
Compilation
Lecture	8a

Code	generation	for	procedure	calls	
Noam	Rinetzky

1

A	Short	Reminder

2

IR	Generation

3

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Valid	Abstract	Syntax	Tree
Symbol	Table

…

Verification	(possible	runtime)
Errors/Warnings

Intermediate	Representation	(IR)

Executable	Codeinput output

TAC	generation

• At	this	stage	in	compilation,	we	have
– an	AST
– annotated	with	scope	information
– and	annotated	with	type	information

• To	generate	TAC	for	the	program,	we	do	
recursive	tree	traversal
– Generate	TAC	for	any	subexpressions or	
substatements

– Using	the	result,	generate	TAC	for	the	overall	
expression

4

cgen for	binary	operators

5

cgen(e1 +	e2)	=	{
Choose	a	new	temporary	t
Let	t1 =	cgen(e1)
Let	t2 =	cgen(e2)
Emit(t	=	t1 +	t2)
Return	t

}

cgen for	statements

• We	can	extend	the	cgen function	to	
operate	over	statements	as	well

• Unlike	cgen for	expressions,	cgen for	
statements	does	not	return	the	name	of	a	
temporary	holding	a	value.
– (Why?)

6

cgen for	if-then-else

7

cgen(if	(e) s1 else	s2)
Let	_t	=	cgen(e)
Let	Ltrue be	a	new	label
Let	Lfalse be	a	new	label
Let	Lafter be	a	new	label
Emit(IfZ _t	Goto Lfalse;)
cgen(s1)
Emit(Goto Lafter;)
Emit(Lfalse:)
cgen(s2)
Emit(Goto Lafter;)
Emit(Lafter:)

cgen for	while loops

8

cgen(while	(expr)	stmt) Let	Lbefore be	a	new	label.
Let	Lafter be	a	new	label.
Emit(Lbefore:)
Let	t	=	cgen(expr)
Emit(IfZ	t	Goto	Lafter;)
cgen(stmt)
Emit(Goto Lbefore;)
Emit(Lafter:)

Weighted	register	allocation

• Suppose	we	have	expression	e1 op e2
– e1,	e2 without	side-effects

• That	is,	no	function	calls,	memory	accesses,	++x
– cgen(e1 op e2)	=	cgen(e2 op e1)
– Does	order	of	translation	matter?	

• Sethi &	Ullman’s	algorithm	translates	heavier	
sub-tree	first
– Optimal	local	(per-statement)	allocation	for	side-
effect-free	statements

9

Temporaries

Example

10

_t0	=	cgen(a+(b+(c*d)))
+	and	*	are	commutative	operators

b

c d

*

+

+

a_t0

_t1

_t2

4	temporaries

_t2

_t1

left	child	first

b

c d

*

+

+

a

_t0

2	temporary

_t0

_t0

right	child	first

_t0_t0

_t1

_t1

_t1

_t3

Code	generation	
for	procedure	calls

(+	a	few	words	on	the	runtime	system)

11

Code	generation	for	procedure	calls

• Compile	time	generation	of	code	for	
procedure	invocations

• Activation	Records	(aka	Stack	Frames)

12

Supporting	Procedures

• Stack:	a	new	computing	environment	
– e.g.,	temporary	memory	for	local	variables

• Passing	information	into	the	new	
environment
– Parameters

• Transfer of	control to/from	procedure
• Handling	return	values

13

Calling	Conventions

• In	general,	compiler	can	use	any	
convention	to	handle	procedures

• In	practice,	CPUs	specify	standards
• Aka	calling	conventios

– Allows	for	compiler	interoperability
• Libraries!	

14

Heap

Abstract	Register	Machine

15

Global Variables

Stack

Low
addresses

CPU Main	Memory

(d
at
a)
	re

gi
st
er
s

G
en

er
al
	p
ur
po

se

Code

High
addresses

Register	00

Register	01

Register	xx

…

Register	PC

Co
nt
ro
l

re
gi
st
er
s

……
Register	Stack

Design	Decisions

• Scoping	rules
– Static	scoping	vs.	dynamic	scoping

• Caller/callee conventions
– Parameters
– Who	saves	register	values?

