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But	first,	a	short	reminder
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What	is	a	compiler?

“A	compiler	is	a	computer	program	that	
transforms	source	code	written	in	a	
programming	language	(source	language)	into	
another	language	(target	language).

The	most	common	reason	for	wanting	to	
transform	source	code	is	to	create	an	executable	
program.”

--Wikipedia
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Lexical	Analysis
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From	scanning	to	parsing
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Context	Analysis
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Code	Generation
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What	is	a	compiler?
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“A	compiler is	a	computer	program	that	transforms
source	code written	in	a	programming	language	
(source	language)	into	another	language	(target	
language).

The	most	common	reason	for	wanting	to	transform	
source	code	is	to	create	an	executable program.”



A	CPU	is	(a	sort	of)	an	Interpreter

• Interprets	machine	code	…
– Why	not	AST?

• Do	we	want	to	go	from	AST	directly	to	MC?
– We	can,	but	…

• Machine	specific
• Very	low	level
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“A	compiler is	a	computer	program	that	transforms
source	code written	in	a	programming	language	
(source	language)	into	another	language	(target	
language).

The	most	common	reason	for	wanting	to	transform	
source	code	is	to	create	an	executable program.”



Code	Generation	in	Stages
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1	Note:	Compile	Time	vs Runtime

• Compile	time:	Data	structures	used	during	
program	compilation

• Runtime:	Data	structures	used	during	program	
execution
– Activation	record	stack
– Memory	management	

• The	compiler	generates	code	that	allows	the	
program	to	interact	with	the	runtime	
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Intermediate	Representation



Code	Generation:	IR

• Translating	from	abstract	syntax	(AST)	to	
intermediate	representation	(IR)
– Three-Address	Code

• …
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Three-Address	Code	IR

• A	popular	form	of	IR
• High-level	assembly	where	instructions	
have	at	most	three	operands
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IR	by	example
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Sub-expressions	example

int a;
int b;
int c;
int d;
a	=	b	+	c	+	d;
b	=	a	*	a	+	b	*	b;
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Source IR

_t0	=	b	+	c;
a	=	_t0	+	d;
_t1	=	a	*	a;
_t2	=	b	*	b;
b	=	_t1	+	_t2;



Sub-expressions	example

int a;
int b;
int c;
int d;
a	=	b	+	c	+	d;
b	=	a	*	a	+	b	*	b;
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_t0 =	b	+	c;
a	=	_t0 +	d;
_t1	=	a	*	a;
_t2	=	b	*	b;
b	=	_t1	+	_t2;

Source IR	(not	optimized)

Temporaries	explicitly	
store	intermediate	
values	resulting	from	
sub-expressions



Variable	assignments
• var =	constant;
• var1 =	var2;
• var1 =	var2 op var3;
• var1 =	constant	op var2;
• var1 =	var2 op constant;
• var =	constant1 op constant2;
• Permitted	operators	are	+,	-,	*,	/,	%

21

In	the	impl.	var is	
replaced	by	a	pointer	
to	the	symbol	table	

A	compiler-generated	
temporary	can	be	
used	instead	of	a	var



Booleans
• Boolean	variables	are	represented	as	integers	
that	have	zero	or	nonzero	values

• In	addition	to	the	arithmetic	operator,	TAC	
supports	<,	==,	||,	and	&&

• How	might	you	compile	the	following?
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b = (x <= y); _t0 = x < y;
_t1 = x == y;
b = _t0 || _t1;



Unary	operators

• How	might	you	compile	the	following	assignments	
from	unary	statements?
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y = -x;

z := !w;

y = 0 - x;

z = w == 0;

y = -1 * x;



Control	flow	instructions
• Label	introduction

_label_name:
Indicates	a	point	in	the	code	that	can	be	jumped	to

• Unconditional	jump:	go	to	instruction	following	label	L
Goto L;

• Conditional	jump:	test	condition	variable	t;
if	0,	jump	to	label	L

IfZ t Goto L;

