

Common sub-expression elimination

 \{ \}$\mathrm{a}=\mathrm{b}+2$;
$\{a=b+2\}$
$\mathrm{b}=\mathrm{x}$;
$\{\mathrm{b}=\mathrm{x}\}$
$d=a+b ;$
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{a}+\mathrm{b}\}$
e $=d$;
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{a}+\mathrm{b}, \mathrm{e}=\mathrm{a}+\mathrm{b}\}$
$\mathrm{d}=\mathrm{b}$;
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}\}$
f = e;
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}, \mathrm{f}=\mathrm{a}+\mathrm{b}\}$

Common sub-expression elimination

 \{ \}$\mathrm{a}=\mathrm{b}+2$;
$\{\mathrm{a}=\mathrm{b}+2\}$
b = \mathbf{x};
\{ b $=\mathrm{x}\}$
$\mathrm{d}=\mathrm{a}+\mathrm{b}$;
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{a}+\mathrm{b}\}$
e = a +b ;
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{a}+\mathrm{b}, \mathrm{e}=\mathrm{a}+\mathrm{b}\}$
d = x ;
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}\}$
f = a + b;
$\{\mathrm{b}=\mathrm{x}, \mathrm{d}=\mathrm{x}, \mathrm{e}=\mathrm{a}+\mathrm{b}, \mathrm{f}=\mathrm{a}+\mathrm{b}\}$

Live variables

- The analysis corresponding to dead code elimination is called liveness analysis
- A variable is live at a point in a program if later in the program its value will be read before it is written to again
- Dead code elimination works by computing liveness for each variable, then eliminating assignments to dead variables

Computing live variables

- To know if a variable will be used at some point, we iterate across the statements in a basic block in reverse order
- Initially, some small set of values are known to be live (which ones depends on the particular program)
- When we see the statement $\mathrm{a}=\mathrm{b}$ op c :
- Just before the statement, a is not alive, since its value is about to be overwritten
- Just before the statement, both b and c are alive, since we're about to read their values
- (what if we have $a=a+b$?)

$$
\begin{aligned}
& \text { \{ b \} } \\
& \mathrm{a}=\mathrm{b} \text {; } \\
& \text { \{ } a, b \text { \} } \\
& \text { c }=a ; \\
& \{\mathrm{a}, \mathrm{~b} \text { \}} \\
& \text { Which statements are dead? } \\
& d=a+b ; \\
& \text { \{ } a, b, d \text { \} } \\
& \text { e = d; } \\
& \{\mathrm{a}, \mathrm{~b}, \mathrm{e}\} \\
& \mathrm{d}=\mathrm{a} \text {; } \\
& \text { \{ b, d, e \} } \\
& \text { f = e; } \\
& \text { \{ b, d \} - given }
\end{aligned}
$$

```
    {b } Dead Code Elimination
a = b;
    { a, b }
c = a;
    { a, b }
                            Which statements are dead?
d = a + b;
    { a, b, d }
e = d;
    { a, b, e }
d = a;
    { b, d, e }
f = e;
    { b, d }
```

$\begin{aligned} & \{b\} \\ & a=b ;\end{aligned}$
$\begin{aligned} & \{a, b\}\end{aligned}$
$\begin{aligned} & \{a, b\} \\ & d=a+b ; \\ & \{a, b, d\}\end{aligned}$
$\begin{aligned} & \text { e }=d ; \\ & \{a, b, e\} \\ & d=a ; \\ & \{b, d, e\}\end{aligned}$
$\begin{aligned} & \{b, d\}\end{aligned}$

\{ b \} $\mathrm{a}=\mathrm{b}$;
 Liveness analysis II

$$
\begin{gathered}
\{a, b\} \\
d=a+b ; \\
\{a, b, d\} \\
e=d ; \\
\{a, b\} \\
d=a ; \\
\{b, d\}
\end{gathered}
$$

Which statements are dead?