• Allocating	space	for	local	variables

16

Static	(lexical)	Scoping

17

main	()
{

int a	=	0	;
int b	=	0	;
{

int b	=	1	;
{

int a	=	2	;
printf (“%d	%d\n”,	a,	b)

}
{

int b	=	3	;
printf (“%d	%d\n”,	a,	b)	;

}
printf (“%d	%d\n”,	a,	b)	;

}
printf (“%d	%d\n”,	a,	b)	;

}

0B

1B

3B3B

2B

Declaration Scopes

a=0 B0,B1,B3

b=0 B0

b=1 B1,B2

a=2 B2

b=3 B3

a	name	refers	to	
its	(closest)	

enclosing	scope

known	at	
compile	time

Dynamic	Scoping

• Each	identifier	is	associated	with	a	global	stack	of	
bindings

• When	entering	scope	where	identifier	is	declared
– push	declaration	on	identifier	stack

• When	exiting	scope	where	identifier	is	declared
– pop	identifier	stack

• Evaluating	the	identifier	in	any	context	binds	to	
the	current	top	of	stack

• Determined	at	runtime

18

Example

• What	value	is	returned	from	main?
– Static	scoping?
– Dynamic	scoping?

19

int x	=	42;	

int f()	{	return	x;	}	
int g()	{	int x	=	1;	return	f();	}
int main()	{	return	g();	}	

Why	do	we	care?

• We	need	to	generate	code	to	access	variables

• Static	scoping
– Identifier	binding	is	known	at	compile	time
– “Address”	of	the	variable	is	known	at	compile	time
– Assigning	addresses	to	variables	is	part	of	code	
generation

– No	runtime	errors	of	“access	to	undefined	variable”
– Can	check	types	of	variables

20

Variable	addresses	for	static	scoping:	first	attempt

21

int x	=	42;	

int f()	{	return	x;	}	
int g()	{	int x	=	1;	return	f();	}
int main()	{	return	g();	}	

identifier address

x	(global) 0x42

x	(inside	g) 0x73

Variable	addresses	for	static	scoping:	first	attempt

22

int a	[11]	;

void	quicksort(int m,	int n)	{
int i;
if	(n	>	m)	{
i	=	partition(m,	n);
quicksort	(m,	i-1)	;
quicksort	(i+1,	n)	;
}

main()	{
...
quicksort	(1,	9)	;
}	

what	is	the	address	
of	the	variable	“i”	in	

the	procedure	
quicksort?

Compile-Time	Information	on	Variables
• Name
• Type
• Scope

– when	is	it	recognized

• Duration	
– Until	when	does	its	value	exist

• Size	
– How	many	bytes	are	required	at	runtime		

• Address
– Fixed
– Relative
– Dynamic 23

Activation	Record	(Stack	Frames)

• separate	space	for	each	procedure	invocation

• managed	at	runtime
– code	for	managing	it	generated	by	the	compiler

• desired	properties	
– efficient	allocation	and	deallocation

• procedures	are	called	frequently
– variable	size	

• different	procedures	may	require	different	memory	sizes

24

Semi-Abstract	Register	Machine

25

Global Variables

Stack

Heap

High	addresses

Low	addresses

CPU Main	Memory

Register	00

Register	01

Register	xx

…

Register	PC

Co
nt
ro
l

re
gi
st
er
s

(d
at
a)
	re

gi
st
er
s

G
en

er
al
	p
ur
po

se

…

ebp

esp
…re

gi
st
er
s

St
ac
k

A	Logical	Stack	Frame	(Simplified)

26

Param N
Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual	

arguments)

Locals	and	
temporaries

Stack	frame	
for	function	
f(a1,…,aN)

Runtime	Stack

• Stack	of	activation	records
• Call	=	push	new	activation	record
• Return	=	pop	activation	record
• Only	one	“active”	activation	record	– top	of	
stack

• How	do	we	handle	recursion?