• Similarly :	test	condition	variable	t;
if	not	zero,	jump	to	label	L

IfNZ t Goto L;
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Control-flow	example	– conditions
int x;
int y;
int z;

if (x < y)
z = x;

else
z = y;

z = z * z;
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_t0 = x < y;
IfZ _t0 Goto _L0;
z = x;
Goto _L1;

_L0:
z = y;

_L1:
z = z * z;



Control-flow	example	– loops
int x;
int y;

while (x < y) {
x = x * 2;

}

y = x;
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_L0:
_t0 = x < y;
IfZ _t0 Goto _L1;
x = x * 2;
Goto _L0;

_L1:
y = x;



Procedures	/	Functions	
p(){ 
int y=1, x=0;
x=f(a1,…,an);
print(x);
}

• What	happens	in	runtime?
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p

f



Memory	Layout	
(popular	convention)
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A	logical	stack	frame
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Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual	

arguments)

Locals	and	
temporaries

Stack	frame	
for	function	
f(a1,…,an)



Procedures	/	Functions	
• A	procedure	call	instruction	pushes arguments	to	
stack	and	jumps to	the	function	label
A	statement	x=f(a1,…,an); looks	like

Push a1; … Push an;
Call f;
Pop x; //	pop returned	value,	and	copy	to	it

• Returning	a	value	is	done	by	pushing it	to	the	
stack	(return x;)

Push x;
• Return	control	to	caller	(and	roll	up	stack)

Return;
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Functions	example
int SimpleFn(int z) {

int x, y;
x = x * y * z;
return x;

}

void main() {
int w;
w = SimpleFunction(137);

}

31

_SimpleFn:
_t0 = x * y;
_t1 = _t0 * z;
x = _t1;
Push x;
Return;

main:
_t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;



Memory	access	instructions

• Copy instruction:	a	=	b
• Load/store	instructions:

a	=	*b *a	=	b
• Address	of	instruction	a=&b
• Array	accesses:

a	=	b[i] a[i]	=	b
• Field	accesses:

a	=	b[f] a[f]	=	b
• Memory	allocation instruction:

a	=	alloc(size)
– Sometimes	left	out	(e.g.,	malloc is	a	procedure	in	C)
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Memory	access	instructions

• Copy instruction:	a	=	b
• Load/store	instructions:

a	=	*b *a	=	b
• Address	of	instruction	a=&b
• Array	accesses:

a	=	b[i] a[i]	=	b
• Field	accesses:

a	=	b[f] a[f]	=	b
• Memory	allocation instruction:

a	=	alloc(size)
– Sometimes	left	out	(e.g.,	malloc is	a	procedure	in	C)
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Array	operations

34

t1	:=	&y						;	t1	=	address-of	y
t2	:=	t1	+	i	 ;	t2	=	address	of	y[i]
x		:=	*t2						;	loads	the	value	located	at	y[i]

t1			:=	&x						;	t1	=	address-of	x
t2			:=	t1	+	i	 ;	t2	=	address	of	x[i]
*t2	:=	y									;	store	through	pointer

x	:=	y[i]

x[i]	:=	y



IR	Summary
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Intermediate	representation

36

• A	language	that	is	between	the	source	language	and	
the	target	language	– not	specific	to	any	machine

• Goal	1:	retargeting		compiler	components	for	
different	source	languages/target	machines

C++ IR

Pentium

Java	bytecode

SparcPyhton

Java
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C++ IR

Pentium

Java bytecode

SparcPyhton

Java
optimize

Lowering Code	Gen.

