
Compilation
Lecture	10a

Abstract	Interpretation
Noam	Rinetzky

1

Optimization	points

source
code

Front
end IR Code

generator
target
code

User
profile	program
change	algorithm

Compiler
intraprocedural IR
Interprocedural IR
IR	optimizations

Compiler
register	allocation
instruction	selection

peephole	transformations

now 2

IR	Optimization

• Making	code	“better”

3

Overview	of	IR	optimization

• Formalisms	and	Terminology
– Control-flow	graphs
– Basic	blocks

• Local	optimizations
– Speeding	up	small	pieces	of	a	procedure

• Global	optimizations
– Speeding	up	procedure	as	a	whole

• The	dataflow	framework
– Defining	and	implementing	a	wide	class	of	
optimizations

4

Program	Analysis

• In	order	to	optimize	a	program,	the	
compiler	has	to	be	able	to	reason	about	the	
properties	of	that	program

• An	analysis	is	called	sound if	it	never	
asserts	an	incorrect	fact	about	a	program

• All	the	analyses	we	will	discuss	in	this	class	
are	sound
– (Why?)

5

Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 6

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b						
…
v2	=	a	op	b						

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b
…
v2	=	v1

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

7

Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b					[or:		v1	=	a]
…
v2	=	a	op	b					[or:		v2	=	a]	

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b					[or:		v1	=	a]	
…
v2	=	v1												

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations

8

Copy	Propagation

• If	we	have	a	variable	assignment
v1	=	v2
then	as	long	as	v1	and	v2	are	not	
reassigned,	we	can	rewrite	expressions	of	
the	form
a	=	…	v1	…
as
a	=	…	v2	…
provided	that	such	a	rewrite	is	legal

9

Dead	Code	Elimination

• An	assignment	to	a	variable	v	is	called	dead
if	the	value	of	that	assignment	is	never	
read	anywhere

• Dead	code	elimination	removes	dead	
assignments	from	IR

• Determining	whether	an	assignment	is	
dead	depends	on	what	variable	is	being	
assigned	to	and	when	it's	being	assigned

10

Abstract	Interpretation

• Theoretical	foundations	of	program	
analysis

• Cousot and	Cousot 1977

• Abstract	meaning	of	programs
– Executed	at	compile	time	

11

Another	view	of	local	
optimization

• In	local	optimization,	we	want	to	reason	
about	some	property	of	the	runtime	
behavior	of	the	program

• Could	we	run	the	program	and	just	watch	
what	happens?

• Idea:	Redefine	the	semantics	of	our	
programming	language	to	give	us	
information	about	our	analysis

12

Assigning	new	semantics

• Example:	Available	Expressions
• Redefine	the	statement	a	=	b	+	c	to	mean	
“a	now	holds	the	value	of	b	+	c,	and	any	
variable	holding	the	value	a	is	now	invalid”

• Run	the	program	assuming	these	new	
semantics

• Treat	the	optimizer	as	an	interpreter	for	
these	new	semantics

13

Join	semilattices

• A	join	semilattice	is	a	ordering	defined	on	a	set	of	
elements

• Any	two	elements	have	some	join	that	is	the	smallest	
element	larger	than	both	elements

• There	is	a	unique	bottom	element,	which	is	smaller	
than	all	other	elements

• Intuitively:
– The	join	of	two	elements	represents	combining	information	

from	two	elements	by	an	overapproximation
• The	bottom	element	represents	“no	information	yet”	or	

“the	least	conservative	possible	answer”

14

Join	semilattices	and	ordering

15

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least	precise

Most	precise

Formal	definitions

• A	join	semilattice	is	a	pair	(V,	⨆),	where
• V	is	a	domain	of	elements
• ⨆ is	a	join	operator	that	is

– commutative:	x	⨆ y	=	y	⨆ x
– associative:	(x	⨆ y)	⨆ z	=	x	⨆ (y	⨆ z)
– idempotent:	x	⨆ x	=	x

• If	x	⨆ y	=	z,	we	say	that	z	is	the	join
or	(least	upper	bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	⊥ such	that	⊥ ⨆ x	=	x	for	all	x

16

Join	semilattices	and	orderings

• Every	join	semilattice	(V,	⨆)	induces	an	
ordering	relationship	⊑ over	its	elements

