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IR	Optimization

• Making	code	“better”
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Overview	of	IR	optimization

• Formalisms	and	Terminology
– Control-flow	graphs
– Basic	blocks

• Local	optimizations
– Speeding	up	small	pieces	of	a	procedure

• Global	optimizations
– Speeding	up	procedure	as	a	whole

• The	dataflow	framework
– Defining	and	implementing	a	wide	class	of	
optimizations

4



Program	Analysis

• In	order	to	optimize	a	program,	the	
compiler	has	to	be	able	to	reason	about	the	
properties	of	that	program

• An	analysis	is	called	sound if	it	never	
asserts	an	incorrect	fact	about	a	program

• All	the	analyses	we	will	discuss	in	this	class	
are	sound
– (Why?)
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Visualizing	IR
main:

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_L0:
_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;
c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

_L1:
Push a;
Call _PrintInt;

_tmp0 = Call _ReadInteger;
a = _tmp0;
_tmp1 = Call _ReadInteger;
b = _tmp1;

_tmp2 = 0;
_tmp3 = b == _tmp2;
_tmp4 = 0;
_tmp5 = _tmp3 == _tmp4;
IfZ _tmp5 Goto _L1;

c = a;
a = b;
_tmp6 = c % a;
b = _tmp6;
Goto _L0;

Push a;
Call _PrintInt;

start

end 6



Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b						
…
v2	=	a	op	b						

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b
…
v2	=	v1

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations
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Common	Subexpression	Elimination

• If	we	have	two	variable	assignments
v1	=	a	op	b					[or:		v1	=	a]
…
v2	=	a	op	b					[or:		v2	=	a]	

• and	the	values	of	v1,	a,	and	b	have	not	changed	
between	the	assignments,	rewrite	the	code	as
v1	=	a	op	b					[or:		v1	=	a]	
…
v2	=	v1												

• Eliminates	useless	recalculation
• Paves	the	way	for	later	optimizations
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Copy	Propagation

• If	we	have	a	variable	assignment
v1	=	v2
then	as	long	as	v1	and	v2	are	not	
reassigned,	we	can	rewrite	expressions	of	
the	form
a	=	…	v1	…
as
a	=	…	v2	…
provided	that	such	a	rewrite	is	legal
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Dead	Code	Elimination

• An	assignment	to	a	variable	v	is	called	dead
if	the	value	of	that	assignment	is	never	
read	anywhere

• Dead	code	elimination	removes	dead	
assignments	from	IR

• Determining	whether	an	assignment	is	
dead	depends	on	what	variable	is	being	
assigned	to	and	when	it's	being	assigned
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Abstract	Interpretation

• Theoretical	foundations	of	program	
analysis

• Cousot and	Cousot 1977

• Abstract	meaning	of	programs
– Executed	at	compile	time	

11



Another	view	of	local	
optimization

• In	local	optimization,	we	want	to	reason	
about	some	property	of	the	runtime	
behavior	of	the	program

• Could	we	run	the	program	and	just	watch	
what	happens?

• Idea:	Redefine	the	semantics	of	our	
programming	language	to	give	us	
information	about	our	analysis
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Assigning	new	semantics

• Example:	Available	Expressions
• Redefine	the	statement	a	=	b	+	c	to	mean	
“a	now	holds	the	value	of	b	+	c,	and	any	
variable	holding	the	value	a	is	now	invalid”

• Run	the	program	assuming	these	new	
semantics

• Treat	the	optimizer	as	an	interpreter	for	
these	new	semantics
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Join	semilattices

• A	join	semilattice	is	a	ordering	defined	on	a	set	of	
elements

• Any	two	elements	have	some	join	that	is	the	smallest	
element	larger	than	both	elements

• There	is	a	unique	bottom	element,	which	is	smaller	
than	all	other	elements

• Intuitively:
– The	join	of	two	elements	represents	combining	information	

from	two	elements	by	an	overapproximation
• The	bottom	element	represents	“no	information	yet”	or	

“the	least	conservative	possible	answer”
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Join	semilattices	and	ordering
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}
Least	precise

Most	precise



Formal	definitions

• A	join	semilattice	is	a	pair	(V,	⨆),	where
• V	is	a	domain	of	elements
• ⨆ is	a	join	operator	that	is

– commutative:	x	⨆ y	=	y	⨆ x
– associative:	(x	⨆ y)	⨆ z	=	x	⨆ (y	⨆ z)
– idempotent:	x	⨆ x	=	x

• If	x	⨆ y	=	z,	we	say	that	z	is	the	join
or	(least	upper	bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	⊥ such	that	⊥ ⨆ x	=	x	for	all	x
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Join	semilattices	and	orderings

• Every	join	semilattice	(V,	⨆)	induces	an	
ordering	relationship	⊑ over	its	elements

• Define	x	⊑ y	iff	x	⨆ y	=	y
• Need	to	prove

– Reflexivity:	x	⊑ x
– Antisymmetry:	If	x	⊑ y	and	y	⊑ x,	then	x	=	y
– Transitivity:	If	x	⊑ y	and	y	⊑ z,	then	x	⊑ z
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A	general	framework