Intermediate	representation
• A	language	that	is	between	the	source	language	and	
the	target	language	– not	specific	to	any	machine

• Goal	1:	retargeting		compiler	components	for	
different	source	languages/target	machines

• Goal	2:	machine-independent	optimizer
– Narrow	interface:	small	number	of	instruction	types



Multiple	IRs
• Some	optimizations	require	high-level	
structure

• Others	more	appropriate	on	low-level	code
• Solution:	use	multiple	IR	stages

38

AST LIR

Pentium

Java bytecode

Sparc

optimize

HIR

optimize



AST	vs.	LIR	for	imperative	languages

AST LIR
Rich	set	of	language	constructs An	abstract	machine	language

Rich	type	system Very	limited	type	system

Declarations:	types	(classes,	interfaces),	
functions,	variables

Only	computation-related	code

Control	flow	statements:	if-then-else,	
while-do,	break-continue,	switch,	
exceptions

Labels	and	conditional/	unconditional	
jumps,	no	looping

Data	statements:	assignments,	array	
access,	field	access

Data	movements,	generic	memory	
access	statements

Expressions:	variables,	constants,	
arithmetic	operators,	logical	operators,	
function	calls

No	sub-expressions,	logical	as	numeric,	
temporaries,	constants,	function	calls	–
explicit	argument	passing 39



Lowering	AST	to	TAC

40



IR	Generation

41

Op(*)

Id(b)

Num(23) Num(7)

Op(+)

Valid	Abstract	Syntax	Tree
Symbol	Table

…

Verification	(possible	runtime)
Errors/Warnings

Intermediate	Representation	(IR)

Executable	Codeinput output



TAC	generation

• At	this	stage	in	compilation,	we	have
– an	AST
– annotated	with	scope	information
– and	annotated	with	type	information

• To	generate	TAC	for	the	program,	we	do	
recursive	tree	traversal
– Generate	TAC	for	any	subexpressions or	
substatements

– Using	the	result,	generate	TAC	for	the	overall	
expression
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TAC	generation	for	expressions

• Define	a	function	cgen(expr)	that	generates	
TAC	that	computes	an	expression,	stores	it	in	a	
temporary	variable,	then	hands	back	the	name	
of	that	temporary
– Define	cgen directly	for	atomic	expressions	
(constants,	this,	identifiers,	etc.)

• Define	cgen recursively	for	compound	
expressions	(binary	operators,	function	calls,	
etc.)
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cgen for	basic	expressions
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cgen(k)	=	{	//	k	is	a	constant
Choose	a	new	temporary	t
Emit(	t	=	k	)
Return	t

}

cgen(id)	=	{	//	id	is	an	identifier
Choose	a	new	temporary	t
Emit(	t	=	id	)
Return	t

}



cgen for	binary	operators
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cgen(e1 +	e2)	=	{
Choose	a	new	temporary	t
Let	t1 =	cgen(e1)
Let	t2 =	cgen(e2)
Emit(	t	=	t1 +	t2 )
Return	t

}



cgen example

46

cgen(5	+	x)	=	{
Choose	a	new	temporary	t
Let	t1 =	cgen(5)
Let	t2 =	cgen(x)
Emit(	t	=	t1 +	t2 )
Return	t

}



cgen example
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cgen(5	+	x)	=	{
Choose	a	new	temporary	t
Let	t1 =	{
Choose	a	new	temporary	t
Emit(	t	=	5;	)
Return	t

}
Let	t2 =	cgen(x)
Emit(	t	=	t1 +	t2 )
Return	t

}



cgen example
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cgen(5	+	x)	=	{
Choose	a	new	temporary	t
Let	t1 =	{
Choose	a	new	temporary	t
Emit(	t	=	5;	)
Return	t

}
Let	t2 =	{
Choose	a	new	temporary	t
Emit(	t	=	x;	)
Return	t

}
Emit(	t	=	t1 +	t2;	)
Return	t

}

t1 = 5;
t2 = x;
t = t1 + t2;

Returns	an	arbitrary
fresh name



cgen example
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cgen(5	+	x)	=	{
Choose	a	new	temporary	t
Let	t1 =	{
Choose	a	new	temporary	t
Emit(	t	=	5;	)
Return	t