\{ b \} $\mathrm{a}=\mathrm{b}$;
 Liveness analysis II

$$
\begin{gathered}
\{a, b\} \\
d=a+b ; \\
\{a, b, d\} \\
e=d ; \\
\{a, b\} \\
d=a ; \\
\{b, d\}
\end{gathered}
$$

Which statements are dead?

(b) Dead code elimination $\mathrm{a}=\mathrm{b}$;

$$
\begin{gathered}
\{a, b\} \\
d=a+b ; \\
\{a, b, d\} \\
e=d ; \\
\{a, b\} \\
d=a ; \\
\{b, d\}
\end{gathered}
$$

Which statements are dead?

(b) Dead code elimination $\mathrm{a}=\mathrm{b}$;

$$
\begin{gathered}
\{a, b\} \\
d=a+b ; \\
\{a, b, d\} \\
\{a, b\} \\
d=a ; \\
\{b, d\}
\end{gathered}
$$

\{ b \} $\mathrm{a}=\mathrm{b}$;
 Liveness analysis III

$$
\begin{gathered}
\{a, b\} \\
d=a+b
\end{gathered}
$$

Which statements are dead?
$\{\mathrm{a}, \mathrm{b}$ \}
d $=\mathrm{a}$;
\{ b, d \}

(b) Dead code elimination $\mathrm{a}=\mathrm{b}$;

Which statements are dead?
$\{a, b\}$
$d=a+b ;$
$\{\mathrm{a}, \mathrm{b}$ \}
$\mathrm{d}=\mathrm{a}$;
\{ b, d \}

$\mathrm{a}=\mathrm{b}$;

$\{a, b\}$
$\{\mathrm{a}, \mathrm{b}$ \}
$\mathrm{d}=\mathrm{a}$;
\{ b, d \}

Dead code elimination

 $a=b$; $\begin{aligned} & \text { If we further apply } \\ & \text { this statemention can } \\ & \text { be eliminated too }\end{aligned}$$$
d=a ;
$$

Formalizing local analyses

Available Expressions

Live Variables

Live Variables

Information for a local analysis

- What direction are we going?
- Sometimes forward (available expressions)
- Sometimes backward (liveness analysis)
- How do we update information after processing a statement?
- What are the new semantics?
- What information do we know initially?

Formalizing local analyses

- Define an analysis of a basic block as a quadruple (D, V, F, I) where
- D is a direction (forwards or backwards)
- \mathbf{V} is a set of values the program can have at any point
- \mathbf{F} is a family of transfer functions defining the meaning of any expression as a function $f: \mathbf{V} \rightarrow \mathbf{V}$
- I is the initial information at the top (or bottom) of a basic block

Available Expressions

- Direction: Forward
- Values: Sets of expressions assigned to variables
- Transfer functions: Given a set of variable assignments V and statement $\mathrm{a}=\mathrm{b}+\mathrm{c}$:
- Remove from V any expression containing a as a subexpression
- Add to V the expression $\mathrm{a}=\mathrm{b}+\mathrm{c}$
- Formally: $\mathrm{V}_{\text {out }}=\left(\mathrm{V}_{\text {in }} \backslash\{\mathrm{e} \mid \mathrm{e}\right.$ contains a$\left.\}\right) \cup\{\mathrm{a}=\mathrm{b}+\mathrm{c}\}$
- Initial value: Empty set of expressions

Liveness Analysis

- Direction: Backward
- Values: Sets of variables
- Transfer functions: Given a set of variable assignments V and statement $\mathrm{a}=\mathrm{b}+\mathrm{c}$:
- Remove a from V (any previous value of a is now dead.)
- Add b and c to V (any previous value of b or c is now live.)
- Formally: $\mathrm{V}_{\text {in }}=\left(\mathrm{V}_{\text {out }} \backslash\{\mathrm{a}\}\right) \cup\{\mathrm{b}, \mathrm{c}\}$
- Initial value: Depends on semantics of language
- E.g., function arguments and return values (pushes)
- Result of local analysis of other blocks as part of a global analysis

