Compilation Lecture 10a

Abstract Interpretation Noam Rinetzky

1

Optimization points

IR Optimization

• Making code "better"

Overview of IR optimization

• Formalisms and Terminology

- Control-flow graphs
- Basic blocks
- Local optimizations
 - Speeding up small pieces of a procedure
- Global optimizations
 - Speeding up procedure as a whole
- The dataflow framework
 - Defining and implementing a wide class of optimizations

Program Analysis

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called **sound** if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
 - (Why?)

end

Common Subexpression Elimination

If we have two variable assignments
v1 = a op b

... v2 = a op b

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b

... v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

Common Subexpression Elimination

If we have two variable assignments
v1 = a op b [or: v1 = a]

... v2 = a op b [or: v2 = a]

 and the values of v1, a, and b have not changed between the assignments, rewrite the code as v1 = a op b [or: v1 = a]

v2 = v1

- Eliminates useless recalculation
- Paves the way for later optimizations

Copy Propagation

- If we have a variable assignment v1 = v2 then as long as v1 and v2 are not reassigned, we can rewrite expressions of the form
 - a = ... v1 ...

as

provided that such a rewrite is legal

Dead Code Elimination

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Abstract Interpretation

 Theoretical foundations of program analysis

• Cousot and Cousot 1977

Abstract meaning of programs
– Executed at compile time

Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

Assigning new semantics

- Example: Available Expressions
- Redefine the statement a = b + c to mean "a now holds the value of b + c, and any variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

Join semilattices

- A join semilattice is a ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
 - The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

Join semilattices and ordering

Formal definitions

- A join semilattice is a pair (V, ∐), where
- V is a domain of elements
- 📙 is a join operator that is
 - commutative: $x \sqcup y = y \sqcup x$
 - associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
 - idempotent: $x \sqcup x = x$
- If x ∐ y = z, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted ⊥ such that ⊥ ⊥ x = x for all x

Join semilattices and orderings

- Every join semilattice (V, ∐) induces an ordering relationship ⊑ over its elements
- Define $x \sqsubseteq y$ iff $x \bigsqcup y = y$
- Need to prove
 - Reflexivity: $x \sqsubseteq x$
 - Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y
 - Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

A general framework

- A global analysis is a tuple (D, V, \sqsubseteq , F, I), where
 - D is a direction (forward or backward)
 - The order to visit statements within a basic block, not the order in which to visit the basic blocks
 - V is a set of values
 - \sqcup is a join operator over those values
 - F is a set of transfer functions $f: \mathbf{V} \rightarrow \mathbf{V}$
 - I is an initial value
- The only difference from local analysis is the introduction of the join operator

Running global analyses

- Assume that (D, V, ∐, F, I) is a forward analysis
- Set OUT[s] = \perp for all statements s
- Set OUT[entry] = I
- Repeat until no values change:
 - For each statement s with predecessors
 - $p_1, p_2, ..., p_n$:
 - Set $IN[s] = OUT[p_1] \sqcup OUT[p_2] \sqcup ... \sqcup OUT[p_n]$
 - Set OUT[**s**] = f_s (IN[**s**])
- The order of this iteration does not matter
 - This is sometimes called chaotic iteration

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

Defining a join operator

- The join of any two different constants is **Not-a-Constant**
 - (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-a-Constant
 - (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of **Undefined** and any other value is that other value
 - (If x has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

A semilattice for constant propagation

• One possible semilattice for this analysis is shown here (for each variable):

The lattice is infinitely wide

A semilattice for constant propagation

• One possible semilattice for this analysis is shown here (for each variable):

- Note:
 - The join of any two different constants is **Not-a-Constant**
 - The join of Not a Constant and any other value is Not-a-Constant
 - The join of **Undefined** and any other value is that other value

Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars→ {Undefined, 0, 1, -1, 2, -2, ..., Not-a-Constant}
 - Join mapping for variables point-wise
 {x+1,y+1,z+1} ∐ {x+1,y+2,z+Not-a-Constant} =
 {x+1,y+Not-a-Constant,z+Not-a-Constant}
- Transfer functions:
 - $f_{\mathbf{x}=\mathbf{k}}(V) = V|_{x \mapsto k}$ (update V by mapping x to k)
 - $f_{x=a+b}(V) = V|_{x \mapsto Not-a-Constant}$ (assign Not-a-Constant)
- Initial value: x is Undefined
 - (When might we use some other value?)

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
 - In general, we don't

Terminates?