• A	global	analysis	is	a	tuple	(D,	V,	⊑,	F,	I),	where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,	not	
the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values
– ⨆ is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	f	:	Và V
– I is	an	initial	value

• The	only	difference	from	local	analysis	is	the	
introduction	of	the	join	operator
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Running	global	analyses

• Assume	that	(D,	V,	⨆,	F,	I)	is	a	forward	analysis
• Set	OUT[s]	=	⊥ for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
p1,	p2,	…	,	pn:
• Set	IN[s]	=	OUT[p1]	⨆ OUT[p2]	⨆ …	⨆ OUT[pn]
• Set	OUT[s]	=	fs (IN[s])

• The	order	of	this	iteration	does	not	matter
– This	is	sometimes	called	chaotic	iteration
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Global	constant	propagation

• Constant	propagation	is	an	optimization	
that	replaces	each	variable	that	is	known	to	
be	a	constant	value	with	that	constant

• An	elegant	example	of	the	dataflow	
framework
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Defining	a	join	operator
• The	join	of	any	two	different	constants	is	Not-a-Constant

– (If	the	variable	might	have	two	different	values	on	entry	to	a	
statement,	it	cannot	be	a	constant)

• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-
Constant
– (If	on	some	path	the	value	is	known	not	to	be	a	constant,	then	on	

entry	to	a	statement	its	value	can't	possibly	be	a	constant)
• The	join	of	Undefined and	any	other	value	is	that	other	value

– (If	x has	no	value	on	some	path	and	does	have	a	value	on	some	
other	path,	we	can	just	pretend	it	always	had	the	assigned	value)
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A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):
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Undefined

0-1-2 1 2 ......

Not-a-constant

The lattice is infinitely wide



A	semilattice	for	constant	propagation
• One	possible	semilattice	for	this	analysis	is	
shown	here	(for	each	variable):
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Undefined

0-1-2 1 2 ......

Not-a-constant

• Note:
• The	join	of	any	two	different	constants	is	Not-a-Constant
• The	join	of	Not	a	Constant	and	any	other	value	is	Not-a-Constant
• The	join	of	Undefined and	any	other	value	is	that	other	value



Global	constant	propagation

24

exit x = 4;

z = x;

w = x;

y = x; z = y;

x = 6;entry



Global	constant	propagation

25

exit x = 4;
Undefined

z = x;
Undefined

w = x;

y = x; z = y;

x = 6;
entry



Global	constant	propagation

26

exit
y=w=6 
x = 4;
x=4, y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = x;
x=y=w=6

x=6
y = x;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Global	analysis
reached	fixpoint



Global	constant	propagation
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exit
y=w=6
x = 4;
y=w=6 

y=w=6
z = x;
y=w=6

x=6,y=6
w = 6;
x=y=w=6

x=6
y = 6;
x=6,y=6

x = 6
z = y;
x = 6

Undefined
x = 6;
x = 6

entry
Undefined

Why	y=6?



Dataflow	for	constant	
propagation

• Direction:	Forward
• Semilattice:	Varsà {Undefined,	0,	1,	-1,	2,	-2,	…,	
Not-a-Constant}
– Join	mapping	for	variables	point-wise
{x↦1,y	↦ 1,z ↦ 1}	⨆ {x ↦ 1,y ↦ 2,z ↦ Not-a-Constant}	=	
{x ↦ 1,y	↦ Not-a-Constant,z ↦ Not-a-Constant}

• Transfer	functions:
– fx=k(V)	=	V|x ↦ k (update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V|x ↦ Not-a-Constant (assign	Not-a-Constant)

• Initial	value:	x	is	Undefined
– (When	might	we	use	some	other	value?)
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Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Given	this,	how	do	we	know	the	analyses	
will	eventually	terminate?
– In	general,	we	don‘t
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Terminates?
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Liveness	Analysis

• A	variable	is	live at	a	point	in	a	program	if	
later	in	the	program	its	value	will	be	read	
before	it	is	written	to	again
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Join	semilattice	definition

• A	join	semilattice	is	a	pair	(V,	⨆),	where
• V	is	a	domain	of	elements
• ⨆ is	a	join	operator	that	is

– commutative:	x	⨆ y	=	y	⨆ x
– associative:	(x	⨆ y)	⨆ z	=	x	⨆ (y	⨆ z)
– idempotent:	x	⨆ x	=	x

• If	x	⨆ y	=	z,	we	say	that	z	is	the	join
or	(Least	Upper	Bound)	of	x	and	y

• Every	join	semilattice	has	a	bottom	element	
denoted	⊥ such	that	⊥ ⨆ x	=	x	for	all	x
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Partial	ordering	induced	by	join

• Every	join	semilattice	(V,	⨆)	induces	an	
ordering	relationship	⊑ over	its	elements

• Define	x	⊑ y	iff	x	7 y	=	y
• Need	to	prove

– Reflexivity:	x	⊑ x
– Antisymmetry:	If	x	⊑ y	and	y	⊑ x,	then	x	=	y
– Transitivity:	If	x	⊑ y	and	y	⊑ z,	then	x	⊑ z
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A	join	semilattice	for	liveness

