
Compilation
Lecture	9

Optimizations
Noam	Rinetzky

1

Optimization	points

source
code

Front
end IR Code

generator
target
code

User
profile	program
change	algorithm

Compiler
intraprocedural IR
Interprocedural IR
IR	optimizations

Compiler
register	allocation
instruction	selection

peephole	transformations

now 2

IR	Optimization

• Making	code	“better”

3

Overview	of	IR	optimization

• Formalisms	and	Terminology
– Control-flow	graphs
– Basic	blocks

• Local	optimizations
– Speeding	up	small	pieces	of	a	procedure

• Global	optimizations
– Speeding	up	procedure	as	a	whole

• The	dataflow	framework
– Defining	and	implementing	a	wide	class	of	
optimizations

4

Program	Analysis

• In	order	to	optimize	a	program,	the	
compiler	has	to	be	able	to	reason	about	the	
properties	of	that	program

• An	analysis	is	called	sound if	it	never	
asserts	an	incorrect	fact	about	a	program

• All	the	analyses	we	will	discuss	in	this	class	
are	sound
– (Why?)

5

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 6

Basic	blocks

• A	basic	block is	a	sequence	of	IR	instructions	
where
– There	is	exactly	one	spot	where	control	enters	the	
sequence,	which	must	be	at	the	start	of	the	
sequence

– There	is	exactly	one	spot	where	control	leaves	the	
sequence,	which	must	be	at	the	end	of	the	
sequence

• Informally,	a	sequence	of	instructions	that	
always	execute	as	a	group

7

Control-Flow	Graphs

• A	control-flow	graph	(CFG)	is	a	graph	of	the	
basic	blocks	in	a	function

• The	term	CFG	is	overloaded	– from	here	on	
out,	we'll	mean	“control-flow	graph”	and	not	
“context	free	grammar”

• Each	edge	from	one	basic	block	to	another	
indicates	that	control	can	flow	from	the	end	of	
the	first	block	to	the	start	of	the	second	block

• There	is	a	dedicated	node	for	the	start	and	
end	of	a	function

8

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b						
…
v2	=	a	op	b						

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b
…
v2	=	v1

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

9

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b					[or:		v1	=	a]
…
v2	=	a	op	b					[or:		v2	=	a]	

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b					[or:		v1	=	a]	
…
v2	=	v1												

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

10

Copy	Propagation

• If	we	have	a	variable	assignment
v1	=	v2
then	as	long	as	v1	and	v2	are	not	
reassigned,	we	can	rewrite	expressions	of	
the	form
a	=	…	v1	…
as
a	=	…	v2	…
provided	that	such	a	rewrite	is	legal

11

Dead	Code	Elimination

• An	assignment	to	a	variable	v	is	called	dead
if	the	value	of	that	assignment	is	never	
read	anywhere

• Dead	code	elimination	removes	dead	
assignments	from	IR

• Determining	whether	an	assignment	is	
dead	depends	on	what	variable	is	being	
assigned	to	and	when	it's	being	assigned

12

Other	types	of	local	
optimizations

• Arithmetic	Simplification
– Replace	“hard”	operations	with	easier	ones
– e.g.	rewrite	x = 4 * a; as	x = a << 2;

• Constant	Folding
– Evaluate	expressions	at	compile-time	if	they	
have	a	constant	value.

– e.g.	rewrite	x = 4 * 5; as	x = 20;

13

Optimizations	and	analyses

• Most	optimizations	are	only	possible	given	
some	analysis	of	the	program's	behavior

• In	order	to	implement	an	optimization,	we	
will	talk	about	the	corresponding	program	
analyses

14

Available	expressions

• Both	common	subexpression	elimination	and	copy	
propagation	depend	on	an	analysis	of	the	available	
expressions	in	a	program

• An	expression	is	called	available if	some	variable	in	
the	program	holds	the	value	of	that	expression

• In	common	subexpression	elimination,	we	replace	
an	available	expression	by	the	variable	holding	its	
value

• In	copy	propagation,	we	replace	the	use	of	a	
variable	by	the	available	expression	it	holds