Running local analyses

- Given an analysis (D, V, F, I) for a basic block
- Assume that D is "forward;" analogous for the reverse case
- Initially, set OUT[entry] to I
- For each statement s, in order:
- Set IN[s] to OUT[prev], where prev is the previous statement
- Set OUT[s] to $f_{s}(I N[s])$, where f_{s} is the transfer function for statement s

Global Optimizations

High-level goals

- Generalize analysis mechanism
- Reuse common ingredients for many analyses
- Reuse proofs of correctness
- Generalize from basic blocks to entire CFGs
- Go from local optimizations to global optimizations

Global analysis

- A global analysis is an analysis that works on a control-flow graph as a whole
- Substantially more powerful than a local analysis
- (Why?)
- Substantially more complicated than a local analysis
- (Why?)

Local vs. global analysis

- Many of the optimizations from local analysis can still be applied globally
- Common sub-expression elimination
- Copy propagation
- Dead code elimination
- Certain optimizations are possible in global analysis that aren't possible locally:
- e.g. code motion: Moving code from one basic block into another to avoid computing values unnecessarily
- Example global optimizations:
- Global constant propagation
- Partial redundancy elimination

Loop invariant code motion example

Why global analysis is hard

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value (but the analysis still needs to terminate!)
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global dead code elimination

- Local dead code elimination needed to know what variables were live on exit from a basic block
- This information can only be computed as part of a global analysis
- How do we modify our liveness analysis to handle a CFG?

CFGs without loops

CFGs without loops

$$
\begin{array}{r}
\begin{array}{l}
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
\mathrm{x}=\mathrm{a}+\mathrm{b} ; \\
\mathrm{y}=\mathrm{c}+\mathrm{d} ; \\
\{\mathrm{x}, \mathrm{y}\}
\end{array} \\
\begin{array}{l}
\mathrm{V}, \mathrm{y}\} \\
\text { Exit }
\end{array} \\
\hline
\end{array}
$$

CFGs without loops

CFGs without loops

CFGs without loops

Major changes - part 1

- In a local analysis, each statement has exactly one predecessor
- In a global analysis, each statement may have multiple predecessors
- A global analysis must have some means of combining information from all predecessors of a basic block

CFGs without loops

CFGs without loops

CFGs without loops

Major changes - part 2

- In a local analysis, there is only one possible path through a basic block
- In a global analysis, there may be many paths through a CFG
- May need to recompute values multiple times as more information becomes available
- Need to be careful when doing this not to loop infinitely!
- (More on that later)
- Can order of computation affect result?

CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program

CFGs with loops

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths
- When we add loops into the picture, this is no longer true
- Not all possible loops in a CFG can be realized in the actual program
- Sound approximation: Assume that every possible path through the CFG corresponds to a valid execution
- Includes all realizable paths, but some additional paths as well
- May make our analysis less precise (but still sound)
- Makes the analysis feasible; we'll see how later

CFGs with loops

Major changes - part 3

- In a local analysis, there is always a well defined "first" statement to begin processing
- In a global analysis with loops, every basic block might depend on every other basic block
- To fix this, we need to assign initial values to all of the blocks in the CFG

CFGs with loops - initialization

CFGs with loops - iteration

Summary of differences

- Need to be able to handle multiple predecessors/successors for a basic block
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value
- But the analysis still needs to terminate!
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it

Global liveness analysis

- Initially, set IN[s] = \{ \} for each statement s
- Set IN[exit] to the set of variables known to be live on exit (language-specific knowledge)
- Repeat until no changes occur:
- For each statement \mathbf{s} of the form $\mathbf{a}=\mathbf{b}+\mathbf{c}$, in any order you'd like:
- Set OUT[s] to set union of $\operatorname{IN}[\mathbf{p}]$ for each successor \mathbf{p} of \mathbf{s}
- Set IN[s] to (OUT[s]-a) $\cup\{b, \mathbf{c}\}$.
- Yet another fixed-point iteration!

Global liveness analysis

Why does this work?