27

Activation	Record	(frame)

28

parameter	k

parameter	1

return	information

lexical	pointer

dynamic	link

registers	&	misc

local	variables
temporaries

next	frame	would	be	here

…

administrative
part

high	
addresses

low
addresses

frame	(base)
pointer

stack
pointer

incoming	
parameters

stack	
grows	
down

Runtime	Stack
• SP	– stack	pointer	

– top	of	current	frame
• FP	– frame	pointer	

– base	of	current	frame
– Sometimes	called	BP

(base	pointer)
– Usually	points	to	a	“fixed”	offset	

from	the	“start”	of	the	frame

29

Current
frame

… …

Previous
frame

SP

FP

stack	
grows	
down

Code	Blocks

• Programming		language	provide	code	
blocks	
void	foo()	
{
int	x	=	8	;	y=9;//1
{	int	x	=	y	*	y	;//2	}
{	int	x	=	y	*	7	;//3}					
x	=	y	+	1;

}
30

adminstrative

x1

y1

x2

x3

…

L-Values	of	Local	Variables

• The	offset	in	the	stack	is	known	at	compile	
time

• L-val(x)	=	FP+offset(x)
• x	=	5	Þ Load_Constant	5,	R3

Store	R3,	offset(x)(FP)	

31

Pentium	Runtime	Stack

32

Pentium	stack	registers

Pentium	stack	and	call/ret	instructions

Register Usage

ESP Stack	pointer

EBP	 Base pointer

Instruction Usage

push,	pusha,… push	on	runtime	stack

pop,popa,… Base pointer

call transfer	control to	called	routine

return transfer	control back	to	caller

Accessing	Stack	Variables

• Use	offset	from	FP	(%ebp)
– Remember: stack	grows	

downwards
• Above	FP	=	parameters
• Below	FP	=	locals
• Examples

– %ebp +	4	=	return	address
– %ebp +	8	=	first	parameter
– %ebp – 4		=	first	local

33

… …

SP

FP

Return	address

Return	address

Param	n
…

param1

Local	1
…

Local	n

Previous	fp

Param	n
…

param1FP+8

FP-4	

Factorial	– fact(int n)

34

fact:
pushl %ebp # save ebp
movl %esp,%ebp # ebp=esp
pushl %ebx # save ebx
movl 8(%ebp),%ebx # ebx = n
cmpl $1,%ebx # n = 1 ?
jle .lresult # then done
leal -1(%ebx),%eax # eax = n-1
pushl %eax #
call fact # fact(n-1)
imull %ebx,%eax # eax=retv*n
jmp .lreturn #
.lresult:
movl $1,%eax # retv
.lreturn:
movl -4(%ebp),%ebx # restore ebx
movl %ebp,%esp # restore esp
popl %ebp # restore ebp

ESP

EBP

Return address

Return address

old %ebx

Previous fp

nEBP+8

EBP-4 old %ebp

old %eax

(stack in intermediate point)

(disclaimer: real compiler can do better than that)

Call	Sequences

• The	processor does	not	save	the	content	of	
registers on	procedure	calls

• So	who	will?	
– Caller	saves	and	restores	registers
– Callee saves	and	restores	registers
– But	can	also	have	both	save/restore	some	
registers

35

Call	Sequences

36

call

c
a
l
l
e
r

c
a
l
l
e
e

return

c
a
l
l
e
r

Caller	push	code

Callee push	code

(prologue)

Callee	pop	code

(epilogue)

Caller	pop	code

Push	caller-save	registers
Push	actual	parameters	(in	reverse	order)

push	return	address	(+	other	admin	info)
Jump	to	call	address

Push	current	base-pointer
bp =	sp

Push	local	variables
Push	callee-save	registers

Pop	callee-save	registers
Pop	callee activation	record

Pop	old	base-pointer

pop	return	address
Jump	to	address

Pop	return	value	+	parameters
Pop	caller-save	registers

…

…

“To	Callee-save	or	to	Caller-save?”

• Callee-saved	registers	need	only	be	saved	
when	callee modifies	their	value

• Some	heuristics	and	conventions	are	
followed

37

Caller-Save	and	Callee-Save	Registers
• Callee-Save	Registers

– Saved	by	the	callee before	modification
– Values	are	automatically	preserved	across	calls

• Caller-Save	Registers	
– Saved	(if	needed)	by	the	caller	before	calls
– Values	are	not	automatically	preserved	across	calls

• Usually	the	architecture	defines	caller-save	and	callee-
save	registers

• Separate	compilation
• Interoperability	between	code	produced	by	different	

compilers/languages	
• But	compiler	writers	decide	when	to	use	caller/callee

registers 38

Callee-Save	Registers
• Saved	by	the	callee before	modification
• Usually	at	procedure	prolog
• Restored	at	procedure	epilog
• Hardware	support	may	be	available	
• Values	are	automatically	preserved	across	calls