• Define	x	⊑ y	iff	x	⨆ y	=	y
• Need	to	prove

– Reflexivity:	x	⊑ x
– Antisymmetry:	If	x	⊑ y	and	y	⊑ x,	then	x	=	y
– Transitivity:	If	x	⊑ y	and	y	⊑ z,	then	x	⊑ z

17

A	general	framework

• A	global	analysis	is	a	tuple	(D,	V,	⊑,	F,	I),	where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,	not	
the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values
– ⨆ is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	f	:	Và V
– I is	an	initial	value

• The	only	difference	from	local	analysis	is	the	
introduction	of	the	join	operator

18

Running	global	analyses

• Assume	that	(D,	V,	⨆,	F,	I)	is	a	forward	analysis
• Set	OUT[s]	=	⊥ for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	⨆ OUT[p2]	⨆ …	⨆ OUT[pn]
• Set	OUT[s]	=	fs (IN[s])

• The	order	of	this	iteration	does	not	matter
– This	is	sometimes	called	chaotic	iteration

19

Global	constant	propagation

• Constant	propagation	is	an	optimization	
that	replaces	each	variable	that	is	known	to	
be	a	constant	value	with	that	constant

• An	elegant	example	of	the	dataflow	
framework

20

Defining	a	join	operator
• The	join	of	any	two	different	constants	is	Not-a-Constant

– (If	the	variable	might	have	two	different	values	on	entry	to	a	
statement,	it	cannot	be	a	constant)

• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-
Constant
– (If	on	some	path	the	value	is	known	not	to	be	a	constant,	then	on	

entry	to	a	statement	its	value	can't	possibly	be	a	constant)
• The	join	of	Undefined and	any	other	value	is	that	other	value

– (If	x has	no	value	on	some	path	and	does	have	a	value	on	some	
other	path,	we	can	just	pretend	it	always	had	the	assigned	value)

21

A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

22

Undefined

0-1-2 1 2

Not-a-constant

The lattice is infinitely wide

A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):

23

Undefined

0-1-2 1 2

Not-a-constant

• Note:
• The	join	of	any	two	different	constants	is	Not-a-Constant
• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-Constant
• The	join	of	Undefined and	any	other	value	is	that	other	value

Global	constant	propagation

24

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry

Global	constant	propagation

25

exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry

Global	constant	propagation

26

exit
y=w=6
x = 4;
x=4, y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	analysis
reached	fixpoint

Global	constant	propagation

27

exit
y=w=6
x = 4;
y=w=6

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Why	y=6?

Dataflow	for	constant	
propagation

• Direction:	Forward
• Semilattice:	Varsà {Undefined,	0,	1,	-1,	2,	-2,	…,	
Not-a-Constant}
– Join	mapping	for	variables	point-wise
{x↦1,y	↦ 1,z ↦ 1}	⨆ {x ↦ 1,y ↦ 2,z ↦ Not-a-Constant}	=	
{x ↦ 1,y	↦ Not-a-Constant,z ↦ Not-a-Constant}

• Transfer	functions:
– fx=k(V)	=	V|x ↦ k (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|x ↦ Not-a-Constant (assign	Not-a-Constant)

• Initial	value:	x	is	Undefined
– (When	might	we	use	some	other	value?)

28

Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Given	this,	how	do	we	know	the	analyses	
will	eventually	terminate?
– In	general,	we	don‘t

29

Terminates?

30

Liveness	Analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again

31

Join	semilattice	definition

• A	join	semilattice	is	a	pair	(V,	⨆),	where
• V	is	a	domain	of	elements
• ⨆ is	a	join	operator	that	is

– commutative:	x	⨆ y	=	y	⨆ x
– associative:	(x	⨆ y)	⨆ z	=	x	⨆ (y	⨆ z)
– idempotent:	x	⨆ x	=	x

• If	x	⨆ y	=	z,	we	say	that	z	is	the	join
or	(Least	Upper	Bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	⊥ such	that	⊥ ⨆ x	=	x	for	all	x

32

Partial	ordering	induced	by	join

• Every	join	semilattice	(V,	⨆)	induces	an	
ordering	relationship	⊑ over	its	elements

• Define	x	⊑ y	iff	x	7 y	=	y
• Need	to	prove

– Reflexivity:	x	⊑ x
– Antisymmetry:	If	x	⊑ y	and	y	⊑ x,	then	x	=	y
– Transitivity:	If	x	⊑ y	and	y	⊑ z,	then	x	⊑ z

33

A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	∪ x	=	x
• Commutative:

– x	∪ y	=	y	∪ x
• Associative:

– (x	∪ y)	∪ z	=	x	∪ (y	∪ z)
• Bottom	element:

– The	empty	set:	Ø∪ x	=	x
• Ordering	over	elements	=	subset	relation

34

Join	semilattice	example	for	liveness

35

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element

Dataflow	framework

• A	global	analysis	is	a	tuple	(D,	V,	⨆,	F,	I),	
where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,
NOT the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values	(sometimes	called	domain)
– ⨆ is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	fs :	Và V
(for	every	statement	s)
– I is	an	initial	value

36

Running	global	analyses
• Assume	that	(D,	V,	⨆,	F,	I)	is	a	forward	analysis
• For	every	statement	s	maintain	values	before		- IN[s]	- and	after	

- OUT[s]
• Set	OUT[s]	=	⊥ for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
PRED[s]={p1,	p2,	…	,	pn}
• Set	IN[s]	=	OUT[p1]	⨆ OUT[p2]	⨆ …	⨆ OUT[pn]
• Set	OUT[s]	=	fs(IN[s])

• The	order	of	this	iteration	does	not	matter
– Chaotic	iteration

37

Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Problem: how	do	we	know	the	analyses	will	
eventually	terminate?

38

A	non-terminating	analysis

• The	following	analysis	will	loop	infinitely	on	
any	CFG	containing	a	loop:

• Direction: Forward
• Domain: ℕ
• Join	operator:	max
• Transfer	function: f(n) = n	+	1
• Initial	value:	0

39

A	non-terminating	analysis

40

start

end

x ++

Initialization

41

start

end

x ++
0

0

Fixed-point	iteration

42

start

end

x ++
0

0

Choose	a	block

43

start

end

x ++
0

0

Iteration	1

44

start

end

x ++
0

0

0

Iteration	1

45

start

end

x ++
1

0

0

Choose	a	block

46

start

end

x ++
1

0

0

Iteration	2

47

start

end

x ++
1

0

0

Iteration	2

48

start

end

x ++
1

0

1

Iteration	2

49

start

end

x ++
2

0

1

Choose	a	block

50

start

end

x ++
2

0

1

Iteration	3

51

start

end

x ++
2

0

1

Iteration	3

52

start

end

x ++
2

0

2

Iteration	3

53

start

end

x ++
3

0

2

Why	doesn’t	this	terminate?
• Values	can	increase	without	bound
• Note	that	“increase”	refers	to	the	lattice	
ordering,	not	the	ordering	on	the	natural	
numbers

• The	height of	a	semilattice	is	the	length	of	the	
longest	increasing	sequence	in	that	semilattice

• The	dataflow	framework	is	not	guaranteed	to	
terminate	for	semilattices	of	infinite	height

• Note	that	a	semilattice	can	be	infinitely	large	
but	have	finite	height
– e.g.	constant	propagation

54

0

1

2

3

4

...

Height	of	a	lattice

• An	increasing	chain	is	a	sequence	of	elements
⊥⊑ a1 ⊑ a2 ⊑ …	⊑ ak
– The	length	of	such	a	chain	is	k

• The	height	of	a	lattice	is	the	length	of	the	maximal	
increasing	chain

• For	liveness	with	n program	variables:
– {}⊆{v1}	⊆ {v1,v2}	⊆ …	⊆ {v1,…,vn}

• For	available	expressions	it	is	the	number	of	
expressions	of	the	form	a=b	op	c
– For	n program	variables	and	m operator	types:mn3

55

Another	non-terminating	
analysis

• This	analysis	works	on	a	finite-height	
semilattice,	but	will	not	terminate	on	
certain	CFGs:

• Direction: Forward
• Domain: Boolean	values	true and	false
• Join	operator:	Logical	OR
• Transfer	function:	Logical	NOT
• Initial	value:	false

56

A	non-terminating	analysis

57

start

end

x = !x

A	non-terminating	analysis

58

start

end

x = !x

Initialization

59

start

end

x = !xfalse

false

Fixed-point	iteration

60

start

end

x = !xfalse

false

Choose	a	block

61

start

end

x = !xfalse

false

Iteration	1

62

start

end

x = !xfalse

false

false

Iteration	1

63

start

end

x = !xtrue

false

false

Iteration	2

64

start

end

x = !xtrue

false

true

Iteration	2

65

start

end

x = !xfalse

false

true

Iteration	3

66

start

end

x = !xfalse

false

false

Iteration	3

67

start

end

x = !xtrue

false

false

Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever

68

false

true

false

true

false

...

Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever

• How	can	we	fix	this?

69

false

true

false

true

false

...

Monotone	transfer	functions

• A	transfer	function	f is	monotone iff
if	x	⊑ y,	then	f(x)	⊑ f(y)

• Intuitively,	if	you	know	less	information	about	a	
program	point,	you	can't	“gain	back”	more	
information	about	that	program	point

• Many	transfer	functions	are	monotone,	including	
those	for	liveness	and	constant	propagation

• Note:	Monotonicity	does	notmean	that	x	⊑ f(x)
– (This	is	a	different	property	called	extensivity)

70

Liveness	and	monotonicity

• A	transfer	function	f is	monotone iff
if	x	⊑ y,	then	f(x)	⊑ f(y)

• Recall	our	transfer	function	for	a	=	b	+	c	is
– fa	=	b	+	c(V)	=	(V	– {a})	∪ {b,	c}

• Recall	that	our	join	operator	is	set	union	
and	induces	an	ordering	relationship

X	⊑ Y	iff X	⊆Y
• Is	this	monotone?

71

Is	constant	propagation	monotone?
• A	transfer	function	f is	monotone iff

if	x	⊑y,	then	f(x)	⊑ f(y)
• Recall	our	transfer	functions

– fx=k(V)	=	V[x↦k]	(update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V[x↦Not-a-Constant]	(assign	Not-a-
Constant)

• Is	this	monotone?

72Undefined

0-1-2 1 2

Not-a-constant

The	grand	result

• Theorem: A	dataflow	analysis	with	a	finite-
height	semilattice and	family	of	monotone	
transfer	functions always	terminates

• Proof	sketch:
– The	join	operator	can	only	bring	values	up
– Transfer	functions	can	never	lower	values	back	
down	below	where	they	were	in	the	past	
(monotonicity)

– Values	cannot	increase	indefinitely	(finite	height)

73

An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a ⨆ b)	=	f(a)	⨆ f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	
the	fixed-point	solution	is	the	solution	that	
would	be	computed	by	joining	results	from	all	
(potentially	infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	ignore	program	conditions

74

An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a ⨆ b)	=	f(a)	⨆ f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	the	
fixed-point	solution	is	equal	to	the	solution	
computed	by	joining	results	from	all	(potentially	
infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	pretend	all	control-flow	paths	can	be	
executed	by	the	program

• Which	analyses	use	distributive	functions?

75

Loop	optimizations

• Most	of	a	program’s	computations	are	done	inside	
loops
– Focus	optimizations	effort	on	loops

• The	optimizations	we’ve	seen	so	far	are	independent	of	
the	control	structure

• Some	optimizations	are	specialized	to	loops
– Loop-invariant	code	motion
– (Strength	reduction	via	induction	variables)

• Require	another	type	of	analysis	to	find	out	where	
expressions	get	their	values	from
– Reaching	definitions

• (Also	useful	for	improving	register	allocation)

76

Loop	invariant	computation

77

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

Loop	invariant	computation

78

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

t*4	and	y+z
have	same	value	on	
each	iteration

Code	hoisting

79

x < w

endx = x + 1

start

y = …
t = …
z = …
y = t * 4
w = y + z

What	reasoning	did	we	use?

80

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

y	is	defined	inside	loop	but	it	
is	loop	invariant	since	t*4	is	
loop-invariant

Both	t	and	z	are	defined	
only	outside	of	loop

constants	are	trivially	
loop-invariant

What	about	now?

81

y	=	t	*	4
x	<	y	+	z

endx	=	x	+	1
t	=	t	+	1

start

y	=	…
t	=	…
z	=	…

Now	t	is	not	loop-invariant	
and	so	are	t*4	and	y

Loop-invariant	code	motion

• d:	t	=	a1 op	a2
– d is	a	program	location

• a1 op	a2	loop-invariant (for	a	loop	L)	if	computes	the	
same	value	in	each	iteration
– Hard	to	know	in	general

• Conservative	approximation
– Each	ai is	a	constant,	or
– All	definitions	of	ai that	reach	d are	outside	L,	or
– Only	one	definition	of	of ai reaches	d,	and	is	loop-invariant	

itself
• Transformation:	hoist	the	loop-invariant	code	outside	

of	the	loop

82

Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined

83

Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined	

• Direction: Forward
• Domain: sets	of	program	locations	that	are	definitions	`
• Join	operator: union
• Transfer	function:

fd:	a=b	op	c(RD) =	(RD	- defs(a))∪ {d}
fd:	not-a-def(RD) =	RD

– Where	defs(a)	is	the	set	of	locations	defining	a (statements	of	the	
form	a=...)