- To show correctness, we need to show that
- The algorithm eventually terminates, and
- When it terminates, it has a sound answer
- Termination argument:
- Once a variable is discovered to be live during some point of the analysis, it always stays live
- Only finitely many variables and finitely many places where a variable can become live
- Soundness argument (sketch):
- Each individual rule, applied to some set, correctly updates liveness in that set
- When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement

Abstract Interpretation

- Theoretical foundations of program analysis
- Cousot and Cousot 1977
- Abstract meaning of programs
- Executed at compile time

Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

Properties of local analysis

- The only way to find out what a program will actually do is to run it
- Problems:
- The program might not terminate
- The program might have some behavior we didn't see when we ran it on a particular input
- However, this is not a problem inside a basic block
- Basic blocks contain no loops
- There is only one path through the basic block

Assigning new semantics

- Example: Available Expressions
- Redefine the statement $\mathbf{a}=\mathbf{b}+\mathbf{c}$ to mean "a now holds the value of $b+c$, and any variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

Theory to the rescue

- Building up all of the machinery to design this analysis was tricky
- The key ideas, however, are mostly independent of the analysis:
- We need to be able to compute functions describing the behavior of each statement
- We need to be able to merge several subcomputations together
- We need an initial value for all of the basic blocks
- There is a beautiful formalism that captures many of these properties

Join semilattices

- A join semilattice is a ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
- The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

Join semilattice for liveness

What is the join of $\{b\}$ and $\{c\}$?

What is the join of $\{b\}$ and $\{a, c\}$?

What is the join of $\{b\}$ and $\{a, c\}$?

What is the join of $\{a\}$ and $\{a, b\}$?

What is the join of $\{a\}$ and $\{a, b\}$?

Formal definitions

- A join semilattice is a pair (V, U), where
- V is a domain of elements
- \sqcup is a join operator that is
- commutative: $x \sqcup y=y \sqcup x$
- associative: $(x \sqcup y) ~ ل z=x \sqcup(y \sqcup z)$
- idempotent: $x \bigsqcup x=x$
- If $x \sqcup y=z$, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted \perp such that $\perp \sqcup \mathrm{x}=\mathrm{x}$ for all x

Join semilattices and ordering

Greater

Lower

Join semilattices and ordering

Join semilattices and orderings

- Every join semilattice (V, ப) induces an ordering relationship \sqsubseteq over its elements
- Define $x \sqsubseteq y$ iff $x \bigsqcup y=y$
- Need to prove
- Reflexivity: $\mathrm{x} \sqsubseteq \mathrm{x}$
- Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$
- Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

An example join semilattice

- The set of natural numbers and the max function
- Idempotent
$-\max \{a, a\}=a$
- Commutative
$-\max \{a, b\}=\max \{b, a\}$
- Associative
$-\max \{a, \max \{b, c\}\}=\max \{\max \{a, b\}, c\}$
- Bottom element is 0 :
$-\max \{0, a\}=a$
- What is the ordering over these elements?

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$
-x \cup x=x
$$

- Commutative:

$$
-x \cup y=y \cup x
$$

- Associative:

$$
-(x \cup y) \cup z=x \cup(y \cup z)
$$

- Bottom element:
- The empty set: $\varnothing \cup x=x$
- What is the ordering over these elements?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- What value do we give to basic blocks we haven't seen yet?
- How do we know that the algorithm always terminates?

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
- Use the bottom element
- How do we know that the algorithm always terminates?
- Actually, we still don't! More on that later

Semilattices and program analysis

- Semilattices naturally solve many of the problems we encounter in global analysis
- How do we combine information from multiple basic blocks?
- Take the join of all information from those blocks
- What value do we give to basic blocks we haven't seen yet?
- Use the bottom element
- How do we know that the algorithm always terminates?
- Actually, we still don't! More on that later

A general framework

- A global analysis is a tuple (D, V, $\sqsubseteq, F, I)$, where
- D is a direction (forward or backward)
- The order to visit statements within a basic block, not the order in which to visit the basic blocks
- V is a set of values
$-\downarrow$ is a join operator over those values
- F is a set of transfer functions $f: \mathbf{V} \rightarrow \mathbf{V}$
- I is an initial value
- The only difference from local analysis is the introduction of the join operator