39

.global _foo

Add_Constant -K, SP //allocate space for foo

Store_Local R5, -14(FP) // save R5

Load_Reg R5, R0; Add_Constant R5, 1

JSR f1 ; JSR g1;

Add_Constant R5, 2; Load_Reg R5, R0

Load_Local -14(FP), R5 // restore R5

Add_Constant K, SP; RTS // deallocate

int foo(int a) {	
int b=a+1;	
f1();
g1(b);
return(b+2);

}

Caller-Save	Registers
• Saved	by	the	caller	before	calls	when	
needed

• Values	are	not	automatically	preserved	
across	calls

40

.global _bar

Add_Constant -K, SP //allocate space for bar

Add_Constant R0, 1

JSR f2

Load_Constant 2, R0 ; JSR g2;

Load_Constant 8, R0 ; JSR g2

Add_Constant K, SP // deallocate space for bar

RTS

void	bar	(int y)	{	
int x=y+1;
f2(x);	
g2(2);
g2(8);	

}

Parameter	Passing
• 1960s

– In	memory	
• No	recursion	is	allowed

• 1970s
– In	stack

• 1980s
– In	registers
– First	k	parameters	are	passed	in	registers	(k=4	or	k=6)
– Where	is	time	saved?

41

• Most	procedures	are	leaf	procedures
• Interprocedural register	allocation
• Many	of	the	registers	may	be	dead	before	another	invocation
• Register	windows	are	allocated	in	some	architectures	per	call	(e.g.,	sun	Sparc)

Activation	Records	&	
Language	Design

42

Compile-Time	Information	on	Variables
• Name,	type,	size
• Address	kind	

– Fixed	(global)
– Relative	(local)
– Dynamic	(heap)

• Scope
– when	is	it	recognized

• Duration	
– Until	when	does	its	value	exist

43

Scoping

• What	value	is	returned	from	main?
• Static	scoping?
• Dynamic	scoping?

int x	=	42;	

int f()	{	return	x;	}	
int g()	{	int x	=	1;	return	f();	}
int main()	{	return	g();	}	

44

Nested	Procedures

• For	example	– Pascal
• Any	routine	can	have	sub-routines
• Any	sub-routine	can	access	anything	that	is	
defined	in	its	containing	scope	or	inside	the	
sub-routine	itself
– “non-local”	variables

45

Example:	Nested	Procedures
program p(){
int x;
procedure a(){

int y;
procedure b(){ … c() … };
procedure c(){
int z;
procedure d(){
y := x + z

};

… b() … d() …
}
… a() … c() …

}
a()

} 46

Possible	call	sequence:
Pàaà a	à c	à b	à c	à d

what	are	the	addresses	
of	variables	“x,”	“y”	and	
“z”	in	procedure	d?

Nested	Procedures
• can	call	a	sibling,	ancestor
• when	“c”	uses	(non-local)	

variables	from	“a”,	which	
instance	of	“a”	is	it?

• how	do	you	find	the	right	
activation	record	at	runtime?

47

a

b

P

c c

d

a

Possible	call	sequence:
Pàaà a	à c	à b	à c	à d

Nested	Procedures
• goal:	find	the	closest	routine	in	

the	stack	from	a	given	nesting	
level	

• if	we	reached	the	same	routine	
in	a	sequence	of	calls
– routine	of	level	k	uses	variables	of	

the	same	nesting	level,	it	uses	its	
own	variables

– if	it	uses	variables	of	nesting	level	
j	<	k	then	it	must	be	the	last	
routine	called	at	level	j

• If	a	procedure	is	last	at	level	j	on	
the	stack,	then	it	must	be	
ancestor	of	the	current	routine

48

Possible	call	sequence:
Pàaà a	à c	à b	à c	à d

a

b

P

c c

d

a

Nested	Procedures

• problem:	a	routine	may	need	to	access	variables	of	
another	routine	that	contains	it	statically

• solution:	lexical	pointer	(a.k.a.	access	link)	in	the	
activation	record

• lexical	pointer	points	to	the	last	activation	record	of	
the	nesting	level	above	it
– in	our	example,	lexical	pointer	of	d	points	to	activation	
records	of	c

• lexical	pointers	created	at	runtime
• number	of	links	to	be	traversed	is	known	at	compile	
time

49

Lexical	Pointers	

50

a

a

c

b

c

d

y

y

z

z

Possible	call	sequence:
Pàaà a	à c	à b	à c	à d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){
y := x + z