15

Finding	available	expressions

• Initially,	no	expressions	are	available
• Whenever	we	execute	a	statement
a	=	b	op c:
– Any	expression	holding	a is	invalidated
– The	expression	a	=	b	op c	becomes	available

• Idea:	Iterate	across	the	basic	block,	beginning	
with	the	empty	set	of	expressions	and	
updating	available	expressions	at	each	
variable

16

Available	expressions	example

17

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common	sub-expression	elimination

18

a = b + 2;

b = x;

d = a + b;

e = d;

d = b;

f = e;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common	sub-expression	elimination

19

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Live	variables

• The	analysis	corresponding	to	dead	code	
elimination	is	called	liveness	analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again

• Dead	code	elimination	works	by	computing	
liveness	for	each	variable,	then	eliminating	
assignments	to	dead	variables

20

Computing	live	variables
• To	know	if	a	variable	will	be	used	at	some	point,	
we	iterate	across	the	statements	in	a	basic	block	
in	reverse	order

• Initially,	some	small	set	of	values	are	known	to	be	
live	(which	ones	depends	on	the	particular	
program)

• When	we	see	the	statement	a	=	b	op	c:
– Just	before	the	statement,	a	is	not	alive,	since	its	value	
is	about	to	be	overwritten

– Just	before	the	statement,	both	b	and	c	are	alive,	since	
we're	about	to	read	their	values

– (what	if	we	have	a	=	a	+	b?) 21

Liveness	analysis
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d } - given

Which	statements	are	dead?

22

Dead	Code	Elimination
a = b;

c = a;

d = a + b;

e = d;

d = a;

f = e;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }

Which	statements	are	dead?

23

Dead	Code	Elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d, e }

{ a, b, e }

{ a, b, d }

{ a, b }

{ a, b }

{ b }

{ b, d }
24

Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which	statements	are	dead?

25

Liveness	analysis	II
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?

26

Dead	code	elimination
a = b;

d = a + b;

e = d;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

Which statements are dead?

27

Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b, d }

{ a, b }

{ b }

28

Liveness	analysis	III
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?

29

Dead	code	elimination
a = b;

d = a + b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

Which	statements	are	dead?

30

Dead	code	elimination
a = b;

d = a;
{ b, d }

{ a, b }

{ a, b }

{ b }

31

Dead	code	elimination
a = b;

d = a;

32

If	we	further	apply	
copy	propagation	
this	statement	can	
be	eliminated	too

Formalizing	local	analyses

33

a = b + c

Output	Value
Vout

Input	Value
Vin

Vout = fa=b+c(Vin)

Transfer	Function

Available	Expressions

34

a = b + c

Output	Value
Vout

Input	Value
Vin

Vout =	(Vin \ {e	|	e	contains	a})	∪ {a=b+c}	

Expressions	of	the	forms
a=…								and							x=…a…

Live	Variables

35

a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout

Live	Variables

36

a = b + c

Output	Value
Vout

Input	Value
Vin

Vin = (Vout \ {a}) ∪ {b,c}

Vin

Vout

Information	for	a	local	analysis

• What	direction	are	we	going?
– Sometimes	forward	(available	expressions)
– Sometimes	backward	(liveness	analysis)

• How	do	we	update	information	after	
processing	a	statement?
– What	are	the	new	semantics?
– What	information	do	we	know	initially?

37

Formalizing	local	analyses

• Define	an	analysis	of	a	basic	block	as	a	
quadruple	(D,	V,	F,	I)	where
– D is	a	direction	(forwards	or	backwards)
– V is	a	set	of	values	the	program	can	have	at	any	
point

– F is	a	family	of	transfer	functions	defining	the	
meaning	of	any	expression	as	a	function	f	:	Và V

– I is	the	initial	information	at	the	top	(or	bottom)	of	
a	basic	block

38

Available	Expressions

• Direction: Forward
• Values: Sets	of	expressions	assigned	to	variables
• Transfer	functions: Given	a	set	of	variable	
assignments	V	and	statement	a	=	b	+	c:
– Remove	from	V	any	expression	containing	a	as	a	
subexpression

– Add	to	V	the	expression	a	=	b	+	c
– Formally:	Vout =	(Vin \ {e	|	e	contains	a})	∪ {a	=	b	+	c}	