Running global analyses

- Assume that ($\mathrm{D}, \mathrm{V}, \mathrm{L}, \mathrm{F}, \mathrm{I}$) is a forward analysis
- Set OUT[s] $=\perp$ for all statements \mathbf{s}
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}$:
- Set $\operatorname{IN}[\mathbf{s}]=\operatorname{OUT}\left[\boldsymbol{p}_{1}\right] \sqcup \operatorname{OUT}\left[\boldsymbol{p}_{2}\right] \sqcup \ldots \mathrm{I} . . \mathrm{OUT}\left[\boldsymbol{p}_{n}\right]$
- Set OUT[s] = $\mathrm{f}_{\mathrm{s}}(\operatorname{IN}[\mathbf{s}])$
- The order of this iteration does not matter
- This is sometimes called chaotic iteration

For comparison

- Set OUT[s] = \perp for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors
$p_{1}, p_{2}, \ldots, p_{n}$:
- Set $\operatorname{IN}[s]=\operatorname{OUT}\left[p_{1}\right] \mathrm{L}$ OUT[pple ل... ப OUT[p $\left.p_{n}\right]$
- Set OUT[s] = f_{s} (IN[s])
- Set IN[s] = \{\} for all statements s
- Set OUT[exit] = the set of variables known to be live on exit
- Repeat until no values change:
- For each statement s of the form $\mathbf{a}=\mathbf{b}+\mathbf{c}$:
- Set OUT[s] = set union of $\operatorname{IN}[\mathbf{x}]$ for each successor \mathbf{x} of \mathbf{s}
- Set $\operatorname{IN}[s]=(O U T[s]-\{a\}) \cup\{b, c\}$

The dataflow framework

- This form of analysis is called the dataflow framework
- Can be used to easily prove an analysis is sound
- With certain restrictions, can be used to prove that an analysis eventually terminates
- Again, more on that later

Global constant propagation

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

Global constant propagation

Global constant propagation

Global constant propagation

Constant propagation analysis

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point
- Every variable will either
- Never have a value assigned to it,
- Have a single constant value assigned to it,
- Have two or more constant values assigned to it, or
- Have a known non-constant value.
- Our analysis will propagate this information throughout a CFG to identify locations where a value is constant

Properties of constant

propagation

- For now, consider just some single variable \mathbf{x}
- At each point in the program, we know one of three things about the value of \mathbf{x} :
- \mathbf{x} is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant
$-\mathbf{x}$ is definitely a constant and has value \mathbf{k}
- We have never seen a value for x
- Note that the first and last of these are not the same!
- The first one means that there may be a way for \mathbf{x} to have multiple values
- The last one means that \mathbf{x} never had a value at all

Defining a join operator

- The join of any two different constants is Not-a-Constant
- (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-aConstant
- (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of Undefined and any other value is that other value
- (If \mathbf{x} has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

The lattice is infinitely wide

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

- Note:
- The join of any two different constants is Not-a-Constant
- The join of Not a Constant and any other value is Not-a-Constant
- The join of Undefined and any other value is that other value

Global constant propagation

Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars \rightarrow \{Undefined, $0,1,-1,2,-2, \ldots$, Not-a-Constant\}
- Join mapping for variables point-wise $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\} \sqcup\{x \mapsto 1, y \mapsto 2, z \mapsto$ Not-a-Constant $\}=$ $\{x \mapsto 1, y \mapsto$ Not-a-Constant, $z \mapsto$ Not-a-Constant $\}$
- Transfer functions:
$-\mathrm{f}_{\mathrm{x}=\mathrm{k}}(\mathrm{V})=\left.\mathrm{V}\right|_{\mathrm{x} \mapsto \mathrm{k}}$ (update V by mapping x to k)
$-f_{x=a+b}(V)=\left.V\right|_{x \mapsto \text { Not-a-Constant }}$ (assign Not-a-Constant)
- Initial value: \mathbf{x} is Undefined
- (When might we use some other value?)

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
- In general, we don't

Terminates?