}
Let	t2 =	{
Choose	a	new	temporary	t
Emit(	t	=	x;	)
Return	t

}
Emit(	t	=	t1 +	t2;	)
Return	t

}

_t18 = 5;
_t29 = x;
_t6 = _t18 + _t29;

Inefficient	
translation,	but	we	
will	improve	this	later

Returns	an	arbitrary
fresh name



Num
val = 5

AddExpr
left right

Ident
name = x

visit

visit
(left)

visit
(right)

cgen as	recursive	AST	traversal

cgen(5	+	x)

50

t1 = 5;

t2 = x;

t = t1 + t2;

t1 = 5 t2 = x

t = t1 + t2



Naive	cgen for	expressions

• Maintain	a	counter	for	temporaries	in	c
• Initially:	c	=	0
• cgen(e1 op e2)	=	{

Let	A	=	cgen(e1)
c	=	c	+	1
Let	B	=	cgen(e2)
c	=	c	+	1
Emit(	_tc =	A	op B;	)
Return	_tc

}

51



52

Example
cgen(	(a*b)-d)
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c	=	0
cgen(	(a*b)-d)

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	cgen(a*b)
c	=	c	+	1
Let	B	=	cgen(d)
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{

Let	A	=	cgen(a)
c	=	c	+	1
Let	B	=	cgen(b)
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	tc

}			
c	=	c	+	1
Let	B	=	cgen(d)
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{

Let	A	=	{	Emit(_tc =	a;),	return	_tc }
c	=	c	+	1
Let	B	=	{	Emit(_tc =	b;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	_tc

}			
c	=	c	+	1
Let	B	=	{	Emit(_tc =	d;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Code
here	A=_t0

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{
Let	A	=	{	Emit(_tc =	a;),	return	_tc }
c	=	c	+	1
Let	B	=	{	Emit(_tc =	b;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	_tc

}			
c	=	c	+	1
Let	B	=	{	Emit(_tc =	d;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Code
_t0=a;here	A=_t0

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{
Let	A	=	{	Emit(_tc =	a;),	return	_tc }
c	=	c	+	1
Let	B	=	{	Emit(_tc =	b;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	_tc

}			
c	=	c	+	1
Let	B	=	{	Emit(_tc =	d;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Code
_t0=a;
_t1=b;

here	A=_t0

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{
Let	A	=	{	Emit(_tc =	a;),	return	_tc }
c	=	c	+	1
Let	B	=	{	Emit(_tc =	b;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	_tc

}			
c	=	c	+	1
Let	B	=	{	Emit(_tc =	d;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1

here	A=_t0

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{
Let	A	=	{	Emit(_tc =	a;),	return	_tc }
c	=	c	+	1
Let	B	=	{	Emit(_tc =	b;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	_tc

}			
c	=	c	+	1
Let	B	=	{	Emit(_tc =	d;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1

here	A=_t0

here	A=_t2

Example



61

c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{
Let	A	=	{	Emit(_tc =	a;),	return	_tc }
c	=	c	+	1
Let	B	=	{	Emit(_tc =	b;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	_tc

}			
c	=	c	+	1
Let	B	=	{	Emit(_tc =	d;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1
_t3=d;

here	A=_t0

here	A=_t2

Example
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c	=	0
cgen(	(a*b)-d)	=	{
Let	A	=	{
Let	A	=	{	Emit(_tc =	a;),	return	_tc }
c	=	c	+	1
Let	B	=	{	Emit(_tc =	b;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	* B;	)
Return	_tc

}			
c	=	c	+	1
Let	B	=	{	Emit(_tc =	d;),	return	_tc }
c	=	c	+	1
Emit(	_tc =	A	- B;	)
Return	_tc

}

Code
_t0=a;
_t1=b;
_t2=_t0*_t1
_t3=d;
_t4=_t2-_t3

here	A=_t0

here	A=_t2

Example



cgen for	statements

• We	can	extend	the	cgen function	to	
operate	over	statements	as	well

• Unlike	cgen for	expressions,	cgen for	
statements	does	not	return	the	name	of	a	
temporary	holding	a	value.
– (Why?)