• Initial	value: {}

84

Reaching	definitions	analysis

85

d4: y = t * 4

d4:x < y + z

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end
{}

Reaching	definitions	analysis

86

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end
{}

Initialization

87

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

Iteration	1

88

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

{}

Iteration	1

89

d4: y = t * 4

d4:x < y + z

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{}

{}

{}

Iteration	2

90

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration	2

91

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}

Iteration	2

92

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}

Iteration	2

93

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration	3

94

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}

Iteration	3

95

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration	4

96

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration	4

97

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}

Iteration	4

98

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration	5

99

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Iteration	6

100

end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

Which	expressions	are	loop	invariant?

101

t	is	defined	only	in	
d2	– outside	of	loop

z	is	defined	only	in	
d3	– outside	of	loop

y	is	defined	only	in	d4	– inside	
of	loop	but	depends	on	t	and	
4,	both	loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{d2, d3, d4, d5}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x	is	defined	only	in	d5	–
inside	of	loop	so	is	not	a	
loop-invariant

Inferring	loop-invariant	
expressions

• For	a	statement	s of	the	form	t	=	a1 op	a2
• A	variable	ai is	immediately	loop-invariant	if	all	
reaching	definitions	IN[s]={d1,…,dk}	for	ai are	
outside	of	the	loop

• LOOP-INV	=	immediately	loop-invariant	variables	
and	constants
LOOP-INV	=	LOOP-INV	4 {x	|	d:	x	=	a1 op	a2, d	is	in	
the	loop,	and	both	a1 and	a2	are	in	LOOP-INV}
– Iterate	until	fixed-point

• An	expression	is	loop-invariant	if	all	operands	are	
loop-invariants

102

Computing	LOOP-INV

103

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{T}

Computing	LOOP-INV

104

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t}

Computing	LOOP-INV

105

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}

Computing	LOOP-INV

106

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}

Computing	LOOP-INV

107

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}

108

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}
LOOP-INV	=	{t,	z}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

Computing	LOOP-INV

Computing	LOOP-INV

109

d4:	y	=	t	*	4

x	<	y	+	z	 end

d5:	x	=	x	+	1

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

LOOP-INV	=	{t,	z,	y}

Induction	variables

110

while (i < x) {
j = a + 4 * i
a[j] = j
i = i + 1

}
i is	incremented	by	a	loop-
invariant	expression	on	each	
iteration	– this	is	called	an	
induction	variable

j	is	a	linear	function	of	
the	induction	variable	
with	multiplier	4

Strength-reduction

111

j = a + 4 * i
while (i < x) {

j = j + 4
a[j] = j
i = i + 1

}

Prepare	initial	
value

Increment	by	
multiplier

Compilation
0368-3133
Lecture	10b

Register	Allocation
Noam	Rinetzky

112

What	is	a	Compiler?

113

Registers

• Dedicated	memory	locations	that
– can	be	accessed	quickly,
– can	have	computations	performed	on	them,	and

Registers

• Dedicated	memory	locations	that
– can	be	accessed	quickly,
– can	have	computations	performed	on	them,	and

• Usages
– Operands	of	instructions
– Store	temporary	results
– Can	(should)	be	used	as	loop	indexes	due	to	frequent	
arithmetic	operation	

– Used	to	manage	administrative	info	
• e.g.,	runtime	stack

Register	allocation

• Number	of	registers	is	limited

• Need	to	allocate them	in	a	clever	way
– Using	registers	intelligently	is	a	critical	step	in	
any	compiler
• A	good	register	allocator	can	generate	code	orders	
of	magnitude	better	than	a	bad	register	allocator

Register	Allocation:	IR

117

Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target	code

(executable)

Simple	approach

• Problem: program	execution	very	inefficient–
moving	data	back	and	forth	between	memory	
and	registers

x	=	y	+	z

mov 16(%ebp),	%eax
mov 20(%ebp),	%ebx
add	%ebx,	%eax
mov %eax,	24(%ebp)

• Straightforward	solution:
• Allocate	each	variable	in	activation	record
• At	each	instruction,	bring	values	needed	into	
registers,	perform	operation,	then	store	result	to	
memory

Simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• assume	that	we	have	all	registers	available	for	
our	use
– Ignore	registers	allocated	for	stack	management
– Treat	all	registers	as	general-purpose

Simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem

• ST mem, reg
• OP reg,reg,reg (*)

Fixed	number	of	
Registers!