• Sets	of	live	variables	and	the	set	union	operation
• Idempotent:

– x	∪ x	=	x
• Commutative:

– x	∪ y	=	y	∪ x
• Associative:

– (x	∪ y)	∪ z	=	x	∪ (y	∪ z)
• Bottom	element:

– The	empty	set:	Ø∪ x	=	x
• Ordering	over	elements	=	subset	relation
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Join	semilattice	example	for	liveness
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{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Bottom	
element



Dataflow	framework

• A	global	analysis	is	a	tuple	(D,	V,	⨆,	F,	I),	
where
– D is	a	direction	(forward	or	backward)

• The	order	to	visit	statements	within	a	basic	block,
NOT the	order	in	which	to	visit	the	basic	blocks

– V is	a	set	of	values	(sometimes	called	domain)
– ⨆ is	a	join	operator	over	those	values
– F is	a	set	of	transfer	functions	fs :	Và V
(for	every	statement	s)
– I is	an	initial	value

36



Running	global	analyses
• Assume	that	(D,	V,	⨆,	F,	I)	is	a	forward	analysis
• For	every	statement	s	maintain	values	before		- IN[s]	- and	after	

- OUT[s]
• Set	OUT[s]	=	⊥ for	all	statements	s
• Set	OUT[entry]	=	I
• Repeat	until	no	values	change:

– For	each	statement	s with	predecessors
PRED[s]={p1,	p2,	…	,	pn}
• Set	IN[s]	=	OUT[p1]	⨆ OUT[p2]	⨆ …	⨆ OUT[pn]
• Set	OUT[s]	=	fs(IN[s])

• The	order	of	this	iteration	does	not	matter
– Chaotic	iteration
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Proving	termination

• Our	algorithm	for	running	these	analyses	
continuously	loops	until	no	changes	are	
detected

• Problem: how	do	we	know	the	analyses	will	
eventually	terminate?
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A	non-terminating	analysis

• The	following	analysis	will	loop	infinitely	on	
any	CFG	containing	a	loop:

• Direction: Forward
• Domain: ℕ
• Join	operator:	max
• Transfer	function: f(n) = n	+	1
• Initial	value:	0
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A	non-terminating	analysis

40

start

end

x ++



Initialization
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start

end

x ++
0

0



Fixed-point	iteration
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start

end

x ++
0

0



Choose	a	block
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start

end

x ++
0

0



Iteration	1
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start

end

x ++
0

0

0



Iteration	1

45

start

end

x ++
1

0

0



Choose	a	block
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start

end

x ++
1

0

0



Iteration	2

47

start

end

x ++
1

0

0



Iteration	2
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start

end

x ++
1

0

1



Iteration	2

49

start

end

x ++
2

0

1



Choose	a	block
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start

end

x ++
2

0

1



Iteration	3
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start

end

x ++
2

0

1



Iteration	3
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start

end

x ++
2

0

2



Iteration	3

53

start

end

x ++
3

0

2



Why	doesn’t	this	terminate?
• Values	can	increase	without	bound
• Note	that	“increase”	refers	to	the	lattice	
ordering,	not	the	ordering	on	the	natural	
numbers

• The	height of	a	semilattice	is	the	length	of	the	
longest	increasing	sequence	in	that	semilattice

• The	dataflow	framework	is	not	guaranteed	to	
terminate	for	semilattices	of	infinite	height

• Note	that	a	semilattice	can	be	infinitely	large	
but	have	finite	height
– e.g.	constant	propagation
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0

1

2

3

4

...



Height	of	a	lattice

• An	increasing	chain	is	a	sequence	of	elements
⊥⊑ a1 ⊑ a2 ⊑ …	⊑ ak
– The	length	of	such	a	chain	is	k

• The	height	of	a	lattice	is	the	length	of	the	maximal	
increasing	chain

• For	liveness	with	n program	variables:
– {}⊆{v1}	⊆ {v1,v2}	⊆ …	⊆ {v1,…,vn}

• For	available	expressions	it	is	the	number	of	
expressions	of	the	form	a=b	op	c
– For	n program	variables	and	m operator	types:mn3
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Another	non-terminating	
analysis

• This	analysis	works	on	a	finite-height	
semilattice,	but	will	not	terminate	on	
certain	CFGs:

• Direction: Forward
• Domain: Boolean	values	true and	false
• Join	operator:	Logical	OR
• Transfer	function:	Logical	NOT
• Initial	value:	false
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A	non-terminating	analysis

57

start

end

x = !x



A	non-terminating	analysis

58

start

end

x = !x



Initialization

59

start

end

x = !xfalse

false



Fixed-point	iteration

60

start

end

x = !xfalse

false



Choose	a	block

61

start

end

x = !xfalse

false



Iteration	1

62

start

end

x = !xfalse

false

false



Iteration	1

63

start

end

x = !xtrue

false

false



Iteration	2
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start

end

x = !xtrue

false

true



Iteration	2
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start

end

x = !xfalse

false

true



Iteration	3
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start

end

x = !xfalse

false

false



Iteration	3

67

start

end

x = !xtrue

false

false



Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever

68

false

true

false

true

false

...