};

… b() … d() …
}
… a() … c() …

}
a()

}

Lexical	Pointers	

51

a

a

c

b

c

d

y

y

z

z

Possible	call	sequence:
Pàaà a	à c	à b	à c	à d

a

b

P

c c

d

a

program p(){
int x;
procedure a(){

int y;
procedure b(){ c() };
procedure c(){

int z;
procedure d(){
y := x + z

};

… b() … d() …
}
… a() … c() …

}
a()

} invokes
nested	in

Activation	Records:	Remarks

52

Stack	Frames
• Allocate	a	separate	space	for	every	procedure	incarnation
• Relative	addresses
• Provide	a	simple	mean	to	achieve	modularity
• Supports	separate	code	generation	of	procedures
• Naturally	supports	recursion
• Efficient	memory	allocation	policy

– Low	overhead
– Hardware	support	may	be	available

• LIFO	policy
• Not	a	pure	stack

– Non	local	references
– Updated	using	arithmetic

53

Non-Local	goto	in	C	syntax

54

Non-local	gotos	in	C

• setjmp	remembers	the	current	location	and	
the	stack	frame

• longjmp	jumps	to	the	current	location	
(popping	many	activation	records)

55

Non-Local	Transfer	of	Control	in	C

56

Variable	Length	Frame	Size
• C	allows	allocating	objects	of	unbounded	
size	in	the	stack
void	p()	{
int i;
char	*p;
scanf(“%d”,	&i);
p	=	(char	*)	alloca(i*sizeof(int));
}

• Some	versions	of	Pascal	allows	conformant	
array	value	parameters

57

Limitations

• The	compiler	may	be	forced	to	store	a	
value	on	a	stack	instead	of	registers

• The	stack	may	not	suffice	to	handle	some	
language	features

58

Frame-Resident	Variables
• A	variable	x	cannot	be	stored	in	register	when:	

– x	is	passed	by	reference
– Address	of	x	is	taken	(&x)
– is	addressed	via	pointer	arithmetic	on	the	stack-frame	

(C	varags)
– x	is	accessed	from	a	nested	procedure
– The	value	is	too	big	to	fit	into	a	single	register
– The	variable	is	an	array
– The	register	of	x	is	needed	for	other	purposes
– Too	many	local	variables

• An		escape	variable:
– Passed	by	reference
– Address	is	taken
– Addressed	via	pointer	arithmetic	on	the	stack-frame
– Accessed	from	a	nested	procedure 59

The	Frames	in	Different	Architectures

Pentium MIPS Sparc

InFrame(8) InFrame(0) InFrame(68)

InFrame(12) InReg(X157) InReg(X157)

InFrame(16) InReg(X158) InReg(X158)

M[sp+0]¬fp
fp	¬sp
sp	¬sp-K

sp¬sp-K

M[sp+K+0]¬r2

X157	¬r4

X158	¬r5

save	%sp,	-K,	%sp

M[fp+68]¬i0
X157¬i1
X158¬i2

60

g(x,	y,	z)	where	x	escapes

x

y

z

View

Change

Limitations	of	Stack	Frames
• A	local	variable	of	P	cannot	be	stored	in	the	activation	record	of	P	if	

its	duration	exceeds	the	duration	of	P
• Example	1:	Static	variables	in	C

(own	variables	in	Algol)
void p(int x)
{

static int y = 6 ;
y += x;

}

• Example	2:	Features	of	the	C	language
int * f()
{ int x ;

return &x ;
}

• Example	3:	Dynamic	allocation
int * f() { return (int *)
malloc(sizeof(int)); }

61

Compiler	Implementation

• Hide	machine	dependent	parts
• Hide	language	dependent	part
• Use	special	modules

62

Basic	Compiler	Phases

63

Source	program	(string)

.EXE

lexical	analysis

syntax	analysis

semantic	analysis

Code	generation

Assembler/Linker

Tokens

Abstract	syntax	tree

Assembly

Frame	managerControl	Flow	Graph

Hidden	in	the	frame	ADT

• Word	size
• The	location	of	the	formals
• Frame	resident	variables
• Machine	instructions	to	implement	“shift-
of-view”	(prologue/epilogue)

• The	number	of	locals	“allocated”	so	far
• The	label	in	which	the	machine	code	starts