Register	allocation

• In	TAC,	there	is	an	unlimited	number	of	
variables	(temporaries)

• On	a	physical	machine	there	is	a	small	number	
of	registers:
– x86 has	4 general-purpose	registers	and	a	number	
of	specialized	registers

– MIPS has	24 general-purpose	registers	and	8
special-purpose	registers

• Register	allocation is	the	process	of	assigning	
variables	to	registers	and	managing	data	
transfer	in	and	out	of	registers

simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• We	will	assume	that	we	have	all	registers	
available	for	any	usage
– Ignore	registers	allocated	for	stack	management
– Treat	all	registers	as	general-purpose

Fixed	number	of	
Registers!

Plan

• Goal:	Reduce	number	of	temporaries	
(registers)
– Machine-agnostic	optimizations

• Assume	unbounded	number	of	registers

– Machine-dependent	optimization
• Use	at	most	K	registers
• K	is	machine	dependent	

Sethi-Ullman translation

• Algorithm	by	Ravi	Sethi and	Jeffrey	D.	Ullman
to	emit	optimal	TAC
– Minimizes	number	of	temporaries	for	a	single	
expression

Generating	Compound	Expressions
• Use	registers	to	store	temporaries

– Why	can	we	do	it?

• Maintain	a	counter	for	temporaries	in	c
• Initially:	c	=	0
• cgen(e1 op e2)	=	{

Let	A	=	cgen(e1)
c	=	c	+	1
Let	B	=	cgen(e2)
c	=	c	+	1
Emit(_tc =	A	op B;)	//	_tc is	a	register
Return	_tc

}

Why	
Naïve?	

Improving	cgen for	expressions

• Observation	– naïve	translation	needlessly	generates	
temporaries	for	leaf	expressions

• Observation	– temporaries	used	exactly	once
– Once	a	temporary	has	been	read	it	can	be	reused	for	

another	sub-expression
• cgen(e1 op e2)	=	{

Let	_t1	=	cgen(e1)
Let	_t2	=	cgen(e2)
Emit(_t1	=_t1	op _t2;)
Return	_t1

}
• Temporaries	cgen(e1)	can	be	reused	in	cgen(e2)

Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees
– Basic	blocks

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(whole	program)

Sethi-Ullman translation

• Algorithm	by	Ravi	Sethi and	Jeffrey	D.	Ullman
to	emit	optimal	TAC
– Minimizes	number	of	temporaries	for	a	single	
expression

Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Generalizations

• More	than	two	arguments	for	operators
– Function	calls

• Multiple	effected	registers
– Multiplication

• Spilling	
– Need	more	registers	than	available

• Register/memory	operations

Simple	SpillingMethod

• Heavy	tree	– Needs	more	registers	than	
available

• A	“heavy”	tree	contains	a	“heavy”	subtree
whose	dependents	are	“light”

• Simple	spilling
– Generate	code	for	the	light	tree
– Spill	the	content	into	memory	and	replace	
subtree by	temporary

– Generate	code	for	the	resultant	tree

Example	(optimized):	x:=b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Example	(spilled):	x	:=	b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c

Example:	b*b-4*a*c

-

*

b b

*

4 *

a c

Example	(simple):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 2

3

5 6

74

8

9

Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Spilling

• Even	an	optimal	register	allocator	can	
require	more	registers	than	available

• Need	to	generate	code	for	every	correct	
program

• The	compiler	can	save	temporary	results
– Spill	registers	into	temporaries
– Load	when	needed

• Many	heuristics	exist

Simple	Spilling	Method

• Heavy	tree	– Needs	more	registers	than	
available

• A	`heavy’ tree	contains	a	`heavy’ subtree
whose	dependents	are	‘light’

• Generate	code	for	the	light	tree
• Spill	the	content	into	memory	and	replace	
subtree by	temporary

• Generate	code	for	the	resultant	tree

Spilling

• Even	an	optimal	register	allocator	can	
require	more	registers	than	available

• Need	to	generate	code	for	every	correct	
program

• The	compiler	can	save	temporary	results
– Spill	registers	into	temporaries
– Load	when	needed