63



cgen for	simple	statements
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cgen(expr;)	=	{
cgen(expr)

}



cgen for	if-then-else

65

cgen(if	(e) s1 else	s2)
Let	_t	=	cgen(e)
Let	Ltrue be	a	new	label
Let	Lfalse be	a	new	label
Let	Lafter be	a	new	label
Emit(	IfZ _t	Goto Lfalse;	)
cgen(s1)
Emit(	Goto Lafter;	)
Emit(	Lfalse:	)
cgen(s2)
Emit(	Goto Lafter;)
Emit(	Lafter:	)



cgen for	while loops
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cgen(while	(expr)	stmt) Let	Lbefore be	a	new	label.
Let	Lafter be	a	new	label.
Emit(	Lbefore:	)
Let	t	=	cgen(expr)
Emit(	IfZ	t	Goto	Lafter;	)
cgen(stmt)
Emit(	Goto Lbefore;	)
Emit(	Lafter:	)



cgen for	short-circuit	disjunction

cgen(e1	||	e2)

67

Emit(_t1	=	0;	_t2	=	0;)
Let	Lafter be	a	new	label
Let	_t1	=	cgen(e1)
Emit(	IfNZ _t1	Goto Lafter)
Let	_t2	=	cgen(e2)
Emit(	Lafter:	)
Emit(	_t	=	_t1	||	_t2;	)
Return	_t



Our	first	optimization

68



Naive	cgen for	expressions

• Maintain	a	counter	for	temporaries	in	c
• Initially:	c	=	0
• cgen(e1 op e2)	=	{

Let	A	=	cgen(e1)
c	=	c	+	1
Let	B	=	cgen(e2)
c	=	c	+	1
Emit(	_tc =	A	op B;	)
Return	_tc

}
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Naïve	translation

• cgen translation	shown	so	far	very	inefficient
– Generates	(too)	many	temporaries	– one	per	sub-
expression

– Generates	many	instructions	– at	least	one	per	sub-
expression

• Expensive	in	terms	of	running	time	and	space
• Code	bloat

• We	can	do	much	better	…	
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Naive	cgen for	expressions

• Maintain	a	counter	for	temporaries	in	c
• Initially:	c	=	0
• cgen(e1 op e2)	=	{

Let	A	=	cgen(e1)
c	=	c	+	1
Let	B	=	cgen(e2)
c	=	c	+	1
Emit(	_tc =	A	op B;	)
Return	_tc

}
• Observation:	temporaries	in	cgen(e1)	can	be	reused	in	

cgen(e2)
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Improving	cgen for	expressions

• Observation	– naïve	translation	needlessly	generates	
temporaries	for	leaf	expressions

• Observation	– temporaries	used	exactly	once
– Once	a	temporary	has	been	read	it	can	be	reused	for	

another	sub-expression
• cgen(e1 op e2)	=	{

Let	_t1	=	cgen(e1)
Let	_t2	=	cgen(e2)
Emit(	_t	=_t1	op _t2;	)
Return	t

}
• Temporaries	cgen(e1)	can	be	reused	in	cgen(e2)
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Sethi-Ullman translation

• Algorithm	by	Ravi	Sethi and	Jeffrey	D.	Ullman
to	emit	optimal	TAC
– Minimizes	number	of	temporaries

• Main	data	structure	in	algorithm	is	a	stack	of	
temporaries
– Stack	corresponds	to	recursive	invocations	of	_t	=	cgen(e)
– All	the	temporaries	on	the	stack	are	live

• Live	=	contain	a	value	that	is	needed	later	on	
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Live	temporaries	stack
• Implementation:	use	counter	c	to	implement	
live	temporaries	stack
– Temporaries	_t(0),	…	,	_t(c)	are	alive
– Temporaries	_t(c+1),	_t(c+2)…	can	be	(re)used
– Push	means	increment	c,	pop	means	decrement	c