64

Activation	Records:	Summary

• compile	time	memory	management	for	
procedure	data

• works	well	for	data	with	well-scoped	
lifetime
– deallocation when	procedure	returns

65

Compilation
Lecture	8b

Optimizations
Noam	Rinetzky

66

Basic	Compiler	Phases

67

Source	program	(string)

.EXE

lexical	analysis

syntax	analysis

semantic	analysis

Code	generation

Assembler/Linker

Tokens

Abstract	syntax	tree

Assembly

Frame	managerControl	Flow	Graph

IR	Optimization

68

Optimization	points

source
code

Front
end IR Code

generator
target
code

User
profile	program
change	algorithm

Compiler
intraprocedural IR
Interprocedural IR
IR	optimizations

Compiler
register	allocation
instruction	selection

peephole	transformations

now 69

IR	Optimization

• Making	code	better

70

IR	Optimization

• Making	code	“better”

71

“Optimized”	evaluation

b

5 c

*

array	access

+

a
base index

w=0

w=0 w=0

w=1w=0	

w=1

w=1

_t0	= cgen(a+b[5*c])
Phase	2:	- use	weights	to	decide	on	order	of	translation

_t0

_t0

_t0
Heavier	sub-tree

Heavier	sub-tree

_t0 = _t1 * _t0

_t0 = _t1[_t0]

_t0 = _t1 + _t0

_t0_t1

_t1

_t1
_t0 = c

_t1 = 5

_t1 = b

_t1 = a
72

But	what	about…

a	:=	1	+	2;
y	:=	a	+	b;
x	:=	a	+	b		+	8;
z	:=	b	+	a;

a	:=	a	+	1;
w:=	a	+	b;

73

Overview	of	IR	optimization

• Formalisms	and	Terminology
– Control-flow	graphs
– Basic	blocks

• Local	optimizations
– Speeding	up	small	pieces	of	a	procedure

• Global	optimizations
– Speeding	up	procedure	as	a	whole

• The	dataflow	framework
– Defining	and	implementing	a	wide	class	of	
optimizations

74

Program	Analysis

• In	order	to	optimize	a	program,	the	
compiler	has	to	be	able	to	reason	about	the	
properties	of	that	program

• An	analysis	is	called	sound if	it	never	
asserts	an	incorrect	fact	about	a	program

• All	the	analyses	we	will	discuss	in	this	class	
are	sound
– (Why?)

75

Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x holds	some

integer	value”

76

Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	either	137	

or	42”

77

(Un)Soundness
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	137”

78

Soundness	&	Precision
int x;
int y;

if (y < 5)
x = 137;

else
x = 42;

Print(x);

“At	this	point	in	the
program,	x is	either	137,

42,	or	271”

79

Semantics-preserving	optimizations

• An	optimization	is	semantics-preserving if	it	does	not	
alter	the	semantics	of	the	original	program

• Examples:
– Eliminating	unnecessary	temporary	variables
– Computing	values	that	are	known	statically	at	compile-time	

instead	of	runtime
– Evaluating	constant	expressions	outside	of	a	loop	instead	of	

inside
• Non-examples:

– Replacing	bubble	sort	with	quicksort (why?)
– The	optimizations	we	will	consider	in	this	class	are	all	

semantics-preserving

80

A	formalism	for	IR	optimization

• Every	phase	of	the	compiler	uses	some	new	
abstraction:
– Scanning	uses	regular	expressions
– Parsing	uses	CFGs
– Semantic	analysis	uses	proof	systems	and	symbol	
tables

– IR	generation	uses	ASTs
• In	optimization,	we	need	a	formalism	that	
captures	the	structure	of	a	program	in	a	way	
amenable	to	optimization

81

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

82

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

83

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 84

Basic	blocks

• A	basic	block is	a	sequence	of	IR	instructions	
where
– There	is	exactly	one	spot	where	control	enters	the	
sequence,	which	must	be	at	the	start	of	the	
sequence

– There	is	exactly	one	spot	where	control	leaves	the	
sequence,	which	must	be	at	the	end	of	the	
sequence

• Informally,	a	sequence	of	instructions	that	
always	execute	as	a	group

85

Control-Flow	Graphs

• A	control-flow	graph	(CFG)	is	a	graph	of	the	
basic	blocks	in	a	function

• The	term	CFG	is	overloaded	– from	here	on	
out,	we'll	mean	“control-flow	graph”	and	not	
“context	free	grammar”