• Initial	value: Empty	set	of	expressions

39

Liveness	Analysis

• Direction: Backward
• Values: Sets	of	variables
• Transfer	functions: Given	a	set	of	variable	assignments	V	

and	statement	a	=	b	+	c:
• Remove	a	from	V	(any	previous	value	of	a	is	now	dead.)
• Add	b	and	c	to	V	(any	previous	value	of	b	or	c	is	now	live.)
• Formally:	Vin =	(Vout \ {a})	∪ {b,c}
• Initial	value: Depends	on	semantics	of	language

– E.g.,	function	arguments	and	return	values	(pushes)
– Result	of	local	analysis	of	other	blocks	as	part	of	a	
global	analysis 40

Running	local	analyses

• Given	an	analysis	(D,	V,	F,	I)	for	a	basic	block
• Assume	that	D is	“forward;”	analogous	for	the	
reverse	case

• Initially,	set	OUT[entry]	to	I
• For	each	statement	s,	in	order:

– Set	IN[s]	to	OUT[prev],	where	prev is	the	previous	
statement

– Set	OUT[s]	to	fs(IN[s]),	where	fs is	the	transfer	
function	for	statement	s

41

Global	Optimizations

42

High-level	goals

• Generalize	analysis	mechanism
– Reuse	common	ingredients	for	many	analyses
– Reuse	proofs	of	correctness

• Generalize	from	basic	blocks	to	entire	CFGs
– Go	from	local	optimizations	to	global	
optimizations

43

Global	analysis

• A	global	analysis	is	an	analysis	that	works	
on	a	control-flow	graph	as	a	whole

• Substantially	more	powerful	than	a	local	
analysis
– (Why?)

• Substantially	more	complicated	than	a	local	
analysis
– (Why?)

44

Local	vs.	global	analysis

• Many	of	the	optimizations	from	local	analysis	can	still	
be	applied	globally
– Common	sub-expression	elimination
– Copy	propagation
– Dead	code	elimination

• Certain	optimizations	are	possible	in	global	analysis	that	
aren't	possible	locally:
– e.g.	code	motion:	Moving	code	from	one	basic	block	into	

another	to	avoid	computing	values	unnecessarily
• Example	global	optimizations:

– Global	constant	propagation
– Partial	redundancy	elimination

45

Loop	invariant	code	motion	example

46

while (t < 120) {
z = z + x - y;

}

w = x – y;
while (t < 120) {
z = z + w;

}

value	of	expression	x	– y	is	
not	changed	by	loop	body

Why	global	analysis	is	hard

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value	(but	the	analysis	still	needs	to	
terminate!)

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it

47

Global	dead	code	elimination

• Local	dead	code	elimination	needed	to	
know	what	variables	were	live	on	exit	from	
a	basic	block

• This	information	can	only	be	computed	as	
part	of	a	global	analysis

• How	do	we	modify	our	liveness	analysis	to	
handle	a	CFG?

48

CFGs	without	loops

49Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

CFGs	without	loops

50Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

?

Which	variables	may
be	live	on	some
execution	path?

CFGs	without	loops

51Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

CFGs	without	loops

52Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

CFGs	without	loops

53Exit

x = a + b;
y = c + d;

a = b + c;

b = c + d;
Entry

Major	changes	– part	1

• In	a	local	analysis,	each	statement	has	
exactly	one	predecessor

• In	a	global	analysis,	each	statement	may	
have	multiple	predecessors

• A	global	analysis	must	have	some	means	of	
combining	information	from	all	
predecessors	of	a	basic	block

54

CFGs	without	loops

55Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{b, c, d}

{c, d} Need	to	combine	
currently-
computed	value	
with	new	value

Need	to	combine	
currently-
computed	value	
with	new	value

CFGs	without	loops

56Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{c, d}

CFGs	without	loops

57Exit

x = a + b;
y = c + d;

y = a + b;x = c + d;
a = b + c;

b = c + d;
e = c + d;Entry

{x, y}

{x, y}

{a, b, c, d}

{a, b, c, d} {a, b, c, d}

{a, b, c, d}{b, c, d}

{a, b, c, d}

{a, c, d}

Major	changes	– part	2

• In	a	local	analysis,	there	is	only	one	possible	
path	through	a	basic	block

• In	a	global	analysis,	there	may	be	many	paths	
through	a	CFG

• May	need	to	recompute	values	multiple	times	
as	more	information	becomes	available