Why	doesn’t	it	terminate?
• Values	can	loop	indefinitely
• Intuitively,	the	join	operator	keeps	pulling	
values	up

• If	the	transfer	function	can	keep	pushing	
values	back	down	again,	then	the	values	
might	cycle	forever

• How	can	we	fix	this?
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false

true

false

true

false

...



Monotone	transfer	functions

• A	transfer	function	f is	monotone iff
if	x	⊑ y,	then	f(x)	⊑ f(y)

• Intuitively,	if	you	know	less	information	about	a	
program	point,	you	can't	“gain	back”	more	
information	about	that	program	point

• Many	transfer	functions	are	monotone,	including	
those	for	liveness	and	constant	propagation

• Note:	Monotonicity	does	notmean	that	x	⊑ f(x)
– (This	is	a	different	property	called	extensivity)
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Liveness	and	monotonicity

• A	transfer	function	f is	monotone iff
if	x	⊑ y,	then	f(x)	⊑ f(y)

• Recall	our	transfer	function	for	a	=	b	+	c	is
– fa	=	b	+	c(V)	=	(V	– {a})	∪ {b,	c}

• Recall	that	our	join	operator	is	set	union	
and	induces	an	ordering	relationship

X	⊑ Y	iff X	⊆Y
• Is	this	monotone?
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Is	constant	propagation	monotone?
• A	transfer	function	f is	monotone iff

if	x	⊑y,	then	f(x)	⊑ f(y)
• Recall	our	transfer	functions

– fx=k(V)	=	V[x↦k]	(update	V	by	mapping	x	to	k)
– fx=a+b(V)	=	V[x↦Not-a-Constant]	(assign	Not-a-
Constant)

• Is	this	monotone?

72Undefined

0-1-2 1 2 ......

Not-a-constant



The	grand	result

• Theorem: A	dataflow	analysis	with	a	finite-
height	semilattice and	family	of	monotone	
transfer	functions always	terminates

• Proof	sketch:
– The	join	operator	can	only	bring	values	up
– Transfer	functions	can	never	lower	values	back	
down	below	where	they	were	in	the	past	
(monotonicity)

– Values	cannot	increase	indefinitely	(finite	height)
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An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a ⨆ b)	=	f(a)	⨆ f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	
the	fixed-point	solution	is	the	solution	that	
would	be	computed	by	joining	results	from	all	
(potentially	infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	ignore	program	conditions
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An	“optimality”	result

• A	transfer	function	f is	distributive	if
f(a ⨆ b)	=	f(a)	⨆ f(b)

for	every	domain	elements	a and	b
• If	all	transfer	functions	are	distributive	then	the	
fixed-point	solution	is	equal	to	the	solution	
computed	by	joining	results	from	all	(potentially	
infinite)	control-flow	paths
– Join	over	all	paths

• Optimal	if	we	pretend	all	control-flow	paths	can	be	
executed	by	the	program

• Which	analyses	use	distributive	functions?
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Loop	optimizations

• Most	of	a	program’s	computations	are	done	inside	
loops
– Focus	optimizations	effort	on	loops

• The	optimizations	we’ve	seen	so	far	are	independent	of	
the	control	structure

• Some	optimizations	are	specialized	to	loops
– Loop-invariant	code	motion
– (Strength	reduction	via	induction	variables)

• Require	another	type	of	analysis	to	find	out	where	
expressions	get	their	values	from
– Reaching	definitions

• (Also	useful	for	improving	register	allocation)
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Loop	invariant	computation

77

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …



Loop	invariant	computation

78

y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

t*4	and	y+z
have	same	value	on	
each	iteration



Code	hoisting

79

x < w

endx = x + 1

start

y = …
t = …
z = …
y = t * 4
w = y + z



What	reasoning	did	we	use?
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y = t * 4
x < y + z

endx = x + 1

start

y = …
t = …
z = …

y	is	defined	inside	loop	but	it	
is	loop	invariant	since	t*4	is	
loop-invariant

Both	t	and	z	are	defined	
only	outside	of	loop

constants	are	trivially	
loop-invariant



What	about	now?

81

y	=	t	*	4
x	<	y	+	z

endx	=	x	+	1
t	=	t	+	1

start

y	=	…
t	=	…
z	=	…

Now	t	is	not	loop-invariant	
and	so	are	t*4	and	y



Loop-invariant	code	motion

• d:	t	=	a1 op	a2
– d is	a	program	location

• a1 op	a2	loop-invariant (for	a	loop	L)	if	computes	the	
same	value	in	each	iteration
– Hard	to	know	in	general

• Conservative	approximation
– Each	ai is	a	constant,	or
– All	definitions	of	ai that	reach	d are	outside	L,	or
– Only	one	definition	of	of ai reaches	d,	and	is	loop-invariant	

itself
• Transformation:	hoist	the	loop-invariant	code	outside	

of	the	loop
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Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined
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Reaching	definitions	analysis
• A	definition	d:	t	=	…	reaches a	program	location	if	there	is	a	

path	from	the	definition	to	the	program	location,	along	which	
the	defined	variable	is	never	redefined	

• Direction: Forward
• Domain: sets	of	program	locations	that	are	definitions	`
• Join	operator: union
• Transfer	function:

fd:	a=b	op	c(RD) =	(RD	- defs(a))∪ {d}
fd:	not-a-def(RD) =	RD

– Where	defs(a)	is	the	set	of	locations	defining	a (statements	of	the	
form	a=...)