• Many	heuristics	exist

Simple	approach

• Problem: program	execution	very	inefficient–
moving	data	back	and	forth	between	memory	
and	registers

x	=	y	+	z

mov 16(%ebp),	%eax
mov 20(%ebp),	%ebx
add	%ebx,	%eax
mov %eax,	24(%ebx)

• Straightforward	solution:
• Allocate	each	variable	in	activation	record
• At	each	instruction,	bring	values	needed	into	
registers,	perform	operation,	then	store	result	to	
memory

Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees	(tree-local)
– Basic	blocks	(block-local)

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(global	register	allocation)

Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3

Example	(spilled):	x	:=	b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c

Simple	Spilling	Method

Register	Memory	Operations

• Add_Mem X,	R1
• Mult_Mem X,	R1
• No	need	for	registers	to	store	right	
operands		

Hidden	Registers

Example:	b*b-4*a*c

-

b b 4

a c

0 1

1

0 1

10

1

2

Mult_Mem Mult_Mem

Mult_Mem

Can	We	do	Better?

• Yes:	Increase	view	of	code
– Simultaneously	allocate	registers	for	multiple	
expressions

• But:	Lose	per	expression	optimality	
– Works	well	in	practice

Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees
– Basic	blocks

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(whole	program)

Basic	Blocks
• basic	block is	a	sequence	of	instructions	with

– single	entry	(to	first	instruction),	no	jumps	to	the	middle	
of	the	block

– single	exit	(last	instruction)
– code	execute	as	a	sequence	from	first	instruction	to	last	
instruction	without	any	jumps

• edge	from	one	basic	block	B1	to	another	block	B2	
when	the	last	statement	of	B1	may	jump	to	B2

control	flow	graph

• A	directed	graph	G=(V,E)
• nodes	V	=	basic	blocks
• edges	E	=	control	flow

– (B1,B2)	Î E	when	control	from	B1	
flows	to	B2

• Leaders-based	construction
– Target	of	jump	instructions
– Instructions	following	jumps

B1

B2t1 :=	4	*	i
t2 :=	a	[t1]
t3 :=	4	*	i
t4 :=	b	[t3]
t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
t7 :=	i	+	1
i	:=	t7
if	i	<=	20	goto B2

prod	:=	0
i	:=	1

B1

B2

…

…

False

True

control	flow	graph

• A	directed	graph	G=(V,E)
• nodes	V	=	basic	blocks
• edges	E	=	control	flow

– (B1,B2)	Î E	when	control	
from	B1	flows	to	B2

B1

B2t1 :=	4	*	i
t2 :=	a	[t1]
t3 :=	4	*	i
t4 :=	b	[t3]
t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
t7 :=	i	+	1
i	:=	t7
if	i	<=	20	goto B2

prod	:=	0
i	:=	1

B1

B2

…

…

AST	for	a	Basic	Block
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Dependency	graph{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Simplified	Data	
Dependency	Graph

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Pseudo	Register	Target	Code

Question:	Why	“y”?
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

y,		dead or	alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

x,		dead or	alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0;
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0;

False True

…

Another	Example

False

B1

B2 B3

B4

True

t1 :=	4	*	i
t2 :=	a	[t1]
if	t2 <=	20	goto B3

t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
goto B4

t7 :=	i	+	1
i	:=	t2
Goto B5

t3 :=	4	*	i
t4 :=	b	[t3]
goto B4

B1

B2

B3

B4

…

…

Creating	Basic	Blocks

• Input:		A	sequence	of	three-address	statements
• Output:		A	list	of	basic	blocks	with	each	three-address	

statement	in	exactly	one	block
• Method

– Determine	the	set	of	leaders (first	statement	of	a	block)
• The	first	statement	is	a	leader
• Any	statement	that	is	the	target	of	a	jump	is	a	leader
• Any	statement	that	immediately	follows	a	jump	is	a	leader