• In	the	translation	of	_t(c)=cgen(e1 op e2)
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_t(c) = cgen(e1)

_t(c) = cgen(e2)

_t(c) = _t(c) op _t(c+1)

c = c + 1

c = c - 1



Using	stack	of	temporaries	example
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_t0	=	cgen(	((c*d)-(e*f))+(a*b)	)

_t0 = c*d

_t1 = e*f

_t0 = _t0 -_t1

c = c + 1

c = c - 1

c = 0

_t0 = cgen(c*d)-(e*f))

_t1 = a*b
c = c + 1

_t0 = _t0 + _t1

c = c - 1



Weighted	register	allocation

• Suppose	we	have	expression	e1 op e2
– e1,	e2 without	side-effects

• That	is,	no	function	calls,	memory	accesses,	++x
– cgen(e1 op e2)	=	cgen(e2 op e1)
– Does	order	of	translation	matter?	

• Sethi &	Ullman’s	algorithm	translates	heavier	
sub-tree	first
– Optimal	local	(per-statement)	allocation	for	side-
effect-free	statements
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Temporaries



Example
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_t0	=	cgen(	a+(b+(c*d))	)
+	and	*	are	commutative	operators

b

c d

*

+

+

a_t0

_t1

_t2

4	temporaries

_t2

_t1

left	child	first

b

c d

*

+

+

a

_t0

2	temporary

_t0

_t0

right	child	first

_t0_t0

_t1

_t1

_t1

_t3



Weighted	register	allocation
• Can	save	registers	by	re-ordering	subtree computations
• Label	each	node	with	its	weight

– Weight	=	number	of	registers	needed
– Leaf	weight	known
– Internal	node	weight

• w(left)	>	w(right)	then	w	=	left
• w(right)	>	w(left)	then	w	=	right
• w(right)	=	w(left)	then	w	=	left	+	1

• Choose	heavier child	as	first	to	be	translated
• WARNING:	have	to	check	that	no	side-effects	exist	before	

attempting	to	apply	this	optimization
– pre-pass	on	the	tree
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Weighted	reg.	alloc.	example

79

b

5 c

*

array	access

+

aw=0

w=0 w=0

w=1w=0	

w=1

w=1

Phase	1:	- check	absence	of	side-effects	in	expression	tree
- assign	weight	to	each	AST	node

_t0	= cgen( a+b[5*c]	)

base index



Weighted	reg.	alloc.	example
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b

5 c

*

array	access

+

a
base index

w=0

w=0 w=0

w=1w=0	

w=1

w=1

_t0	= cgen( a+b[5*c]	)
Phase	2:	- use	weights	to	decide	on	order	of	translation

_t0

_t0

_t0
Heavier	sub-tree

Heavier	sub-tree

_t0 = _t1 * _t0

_t0 = _t1[_t0]

_t0 = _t1 + _t0

_t0_t1

_t1

_t1
_t0 = c

_t1 = 5

_t1 = b

_t1 = a



Note	on	weighted	register	allocation
• Must reset	temporaries	counter	after	every		
statement:	x=y; y=z
– should	not be	translated	to
_t0 = y;
x = _t0;
_t1 = z;
y = _t1;

– But	rather	to
_t0 = y;
x = _t0; #	Finished	translating	statement.	Set	c=0
_t0 = z;
y= _t0;
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Code	generation	
for	procedure	calls

(+	a	few	words	on	the	runtime	system)

82



Code	generation	for	procedure	calls

• Compile	time	generation	of	code	for	
procedure	invocations

• Activation	Records	(aka	Stack	Frames)
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Supporting	Procedures

• Stack:	a	new	computing	environment	
– e.g.,	temporary	memory	for	local	variables

• Passing	information	into	the	new	
environment
– Parameters

• Transfer of	control to/from	procedure
• Handling	return	values
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Calling	Conventions

• In	general,	compiler	can	use	any	
convention	to	handle	procedures

• In	practice,	CPUs	specify	standards
• Aka	calling	conventios

– Allows	for	compiler	interoperability
• Libraries!	
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Abstract	Register	Machine
(High	Level	View)
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Heap