• Each	edge	from	one	basic	block	to	another	
indicates	that	control	can	flow	from	the	end	of	
the	first	block	to	the	start	of	the	second	block

• There	is	a	dedicated	node	for	the	start	and	
end	of	a	function

86

Types	of	optimizations

• An	optimization	is	local if	it	works	on	just	a	
single	basic	block

• An	optimization	is	global if	it	works	on	an	
entire	control-flow	graph

• An	optimization	is	interprocedural if	it	
works	across	the	control-flow	graphs	of	
multiple	functions
– We	won't	talk	about	this	in	this	course

87

Basic	blocks	exercise
int main() {

int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

START:
_t0 = 137;
y = _t0;
IfZ x Goto _L0;
t1 = y;
z = _t1;
Goto END:

_L0:
_t2 = y;
x = _t2;

END:

Divide	the	code	into	basic	blocks
88

Control-flow	graph	exercise
START:

_t0 = 137;
y = _t0;
IfZ x Goto _L0;
t1 = y;
z = _t1;
Goto END:

_L0:
_t2 = y;
x = _t2;

END:

Draw	the	control-flow	graph

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

89

Control-flow	graph	exercise

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

90

Local	optimizations

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

end

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

91

Local	optimizations

_t0 = 137;
y = _t0;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

92

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

93

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

_t1 = y;
z = _t1;

_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

94

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y;
_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

95

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y;
_t2 = y;
x = _t2;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

96

Local	optimizations

y = 137;
IfZ x Goto _L0;

start

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

97

Global	optimizations

y = 137;
IfZ x Goto _L0;

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

98

start

Global	optimizations

y = 137;
IfZ x Goto _L0;

z = y; x = y;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

99

start

Global	optimizations

y = 137;
IfZ x Goto _L0;

z = 137; x = 137;

End

int main() {
int x;
int y;
int z;

y = 137;
if (x == 0)

z = y;
else

x = y;
}

100

start

Local	Optimizations

101

Optimization	path

IR Control-Flow
Graph

CFG
builder

Program
Analysis

Annotated
CFG

Optimizing
Transformation

Target
Code

Code
Generation

(+optimizations)

done
with	IR

optimizations

IR
optimizations

102

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

103

For	brevity:	
Simplified IR	for	procedure	returns

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

104

Class	Object	{
method	fn(int);
}

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

105

Size of	Object

Object	Class

Class	Object	{
method	fn(int);
}

For	simplicity,	ignore
Popping	return	value,	

parameters	etc.

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

106

Class	Object	{
method	fn(int);
}

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

107

Class	Object	{
method	fn(int);
}

Explaining	the	program

Example
Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

108

Points	to	ObjectC

Start	of	fn

Class	Object	{
method	fn(int);
}

Explaining	the	program

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b						
…
v2	=	a	op	b						

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b
…
v2	=	v1

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

109

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b					[or:		v1	=	a]
…
v2	=	a	op	b					[or:		v2	=	a]	

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b					[or:		v1	=	a]	
…
v2	=	v1												

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

110

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = a + b;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

111

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

112

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = 4;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

113

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

114

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = _tmp4;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

115

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Common	subexpression	elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

116

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation

• If	we	have	a	variable	assignment
v1	=	v2
then	as	long	as	v1	and	v2	are	not	
reassigned,	we	can	rewrite	expressions	of	
the	form
a	=	…	v1	…
as
a	=	…	v2	…
provided	that	such	a	rewrite	is	legal

117

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

118

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = _tmp2;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

119

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(x);
_tmp7 = *(_tmp6);
Push _tmp5;
Push x;
Call _tmp7;

120

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

121

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = a + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

122

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

123

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push _tmp5;
Push _tmp1;
Call _tmp7;

124

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

125

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = *(_tmp1);
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

126

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

127

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Is	this	transformation	OK?
What	do	we	need	to	know?