• Need	to	be	careful	when	doing	this	not	to	loop	
infinitely!
– (More	on	that	later)

• Can	order	of	computation	affect	result?
58

CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

59

IfZ x goto Top

x = 1;

Top:

x = 0;

x = 2;

CFGs	with	loops
• Up	to	this	point,	we've	considered	loop-free	CFGs,	
which	have	only	finitely	many	possible	paths

• When	we	add	loops	into	the	picture,	this	is	no	longer	
true

• Not	all	possible	loops	in	a	CFG	can	be	realized	in	the	
actual	program

• Sound	approximation:	Assume	that	every	possible	
path	through	the	CFG	corresponds	to	a	valid	execution
– Includes	all	realizable	paths,	but	some	additional	paths	as	
well

– May	make	our	analysis	less	precise	(but	still	sound)
– Makes	the	analysis	feasible;	we'll	see	how	later

60

CFGs	with	loops

61Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;
IfZ ...

Entry

{a}

?

Major	changes	– part	3

• In	a	local	analysis,	there	is	always	a		well	
defined	“first”	statement	to	begin	
processing

• In	a	global	analysis	with	loops,	every	basic	
block	might	depend	on	every	other	basic	
block

• To	fix	this,	we	need	to	assign	initial	values	
to	all	of	the	blocks	in	the	CFG

62

CFGs	with	loops	- initialization

63Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

CFGs	with	loops	- iteration

64Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{}

{a}

CFGs	with	loops	- iteration

65Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

CFGs	with	loops	- iteration

66Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{}

{}

{a, b, c}

{a}

{a, b, c}

CFGs	with	loops	- iteration

67Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

CFGs	with	loops	- iteration

68Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{}

{a, b, c}

{a}

{a, b, c}

{b, c}

CFGs	with	loops	- iteration

69Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

70Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

71Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

72Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

73Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

74Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

75Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{b, c}

{a, b, c}

CFGs	with	loops	- iteration

76Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs	with	loops	- iteration

77Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

CFGs	with	loops	- iteration

78Exit

a = a + b;
d = b + c;

c = a + b;a = b + c;
d = a + c;

b = c + d;
c = c + d;Entry

{a}

{a, b}{b, c}

{a, c, d}

{a, b, c}

{a, c, d}

{a, b, c}

{a, b, c}

{a, b, c}

Summary	of	differences

• Need	to	be	able	to	handle	multiple	
predecessors/successors	for	a	basic	block

• Need	to	be	able	to	handle	multiple	paths	
through	the	control-flow	graph,	and	may	need	
to	iterate	multiple	times	to	compute	the	final	
value
– But	the	analysis	still	needs	to	terminate!

• Need	to	be	able	to	assign	each	basic	block	a	
reasonable	default	value	for	before	we've	
analyzed	it

79

Global	liveness	analysis
• Initially,	set	IN[s]	=	{	}	for	each	statement	s
• Set	IN[exit]	to	the	set	of	variables	known	to	be	
live	on	exit	(language-specific	knowledge)

• Repeat	until	no	changes	occur:
– For	each	statement	s of	the	form	a	=	b	+	c,	in	any	
order	you'd	like:
• Set	OUT[s]	to	set	union	of	IN[p]	for	each	successor	p of	s
• Set	IN[s]	to	(OUT[s]	– a)	∪ {b,	c}.

• Yet	another	fixed-point	iteration!