• Initial	value: {}
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Reaching	definitions	analysis
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d4: y = t * 4

d4:x < y + z 

d6: x = x + 1

d1: y = …

d2: t = …

d3: z = …

start

end
{}



Reaching	definitions	analysis
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

end
{}



Initialization
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}



Iteration	1
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{}

end
{}

{}



Iteration	1
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d4: y = t * 4

d4:x < y + z 

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{}

{}

{}



Iteration	2

90

d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}



Iteration	2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{}

{}



Iteration	2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{}

{}



Iteration	2
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}



Iteration	3
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{}



Iteration	3
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration	4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration	4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4}

{d2, d3, d4}

{d2, d3, d4, d5}



Iteration	4
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d4: y = t * 4

x < y + z end

d5: x = x + 1

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1, d2, d3, d4, d5}

{d2, d3, d4}

{}

{d1}

{d1, d2}

{d1, d2, d3}

{d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Iteration	5
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Iteration	6
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end

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d2, d3, d4, d5}

{d1}

{d1, d2}

{d1, d2, d3}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}



Which	expressions	are	loop	invariant?
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t	is	defined	only	in	
d2	– outside	of	loop

z	is	defined	only	in	
d3	– outside	of	loop

y	is	defined	only	in	d4	– inside	
of	loop	but	depends	on	t	and	
4,	both	loop-invariant

start

d1: y = …

d2: t = …

d3: z = …

{}

{}

{d1}

{d1, d2}

{d1, d2, d3}

end
{d2, d3, d4, d5}

d5: x = x + 1
{d2, d3, d4, d5}

{d2, d3, d4, d5}

d4: y = t * 4

x < y + z 

{d1, d2, d3, d4, d5}

{d2, d3, d4, d5}

{d2, d3, d4, d5}x	is	defined	only	in	d5	–
inside	of	loop	so	is	not	a	
loop-invariant



Inferring	loop-invariant	
expressions

• For	a	statement	s of	the	form	t	=	a1 op	a2
• A	variable	ai is	immediately	loop-invariant	if	all	
reaching	definitions	IN[s]={d1,…,dk}	for	ai are	
outside	of	the	loop

• LOOP-INV	=	immediately	loop-invariant	variables	
and	constants
LOOP-INV	=	LOOP-INV	4 {x	|	d:	x	=	a1 op	a2, d	is	in	
the	loop,	and	both	a1 and	a2	are	in	LOOP-INV}
– Iterate	until	fixed-point

• An	expression	is	loop-invariant	if	all	operands	are	
loop-invariants
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Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{T}



Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t}



Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}



Computing	LOOP-INV

106

end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}



Computing	LOOP-INV
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

(immediately)
LOOP-INV	=	{t,	z}
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end

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}
LOOP-INV	=	{t,	z}

d4:	y	=	t	*	4

x	<	y	+	z	

d5:	x	=	x	+	1

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

Computing	LOOP-INV



Computing	LOOP-INV
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d4:	y	=	t	*	4

x	<	y	+	z	 end

d5:	x	=	x	+	1

start

d1:	y	=	…

d2:	t	=	…

d3:	z	=	…

{}

{}

{d1,	d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2, d3, d4, d5}

{d1}

{d1,	d2}

{d1,	d2,	d3}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

{d2,	d3,	d4,	d5}

LOOP-INV	=	{t,	z,	y}



Induction	variables
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while (i < x) {
j = a + 4 * i
a[j] = j
i = i + 1

}
i is	incremented	by	a	loop-
invariant	expression	on	each	
iteration	– this	is	called	an	
induction	variable

j	is	a	linear	function	of	
the	induction	variable	
with	multiplier	4



Strength-reduction
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j = a + 4 * i
while (i < x) {

j = j + 4
a[j] = j
i = i + 1

}

Prepare	initial	
value

Increment	by	
multiplier



Compilation
0368-3133
Lecture	10b

Register	Allocation
Noam	Rinetzky

112



What	is	a	Compiler?

113



Registers

• Dedicated	memory	locations	that
– can	be	accessed	quickly,
– can	have	computations	performed	on	them,	and



Registers

• Dedicated	memory	locations	that
– can	be	accessed	quickly,
– can	have	computations	performed	on	them,	and

• Usages
– Operands	of	instructions
– Store	temporary	results
– Can	(should)	be	used	as	loop	indexes	due	to	frequent	
arithmetic	operation	

– Used	to	manage	administrative	info	
• e.g.,	runtime	stack



Register	allocation

• Number	of	registers	is	limited

• Need	to	allocate them	in	a	clever	way
– Using	registers	intelligently	is	a	critical	step	in	
any	compiler
• A	good	register	allocator	can	generate	code	orders	
of	magnitude	better	than	a	bad	register	allocator



Register	Allocation:	IR

117

Source	
code

(program)

Lexical
Analysis

Syntax	
Analysis

Parsing

AST Symbol
Table
etc.