– For	each	leader,	its	basic	block	consists	of	the	leader	
and	all	statements	up	to	but	not	including	the	next	
leader	or	the	end	of	the	program

example
1) i	=	1
2) j	=1
3) t1	=	10*I
4) t2	=	t1	+	j
5) t3	=	8*t2
6) t4	=	t3-88
7) a[t4]	=	0.0
8) j	=	j	+	1
9) if	j	<=	10	goto (3)
10) i=i+1
11) if	i	<=	10	goto (2)
12) i=1
13) t5=i-1
14) t6=88*t5
15) a[t6]=1.0
16) i=i+1
17) if	I	<=10	goto (13)

i	=	1

j	=	1

t1	=	10*I
t2	=	t1	+	j
t3	=	8*t2
t4	=	t3-88
a[t4]	=	0.0
j	=	j	+	1

if	j	<=	10	goto B3

i=i+1
if	i	<=	10	goto B2

i	=	1

t5=i-1
t6=88*t5
a[t6]=1.0
i=i+1

if	I	<=10	goto B6

B1

B2

B3

B4

B5

B6

for	i	from	1	to	10	
do
for	j	from	1	to	10	
do
a[i,	j]	=	0.0;

for	i	from	1	to	10
do
a[i,	i]	=	1.0;

source
IR CFG

Example:	Code	Block

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Example:	Basic	Block

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

AST	of	the	Example
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Optimized	Code	(gcc)

{

int n;

n := a + 1;

x := b + n * n + c;

n := n + 1;

y := d * n;

}

Register	Allocation	for	B.B.

• Dependency	graphs	for	basic	blocks
• Transformations	on	dependency	graphs
• From	dependency	graphs	into	code

– Instruction	selection	
• linearizations of	dependency	graphs

– Register	allocation
• At	the	basic	block	level

Dependency	graphs
• TAC	imposes	an	order	of	execution

– But	the	compiler	can	reorder	assignments	as	
long	as	the	program	results	are	not	changed

• Define	a	partial	order	on	assignments
– a	<	b	Û a	must	be	executed	before	b
– Represented	as	a	directed	graph

• Nodes	are	assignments
• Edges	represent	dependency

– Acyclic	for	basic	blocks

Running	Example

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}

Sources	of	dependency

• Data	flow	inside	expressions
– Operator	depends	on	operands
– Assignment	depends	on	assigned	expressions

• Data	flow	between	statements
– From	assignments	to	their	use

– Pointers	complicate	dependencies

Sources	of	dependency

• Order	of	subexpresion evaluation	is	
immaterial
– As	long	as	inside	dependencies	are	respected

• The	order	of	uses	of	a	variable	X	are	
immaterial	as	long	as:
– X	is	used	between	dependent	assignments
– Before	next	assignment	to	X

Creating	Dependency	Graph	
from	AST

• Nodes	AST	becomes	nodes	of	the	graph
• Replaces	arcs	of	AST	by	dependency	arrows

– Operator	® Operand
– Create	arcs	from	assignments	to	uses
– Create	arcs	between	assignments	of	the	same	
variable

• Select	output	variables	(roots)
• Remove	;	nodes	and	their	arrows

Running	Example

Dependency	Graph	
Simplifications

• Short-circuit	assignments
– Connect	variables	to	assigned	expressions
– Connect	expression	to	uses

• Eliminate	nodes	not	reachable	from	roots

Running	Example

Cleaned-Up	Data	Dependency	Graph

Common	Subexpressions

• Repeated	subexpressions
• Examples
x	=	a	*	a		+			2	*	a	*	b	+	b	*	b;
y	=	a	*	a		– 2	*	a	*	b	+	b	*	b;
n[i]	:=	n[i]	+m[i]

• Can	be	eliminated	by	the	compiler
– In	the	case	of	basic	blocks	rewrite	the	DAG

From	Dependency	Graph	into	Code
• Linearize	the	dependency	graph

– Instructions	must	follow	dependency

• Many	solutions	exist
• Select	the	one	with	small	runtime	cost
• Assume	infinite	number	of	registers

– Symbolic	registers
– Assign	registers	later	

• May	need	additional	spill

– Possible	Heuristics
• Late	evaluation
• Ladders

Pseudo	Register	Target	Code

Non	optimized	vs Optimized	Code

{

int n;

n := a + 1;

x := b + n * n + c;

n := n + 1;

y := d * n;

}

Register	Allocation

• Maps	symbolic	registers	into	physical	
registers
– Reuse	registers	as	much	as	possible
– Graph	coloring	(next)

• Undirected	graph
• Nodes	=	Registers	(Symbolic	and	real)
• Edges	=	Interference
• May	require	spilling

Register	Allocation	for	Basic	Blocks

• Heuristics	for	code	generation	of	basic	
blocks

• Works	well	in	practice
• Fits	modern	machine	architecture
• Can	be	extended	to	perform	other	tasks

– Common	subexpression	elimination

• But	basic	blocks	are	small
• Can	be	generalized	to	a	procedure

The	End