80

Global	liveness	analysis

81

a=b+c

s2 s3

IN[s2] IN[s3]

OUT[s]=IN[s2]	∪ IN[s3]

IN[s]=(UT[s] – {a})	∪ {b,	c}

Why	does	this	work?
• To	show	correctness,	we	need	to	show	that

– The	algorithm	eventually	terminates,	and
– When	it	terminates,	it	has	a	sound	answer

• Termination	argument:
– Once	a	variable	is	discovered	to	be	live	during	some	point	of	the	

analysis,	it	always	stays	live
– Only	finitely	many	variables	and	finitely	many	places	where	a	

variable	can	become	live
• Soundness	argument	(sketch):

– Each	individual	rule,	applied	to	some	set,	correctly	updates	
liveness	in	that	set

– When	computing	the	union	of	the	set	of	live	variables,	a	variable	
is	only	live	if	it	was	live	on	some	path	leaving	the	statement

82

Abstract	Interpretation

• Theoretical	foundations	of	program	
analysis

• Cousot and	Cousot 1977

• Abstract	meaning	of	programs
– Executed	at	compile	time	

83

Another	view	of	local	
optimization

• In	local	optimization,	we	want	to	reason	
about	some	property	of	the	runtime	
behavior	of	the	program

• Could	we	run	the	program	and	just	watch	
what	happens?

• Idea:	Redefine	the	semantics	of	our	
programming	language	to	give	us	
information	about	our	analysis

84

Properties	of	local	analysis

• The	only	way	to	find	out	what	a	program	will	
actually	do	is	to	run	it

• Problems:
– The	program	might	not	terminate
– The	program	might	have	some	behavior	we	didn't	
see	when	we	ran	it	on	a	particular	input

• However,	this	is	not	a	problem	inside	a	basic	
block
– Basic	blocks	contain	no	loops
– There	is	only	one	path	through	the	basic	block

85

Assigning	new	semantics

• Example:	Available	Expressions
• Redefine	the	statement	a	=	b	+	c	to	mean	
“a	now	holds	the	value	of	b	+	c,	and	any	
variable	holding	the	value	a	is	now	invalid”

• Run	the	program	assuming	these	new	
semantics

• Treat	the	optimizer	as	an	interpreter	for	
these	new	semantics

86

Theory	to	the	rescue

• Building	up	all	of	the	machinery	to	design	this	
analysis	was	tricky

• The	key	ideas,	however,	are	mostly	independent	of	
the	analysis:
– We	need	to	be	able	to	compute	functions	describing	
the	behavior	of	each	statement

– We	need	to	be	able	to	merge	several	subcomputations	
together

– We	need	an	initial	value	for	all	of	the	basic	blocks
• There	is	a	beautiful	formalism	that	captures	many	
of	these	properties

87

Join	semilattices

• A	join	semilattice	is	a	ordering	defined	on	a	set	of	
elements

• Any	two	elements	have	some	join	that	is	the	smallest	
element	larger	than	both	elements

• There	is	a	unique	bottom	element,	which	is	smaller	
than	all	other	elements

• Intuitively:
– The	join	of	two	elements	represents	combining	information	

from	two	elements	by	an	overapproximation
• The	bottom	element	represents	“no	information	yet”	or	

“the	least	conservative	possible	answer”

88

Join	semilattice	for	liveness

89

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element

What	is	the	join	of	{b}	and	{c}?

90

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{b}	and	{c}?

91

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{b}	and	{a,c}?

92

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{b}	and	{a,c}?

93

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{a}	and	{a,b}?

94

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

What	is	the	join	of	{a}	and	{a,b}?

95

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Formal	definitions

• A	join	semilattice	is	a	pair	(V,	⨆),	where
• V	is	a	domain	of	elements
• ⨆ is	a	join	operator	that	is

– commutative:	x	⨆ y	=	y	⨆ x
– associative:	(x	⨆ y)	⨆ z	=	x	⨆ (y	⨆ z)
– idempotent:	x	⨆ x	=	x

• If	x	⨆ y	=	z,	we	say	that	z	is	the	join
or	(least	upper	bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	⊥ such	that	⊥ ⨆ x	=	x	for	all	x

96

Join	semilattices	and	ordering

97

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Greater

Lower

Join	semilattices	and	ordering

98

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least	precise

Most	precise

Join	semilattices	and	orderings

• Every	join	semilattice	(V,	⨆)	induces	an	
ordering	relationship	⊑ over	its	elements

• Define	x	⊑ y	iff	x	⨆ y	=	y
• Need	to	prove

– Reflexivity:	x	⊑ x
– Antisymmetry:	If	x	⊑ y	and	y	⊑ x,	then	x	=	y
– Transitivity:	If	x	⊑ y	and	y	⊑ z,	then	x	⊑ z

99

An	example	join	semilattice

• The	set	of	natural	numbers	and	the	max function
• Idempotent

– max{a,	a}	=	a
• Commutative

– max{a,	b}	=	max{b,	a}
• Associative

– max{a,	max{b,	c}}	=	max{max{a,	b},	c}
• Bottom	element	is	0:

– max{0,	a}	=	a
• What	is	the	ordering	over	these	elements?