Inter.
Rep.
(IR)

Code
Generation

Target	code

(executable)



Simple	approach

• Problem: program	execution	very	inefficient–
moving	data	back	and	forth	between	memory	
and	registers

x	=	y	+	z

mov 16(%ebp),	%eax
mov 20(%ebp),	%ebx
add	%ebx,	%eax
mov %eax,	24(%ebp)

• Straightforward	solution:
• Allocate	each	variable	in	activation	record
• At	each	instruction,	bring	values	needed	into	
registers,	perform	operation,	then	store	result	to	
memory



Simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• assume	that	we	have	all	registers	available	for	
our	use
– Ignore	registers	allocated	for	stack	management
– Treat	all	registers	as	general-purpose



Simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem

• ST mem, reg
• OP reg,reg,reg (*)

Fixed	number	of	
Registers!



Register	allocation

• In	TAC,	there	is	an	unlimited	number	of	
variables	(temporaries)

• On	a	physical	machine	there	is	a	small	number	
of	registers:
– x86 has	4 general-purpose	registers	and	a	number	
of	specialized	registers

– MIPS has	24 general-purpose	registers	and	8
special-purpose	registers

• Register	allocation is	the	process	of	assigning	
variables	to	registers	and	managing	data	
transfer	in	and	out	of	registers



simple	code	generation

• assume	machine	instructions	of	the	form
• LD reg, mem
• ST mem, reg
• OP reg,reg,reg (*)

• We	will	assume	that	we	have	all	registers	
available	for	any	usage
– Ignore	registers	allocated	for	stack	management
– Treat	all	registers	as	general-purpose

Fixed	number	of	
Registers!



Plan

• Goal:	Reduce	number	of	temporaries	
(registers)
– Machine-agnostic	optimizations

• Assume	unbounded	number	of	registers

– Machine-dependent	optimization
• Use	at	most	K	registers
• K	is	machine	dependent	



Sethi-Ullman translation

• Algorithm	by	Ravi	Sethi and	Jeffrey	D.	Ullman
to	emit	optimal	TAC
– Minimizes	number	of	temporaries	for	a	single	
expression



Generating	Compound	Expressions
• Use	registers	to	store	temporaries

– Why	can	we	do	it?

• Maintain	a	counter	for	temporaries	in	c
• Initially:	c	=	0
• cgen(e1 op e2)	=	{

Let	A	=	cgen(e1)
c	=	c	+	1
Let	B	=	cgen(e2)
c	=	c	+	1
Emit(	_tc =	A	op B;	)	//	_tc is	a	register
Return	_tc

}

Why	
Naïve?	



Improving	cgen for	expressions

• Observation	– naïve	translation	needlessly	generates	
temporaries	for	leaf	expressions

• Observation	– temporaries	used	exactly	once
– Once	a	temporary	has	been	read	it	can	be	reused	for	

another	sub-expression
• cgen(e1 op e2)	=	{

Let	_t1	=	cgen(e1)
Let	_t2	=	cgen(e2)
Emit(	_t1	=_t1	op _t2;	)
Return	_t1

}
• Temporaries	cgen(e1)	can	be	reused	in	cgen(e2)



Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees
– Basic	blocks

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(whole	program)



Sethi-Ullman translation

• Algorithm	by	Ravi	Sethi and	Jeffrey	D.	Ullman
to	emit	optimal	TAC
– Minimizes	number	of	temporaries	for	a	single	
expression



Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3



Generalizations

• More	than	two	arguments	for	operators
– Function	calls

• Multiple	effected	registers
– Multiplication

• Spilling	
– Need	more	registers	than	available

• Register/memory	operations



Simple	SpillingMethod

• Heavy	tree	– Needs	more	registers	than	
available

• A	“heavy”	tree	contains	a	“heavy”	subtree
whose	dependents	are	“light”

• Simple	spilling
– Generate	code	for	the	light	tree
– Spill	the	content	into	memory	and	replace	
subtree by	temporary

– Generate	code	for	the	resultant	tree



Example	(optimized):	x:=b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3



Example	(spilled):	x	:=	b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c



Example:	b*b-4*a*c

-

*

b b

*

4 *

a c



Example	(simple):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 2

3

5 6

74

8

9



Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3



Spilling

• Even	an	optimal	register	allocator	can	
require	more	registers	than	available

• Need	to	generate	code	for	every	correct	
program

• The	compiler	can	save	temporary	results
– Spill	registers	into	temporaries
– Load	when	needed

• Many	heuristics	exist



Simple	Spilling	Method

• Heavy	tree	– Needs	more	registers	than	
available

• A	`heavy’ tree	contains	a	`heavy’ subtree
whose	dependents	are	‘light’