Abstract	Register	Machine
(High	Level	View)
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Abstract	Activation	Record	Stack
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Stack	frame	for	
procedure

Prock+1(a1,…,aN)

Prock
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main
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Abstract	Stack	Frame
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Param N
Param N-1

…
Param 1
_t0

…
_tk
x

…
y

Parameters
(actual	

arguments)

Locals	and	
temporaries

Prock

Prock+2

…

…

Stack	frame	for	
procedure

Prock+1(a1,…,aN)



Handling	Procedures
• Store	local	variables/temporaries	in	a	stack
• A	function	call	instruction	pushes	arguments	to	
stack	and	jumps	to	the	function	label
A	statement	x=f(a1,…,an); looks	like

Push a1; … Push an;
Call f;
Pop x; //	copy	returned	value

• Returning	a	value	is	done	by	pushing	it	to	the	
stack	(return x;)

Push x;
• Return	control	to	caller	(and	roll	up	stack)

Return; 90



Heap

Abstract	Register	Machine
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Heap

Abstract	Register	Machine
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Intro:	Functions	Example
int SimpleFn(int z) {

int x, y;
x = x * y * z;
return x;

}

void main() {
int w;
w = SimpleFunction(137);

}
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_SimpleFn:
_t0 = x * y;
_t1 = _t0 * z;
x = _t1;
Push x;
Return;

main:
_t0 = 137;
Push _t0;
Call _SimpleFn;
Pop w;



What	Can	We	Do	with	Procedures?

• Declarations	&	Definitions
• Call	&	Return
• Jumping	out	of	procedures
• Passing	&	Returning	procedures	as	
parameters
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Design	Decisions

• Scoping	rules
– Static	scoping	vs.	dynamic	scoping

• Caller/callee conventions
– Parameters
– Who	saves	register	values?

• Allocating	space	for	local	variables
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Static	(lexical)	Scoping
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main	(	)
{

int a	=	0	;
int b	=	0	;
{

int b	=	1	;
{

int a	=	2	;
printf (“%d	%d\n”,	a,	b)

}
{

int b	=	3	;
printf (“%d	%d\n”,	a,	b)	;

}
printf (“%d	%d\n”,	a,	b)	;

}
printf (“%d	%d\n”,	a,	b)	;

}

0B

1B

3B3B

2B

Declaration Scopes

a=0 B0,B1,B3

b=0 B0

b=1 B1,B2

a=2 B2

b=3 B3

a	name	refers	to	
its	(closest)	

enclosing	scope

known	at	
compile	time



Dynamic	Scoping

• Each	identifier	is	associated	with	a	global	stack	of	
bindings

• When	entering	scope	where	identifier	is	declared
– push	declaration	on	identifier	stack

• When	exiting	scope	where	identifier	is	declared
– pop	identifier	stack

• Evaluating	the	identifier	in	any	context	binds	to	
the	current	top	of	stack

• Determined	at	runtime
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Example

• What	value	is	returned	from	main?
– Static	scoping?
– Dynamic	scoping?
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int x	=	42;	

int f()	{	return	x;	}	
int g()	{	int x	=	1;	return	f();	}
int main()	{	return	g();	}	



Why	do	we	care?

• We	need	to	generate	code	to	access	variables

• Static	scoping
– Identifier	binding	is	known	at	compile	time
– “Address”	of	the	variable	is	known	at	compile	time
– Assigning	addresses	to	variables	is	part	of	code	
generation

– No	runtime	errors	of	“access	to	undefined	variable”
– Can	check	types	of	variables
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Variable	addresses	for	static	scoping:	first	attempt

100

int x	=	42;	

int f()	{	return	x;	}	
int g()	{	int x	=	1;	return	f();	}
int main()	{	return	g();	}	

identifier address

x	(global) 0x42

x	(inside	g) 0x73