100

A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	∪ x	=	x
• Commutative:

– x	∪ y	=	y	∪ x
• Associative:

– (x	∪ y)	∪ z	=	x	∪ (y	∪ z)
• Bottom	element:

– The	empty	set:	Ø∪ x	=	x
• What	is	the	ordering	over	these	elements?

101

Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	
problems	we	encounter	in	global	analysis

• How	do	we	combine	information	from	
multiple	basic	blocks?

• What	value	do	we	give	to	basic	blocks	we	
haven't	seen	yet?

• How	do	we	know	that	the	algorithm	always	
terminates?

102

Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later

103

Semilattices	and	program	
analysis

• Semilattices	naturally	solve	many	of	the	problems	
we	encounter	in	global	analysis

• How	do	we	combine	information	from	multiple	
basic	blocks?
– Take	the	join	of	all	information	from	those	blocks

• What	value	do	we	give	to	basic	blocks	we	haven't	
seen	yet?
– Use	the	bottom	element

• How	do	we	know	that	the	algorithm	always	
terminates?
– Actually,	we	still	don't!	More	on	that	later

104

A	general	framework

• A	global	analysis	is	a	tuple	(D,	V,	⊑,	F,	I),	where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,	not	
the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values
– ⨆ is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	f	:	Và V
– I is	an	initial	value

• The	only	difference	from	local	analysis	is	the	
introduction	of	the	join	operator

105

Running	global	analyses

• Assume	that	(D,	V,	⨆,	F,	I)	is	a	forward	analysis
• Set	OUT[s]	=	⊥ for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	⨆ OUT[p2]	⨆ …	⨆ OUT[pn]
• Set	OUT[s]	=	fs (IN[s])

• The	order	of	this	iteration	does	not	matter
– This	is	sometimes	called	chaotic	iteration

106

For	comparison
• Set	OUT[s]	=	⊥ for	all	

statements	s
• Set	OUT[entry]	=	I

• Repeat	until	no	values	
change:
– For	each	statement	s

with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	⨆
OUT[p2]	⨆ …	⨆ OUT[pn]

• Set	OUT[s]	=	fs (IN[s])

• Set	IN[s]	=	{} for	all	
statements	s

• Set	OUT[exit]	=	the	set	of	
variables	known	to	be	live	
on	exit

• Repeat	until	no	values	
change:
– For	each	statement	s of	the	

form	a=b+c:
• Set	OUT[s]	=	set	union	of	IN[x]	
for	each	successor	x of	s

• Set	IN[s]	=	(OUT[s]-{a})∪ {b,c}

107

The	dataflow	framework

• This	form	of	analysis	is	called	the	dataflow	
framework

• Can	be	used	to	easily	prove	an	analysis	is	
sound

• With	certain	restrictions,	can	be	used	to	
prove	that	an	analysis	eventually	
terminates
– Again,	more	on	that	later

108

Global	constant	propagation

• Constant	propagation	is	an	optimization	
that	replaces	each	variable	that	is	known	to	
be	a	constant	value	with	that	constant

• An	elegant	example	of	the	dataflow	
framework

109

Global	constant	propagation

110

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global	constant	propagation

111

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global	constant	propagation

112

exit x = 4;

z = x;

w = 6;

y = 6; z = y;

x = 6;entry

Constant	propagation	analysis

• In	order	to	do	a	constant	propagation,	we	need	to	
track	what	values	might	be	assigned	to	a	variable	at	
each	program	point