• Generate	code	for	the	light	tree
• Spill	the	content	into	memory	and	replace	
subtree by	temporary

• Generate	code	for	the	resultant	tree



Spilling

• Even	an	optimal	register	allocator	can	
require	more	registers	than	available

• Need	to	generate	code	for	every	correct	
program

• The	compiler	can	save	temporary	results
– Spill	registers	into	temporaries
– Load	when	needed

• Many	heuristics	exist



Simple	approach

• Problem: program	execution	very	inefficient–
moving	data	back	and	forth	between	memory	
and	registers

x	=	y	+	z

mov 16(%ebp),	%eax
mov 20(%ebp),	%ebx
add	%ebx,	%eax
mov %eax,	24(%ebx)

• Straightforward	solution:
• Allocate	each	variable	in	activation	record
• At	each	instruction,	bring	values	needed	into	
registers,	perform	operation,	then	store	result	to	
memory



Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees	(tree-local)
– Basic	blocks	(block-local)

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(global	register	allocation)



Example	(optimized):	b*b-4*a*c

-

*

b b

*

4 *

a c

1 1

2

1 1

21

2

3



Example	(spilled):	x	:=	b*b-4*a*c

*

b b1 1

2 -

*

4 *

a c1 1

21

2

2

t7
1

t7 := b * b x := t7 – 4 * a * c



Simple	Spilling	Method



Register	Memory	Operations

• Add_Mem X,	R1
• Mult_Mem X,	R1
• No	need	for	registers	to	store	right	
operands		

Hidden	Registers



Example:	b*b-4*a*c

-

b b 4

a c

0 1

1

0 1

10

1

2

Mult_Mem Mult_Mem

Mult_Mem



Can	We	do	Better?

• Yes:	Increase	view	of	code
– Simultaneously	allocate	registers	for	multiple	
expressions

• But:	Lose	per	expression	optimality	
– Works	well	in	practice



Register	Allocation

• Machine-agnostic	optimizations
• Assume	unbounded	number	of	registers

– Expression	trees
– Basic	blocks

• Machine-dependent	optimization
• K	registers
• Some	have	special	purposes

– Control	flow	graphs	(whole	program)



Basic	Blocks
• basic	block is	a	sequence	of	instructions	with

– single	entry	(to	first	instruction),	no	jumps	to	the	middle	
of	the	block

– single	exit	(last	instruction)
– code	execute	as	a	sequence	from	first	instruction	to	last	
instruction	without	any	jumps

• edge	from	one	basic	block	B1	to	another	block	B2	
when	the	last	statement	of	B1	may	jump	to	B2



control	flow	graph

• A	directed	graph	G=(V,E)
• nodes	V	=	basic	blocks
• edges	E	=	control	flow

– (B1,B2)	Î E	when	control	from	B1	
flows	to	B2

• Leaders-based	construction
– Target	of	jump	instructions
– Instructions	following	jumps

B1

B2t1 :=	4	*	i
t2 :=	a	[	t1 ]
t3 :=	4	*	i
t4 :=	b	[	t3 ]
t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
t7 :=	i	+	1
i	:=	t7
if	i	<=	20	goto B2

prod	:=	0
i	:=	1

B1

B2

…

…

False

True



control	flow	graph

• A	directed	graph	G=(V,E)
• nodes	V	=	basic	blocks
• edges	E	=	control	flow

– (B1,B2)	Î E	when	control	
from	B1	flows	to	B2

B1

B2t1 :=	4	*	i
t2 :=	a	[	t1 ]
t3 :=	4	*	i
t4 :=	b	[	t3 ]
t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
t7 :=	i	+	1
i	:=	t7
if	i	<=	20	goto B2

prod	:=	0
i	:=	1

B1

B2

…

…



AST	for	a	Basic	Block
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Dependency	graph{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Simplified	Data	
Dependency	Graph

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Pseudo	Register	Target	Code



Question:	Why	“y”?
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0; 

False True

…



Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…



Question:	Why	“y”?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…



y,		dead or	alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0; 

False True

…



x,		dead or	alive?

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

y := 0; 
z := y + x;

False True

…

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

z := y + x;
y := 0; 

False True

…



Another	Example

False

B1

B2 B3

B4

True

t1 :=	4	*	i
t2 :=	a	[	t1 ]
if	t2 <=	20	goto B3

t5 :=	t2 *	t4
t6 :=	prod	+	t5
prod	:=	t6
goto B4

t7 :=	i	+	1
i	:=	t2
Goto B5

t3 :=	4	*	i
t4 :=	b	[	t3 ]
goto B4

B1

B2

B3

B4

…

…



Creating	Basic	Blocks

• Input:		A	sequence	of	three-address	statements
• Output:		A	list	of	basic	blocks	with	each	three-address	

statement	in	exactly	one	block
• Method

– Determine	the	set	of	leaders (first	statement	of	a	block)
• The	first	statement	is	a	leader
• Any	statement	that	is	the	target	of	a	jump	is	a	leader
• Any	statement	that	immediately	follows	a	jump	is	a	leader