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(_tmp6);
Push c;
Push _tmp1;
Call _tmp7;

128

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

129

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp3;
_tmp4 = _tmp3 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

130

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Copy	Propagation
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

131

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Dead	Code	Elimination

• An	assignment	to	a	variable	v	is	called	dead
if	the	value	of	that	assignment	is	never	
read	anywhere

• Dead	code	elimination	removes	dead	
assignments	from	IR

• Determining	whether	an	assignment	is	
dead	depends	on	what	variable	is	being	
assigned	to	and	when	it's	being	assigned

132

Dead	Code	Elimination

133

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

Dead	Code	Elimination
_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

134

Object x;
int a;
int b;
int c;

x = new Object;
a = 4;
c = a + b;
x.fn(a + b);

Dead	Code	Elimination
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;
_tmp2 = ObjectC;
*(_tmp1) = ObjectC;
x = _tmp1;
_tmp3 = _tmp0;
a = _tmp0;
_tmp4 = _tmp0 + b;
c = _tmp4;
_tmp5 = c;
_tmp6 = ObjectC;
_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

values	
never	
read

values	
never	
read

135

Dead	Code	Elimination
Object x;
int a;
int b;
int c;

x = new
Object;
a = 4;
c = a + b;
x.fn(a + b);

_tmp0 = 4;
Push _tmp0;
_tmp1 = Call _Alloc;

*(_tmp1) = ObjectC;

_tmp4 = _tmp0 + b;
c = _tmp4;

_tmp7 = *(ObjectC);
Push c;
Push _tmp1;
Call _tmp7;

136

Applying	local	optimizations

• The	different	optimizations	we've	seen	so	far	
all	take	care	of	just	a	small	piece	of	the	
optimization

• Common	subexpression	elimination	eliminates	
unnecessary	statements

• Copy	propagation	helps	identify	dead	code
• Dead	code	elimination	removes	statements	
that	are	no	longer	needed

• To	get	maximum	effect,	we	may	have	to	apply	
these	optimizations	numerous	times

137

Applying	local	optimizations	
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

138

Applying	local	optimizations	
example

b = a * a;
c = a * a;
d = b + c;
e = b + b;

Which	optimization	should	we	apply	here?

139

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Common	sub-expression	elimination

Which	optimization	should	we	apply	here?

140

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + c;
e = b + b;

Which	optimization	should	we	apply	here?

141

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which	optimization	should	we	apply	here?

Copy	propagation

142

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = b + b;

Which	optimization	should	we	apply	here?

143

Applying	local	optimizations	
example

b = a * a;
c = b;
d = b + b;
e = d;

Which	optimization	should	we	apply	here?

Common	sub-expression	elimination	(again)

144

Other	types	of	local	
optimizations

• Arithmetic	Simplification
– Replace	“hard”	operations	with	easier	ones
– e.g.	rewrite	x = 4 * a; as	x = a << 2;

• Constant	Folding
– Evaluate	expressions	at	compile-time	if	they	
have	a	constant	value.

– e.g.	rewrite	x = 4 * 5; as	x = 20;

145

Optimizations	and	analyses

• Most	optimizations	are	only	possible	given	
some	analysis	of	the	program's	behavior

• In	order	to	implement	an	optimization,	we	
will	talk	about	the	corresponding	program	
analyses

146

Available	expressions

• Both	common	subexpression	elimination	and	copy	
propagation	depend	on	an	analysis	of	the	available	
expressions	in	a	program

• An	expression	is	called	available if	some	variable	in	
the	program	holds	the	value	of	that	expression

• In	common	subexpression	elimination,	we	replace	
an	available	expression	by	the	variable	holding	its	
value

• In	copy	propagation,	we	replace	the	use	of	a	
variable	by	the	available	expression	it	holds

147

Finding	available	expressions

• Initially,	no	expressions	are	available
• Whenever	we	execute	a	statement
a	=	b	op c:
– Any	expression	holding	a is	invalidated
– The	expression	a	=	b	op c	becomes	available

• Idea:	Iterate	across	the	basic	block,	beginning	
with	the	empty	set	of	expressions	and	
updating	available	expressions	at	each	
variable

148

Available	expressions	example

149

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common	sub-expression	elimination

150

a = b + 2;

b = x;

d = a + b;

e = d;

d = b;

f = e;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

Common	sub-expression	elimination

151

a = b + 2;

b = x;

d = a + b;

e = a + b;

d = x;

f = a + b;
{ b = x, d = x, e = a + b }

{ b = x, d = a + b, e = a + b }

{ b = x, d = a + b }

{ b = x}

{ a = b + 2}

{ }

{ b = x, d = x, e = a + b, f = a + b }