• Every	variable	will	either
– Never	have	a	value	assigned	to	it,
– Have	a	single	constant	value	assigned	to	it,
– Have	two	or	more	constant	values	assigned	to	it,	or
– Have	a	known	non-constant	value.
– Our	analysis	will	propagate	this	information	
throughout	a	CFG	to	identify	locations	where	a	value	is	
constant

113

Properties	of	constant	
propagation

• For	now,	consider	just	some	single	variable	x
• At	each	point	in	the	program,	we	know	one	of	three	

things	about	the	value	of	x:
– x is	definitely	not	a	constant,	since	it's	been	assigned	two	

values	or	assigned	a	value	that	we	know	isn't	a	constant
– x is	definitely	a	constant	and	has	value	k
– We	have	never	seen	a	value	for	x

• Note	that	the	first	and	last	of	these	are	not the	same!
– The	first	one	means	that	there	may	be	a	way	for	x to	have	

multiple	values
– The	last	one	means	that	x never	had	a	value	at	all

114

Defining	a	join	operator
• The	join	of	any	two	different	constants	is	Not-a-Constant

– (If	the	variable	might	have	two	different	values	on	entry	to	a	
statement,	it	cannot	be	a	constant)

• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-
Constant
– (If	on	some	path	the	value	is	known	not	to	be	a	constant,	then	on	

entry	to	a	statement	its	value	can't	possibly	be	a	constant)
• The	join	of	Undefined and	any	other	value	is	that	other	value

– (If	x has	no	value	on	some	path	and	does	have	a	value	on	some	
other	path,	we	can	just	pretend	it	always	had	the	assigned	value)

115

A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

116

Undefined

0-1-2 1 2

Not-a-constant

The lattice is infinitely wide

A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

117

Undefined

0-1-2 1 2

Not-a-constant

• Note:
• The	join	of	any	two	different	constants	is	Not-a-Constant
• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-Constant
• The	join	of	Undefined and	any	other	value	is	that	other	value

Global	constant	propagation

118

exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry

Global	constant	propagation

119

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

x=Undefined
y=Undefined
z=Undefined
w=Undefined

Global	constant	propagation

120

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

x = 6;
Undefined

entry
Undefined

Global	constant	propagation

121

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
Undefined

entry
Undefined

Global	constant	propagation

122

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined

Global	constant	propagation

123

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6, y=z=w=⊥

entry
Undefined

Global	constant	propagation

124

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
Undefined

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

125

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

126

exit x = 4;
Undefined

z = x;
Undefined

w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

y=6	⨆ y=Undefined	
gives		what?

Global	constant	propagation

127

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

128

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
Undefined

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

129

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

130

exit x = 4;
Undefined

z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

131

exit x = 4;
Undefined

x=y=w=6
z = x;
Undefined

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

132

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

133

exit x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

134

exit
x=y=w=z=6
x = 4;
Undefined

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

135

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

136

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

137

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

138

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
Undefined

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

139

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

140

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

x=y=w=6
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

x=6	⨆ x=4	gives		
what?

Global	constant	propagation

141

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6, x=⊤
z = x;
x=y=w=z=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

142

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

143

exit
x=y=w=z=6
x = 4;
x=4, y=w=z=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

144

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

145

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	analysis
reached	fixpoint

Global	constant	propagation

146

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

147

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	constant	propagation

148

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Why	y=6?

Dataflow	for	constant	
propagation

• Direction:	Forward
• Semilattice:	Varsà {Undefined,	0,	1,	-1,	2,	-2,	…,	
Not-a-Constant}
– Join	mapping	for	variables	point-wise
{x↦1,y	↦ 1,z ↦ 1}	⨆ {x ↦ 1,y ↦ 2,z ↦ Not-a-Constant}	=	
{x ↦ 1,y	↦ Not-a-Constant,z ↦ Not-a-Constant}

• Transfer	functions:
– fx=k(V)	=	V|x ↦ k (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|x ↦ Not-a-Constant (assign	Not-a-Constant)

• Initial	value:	x	is	Undefined
– (When	might	we	use	some	other	value?)

149

Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Given	this,	how	do	we	know	the	analyses	
will	eventually	terminate?
– In	general,	we	don‘t

150

Terminates?

151