– For	each	leader,	its	basic	block	consists	of	the	leader	
and	all	statements	up	to	but	not	including	the	next	
leader	or	the	end	of	the	program



example
1) i	=	1
2) j	=1
3) t1	=	10*I
4) t2	=	t1	+	j
5) t3	=	8*t2
6) t4	=	t3-88
7) a[t4]	=	0.0
8) j	=	j	+	1
9) if	j	<=	10	goto (3)
10) i=i+1
11) if	i	<=	10	goto (2)
12) i=1
13) t5=i-1
14) t6=88*t5
15) a[t6]=1.0
16) i=i+1
17) if	I	<=10	goto (13)

i	=	1

j	=	1

t1	=	10*I
t2	=	t1	+	j
t3	=	8*t2
t4	=	t3-88
a[t4]	=	0.0
j	=	j	+	1

if	j	<=	10	goto B3

i=i+1
if	i	<=	10	goto B2

i	=	1

t5=i-1
t6=88*t5
a[t6]=1.0
i=i+1

if	I	<=10	goto B6

B1

B2

B3

B4

B5

B6

for	i	from	1	to	10	
do
for	j	from	1	to	10	
do
a[i,	j]	=	0.0;

for	i	from	1	to	10
do
a[i,	i]	=	1.0;

source
IR CFG



Example:	Code	Block

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Example:	Basic	Block

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



AST	of	the	Example
{

int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Optimized	Code	(gcc)

{

int n;

n := a + 1;

x := b + n * n + c;

n := n + 1;

y := d * n;

}



Register	Allocation	for	B.B.

• Dependency	graphs	for	basic	blocks
• Transformations	on	dependency	graphs
• From	dependency	graphs	into	code

– Instruction	selection	
• linearizations of	dependency	graphs

– Register	allocation
• At	the	basic	block	level



Dependency	graphs
• TAC	imposes	an	order	of	execution

– But	the	compiler	can	reorder	assignments	as	
long	as	the	program	results	are	not	changed

• Define	a	partial	order	on	assignments
– a	<	b	Û a	must	be	executed	before	b
– Represented	as	a	directed	graph

• Nodes	are	assignments
• Edges	represent	dependency

– Acyclic	for	basic	blocks



Running	Example

{
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;

}



Sources	of	dependency

• Data	flow	inside	expressions
– Operator	depends	on	operands
– Assignment	depends	on	assigned	expressions

• Data	flow	between	statements
– From	assignments	to	their	use

– Pointers	complicate	dependencies



Sources	of	dependency

• Order	of	subexpresion evaluation	is	
immaterial
– As	long	as	inside	dependencies	are	respected

• The	order	of	uses	of	a	variable	X	are	
immaterial	as	long	as:
– X	is	used	between	dependent	assignments
– Before	next	assignment	to	X



Creating	Dependency	Graph	
from	AST

• Nodes	AST	becomes	nodes	of	the	graph
• Replaces	arcs	of	AST	by	dependency	arrows

– Operator	® Operand
– Create	arcs	from	assignments	to	uses
– Create	arcs	between	assignments	of	the	same	
variable

• Select	output	variables	(roots)
• Remove	;	nodes	and	their	arrows



Running	Example



Dependency	Graph	
Simplifications

• Short-circuit	assignments
– Connect	variables	to	assigned	expressions
– Connect	expression	to	uses

• Eliminate	nodes	not	reachable	from	roots



Running	Example



Cleaned-Up	Data	Dependency	Graph



Common	Subexpressions

• Repeated	subexpressions
• Examples
x	=	a	*	a		+			2	*	a	*	b	+	b	*	b;
y	=	a	*	a		– 2	*	a	*	b	+	b	*	b;
n[i]	:=	n[i]	+m[i]

• Can	be	eliminated	by	the	compiler
– In	the	case	of	basic	blocks	rewrite	the	DAG



From	Dependency	Graph	into	Code
• Linearize	the	dependency	graph

– Instructions	must	follow	dependency

• Many	solutions	exist
• Select	the	one	with	small	runtime	cost
• Assume	infinite	number	of	registers

– Symbolic	registers
– Assign	registers	later	

• May	need	additional	spill

– Possible	Heuristics
• Late	evaluation
• Ladders



Pseudo	Register	Target	Code



Non	optimized	vs Optimized	Code

{

int n;

n := a + 1;

x := b + n * n + c;

n := n + 1;

y := d * n;

}



Register	Allocation

• Maps	symbolic	registers	into	physical	
registers
– Reuse	registers	as	much	as	possible
– Graph	coloring	(next)

• Undirected	graph
• Nodes	=	Registers	(Symbolic	and	real)
• Edges	=	Interference
• May	require	spilling



Register	Allocation	for	Basic	Blocks

• Heuristics	for	code	generation	of	basic	
blocks

• Works	well	in	practice
• Fits	modern	machine	architecture
• Can	be	extended	to	perform	other	tasks

– Common	subexpression	elimination

• But	basic	blocks	are	small
• Can	be	generalized	to	a	procedure





The	End