Liveness Analysis

• A variable is live at a point in a program if later in the program its value will be read before it is written to again

Join semilattice definition

- A join semilattice is a pair (V, ∐), where
- V is a domain of elements
- 📙 is a join operator that is
 - commutative: $x \sqcup y = y \sqcup x$
 - associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
 - idempotent: $x \sqcup x = x$
- If x ∐ y = z, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted ⊥ such that ⊥ □ x = x for all x

Partial ordering induced by join

- Every join semilattice (V, ∐) induces an ordering relationship ⊑ over its elements
- Define $x \sqsubseteq y$ iff $x \blacktriangleleft y = y$
- Need to prove
 - Reflexivity: $x \sqsubseteq x$
 - Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y
 - Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

 $-\mathbf{x} \cup \mathbf{x} = \mathbf{x}$

- Commutative:
 - $-\mathbf{x} \cup \mathbf{y} = \mathbf{y} \cup \mathbf{x}$
- Associative:

 $- (x \cup y) \cup z = x \cup (y \cup z)$

• Bottom element:

- The empty set: $\emptyset \cup x = x$

• Ordering over elements = subset relation

Join semilattice example for liveness

Dataflow framework

- A global analysis is a tuple (D, V, ∐, F, I), where
 - D is a direction (forward or backward)
 - The order to visit statements within a basic block, **NOT** the order in which to visit the basic blocks
 - V is a set of values (sometimes called domain)
 - \sqcup is a join operator over those values
 - F is a set of transfer functions $f_s : \mathbf{V} \rightarrow \mathbf{V}$ (for every statement s)
 - I is an initial value
Running global analyses

- Assume that (D, V, ∐, F, I) is a forward analysis
- For every statement s maintain values before IN[s] and after - OUT[s]
- Set OUT[**s**] = ⊥ for all statements **s**
- Set OUT[**entry**] = I
- Repeat until no values change:
 - For each statement s with predecessors PRED[s]={p₁, p₂, ..., p_n}
 - Set $IN[s] = OUT[p_1] \sqcup OUT[p_2] \sqcup ... \sqcup OUT[p_n]$
 - Set OUT[s] = $f_s(IN[s])$
- The order of this iteration does not matter
 - Chaotic iteration

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

A non-terminating analysis

- The following analysis will loop infinitely on any CFG containing a loop:
- Direction: Forward
- Domain: ℕ
- Join operator: max
- Transfer function: f(n) = n + 1
- Initial value: 0

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Choose a block

Choose a block

Why doesn't this terminate?

- Values can increase without bound
- Note that "increase" refers to the lattice ordering, not the ordering on the natural numbers
- The height of a semilattice is the length of the longest increasing sequence in that semilattice
- The dataflow framework is not guaranteed to terminate for semilattices of infinite height
- Note that a semilattice can be infinitely large but have finite height
 - e.g. constant propagation

4

3

2

1

 \mathbf{O}

Height of a lattice

- An increasing chain is a sequence of elements $\bot \sqsubseteq a_1 \sqsubseteq a_2 \sqsubseteq ... \sqsubseteq a_k$
 - The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with *n* program variables:

- {} \subseteq {v₁} \subseteq {v₁,v₂} \subseteq ... \subseteq {v₁,...,v_n}

- For available expressions it is the number of expressions of the form a=b op c
 - For n program variables and m operator types:mn³

Another non-terminating analysis

- This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:
- Direction: Forward
- Domain: Boolean values true and false
- Join operator: Logical OR
- Transfer function: Logical NOT
- Initial value: false

A non-terminating analysis

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?

Monotone transfer functions

- A transfer function *f* is monotone iff
 if x ⊆ y, then *f*(x) ⊆ *f*(y)
- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does **not** mean that $x \sqsubseteq f(x)$

(This is a different property called extensivity)

Liveness and monotonicity

- A transfer function *f* is monotone iff
 if x ⊆ y, then *f*(x) ⊆ *f*(y)
- Recall our transfer function for $\mathbf{a} = \mathbf{b} + \mathbf{c}$ is $-f_{a=b+c}(V) = (V - \{a\}) \cup \{b, c\}$
- Recall that our join operator is set union and induces an ordering relationship X ⊆ Y iff X ⊆ Y
- Is this monotone?

Is constant propagation monotone?

- A transfer function *f* is monotone iff
 if x ⊑y, then *f*(x) ⊑ *f*(y)
- Recall our transfer functions

 $- f_{x=k}(V) = V[x \mapsto k]$ (update V by mapping x to k)

- f_{x=a+b}(V) = V[x→Not-a-Constant] (assign Not-a-Constant)
- Is this monotone?

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
 - The join operator can only bring values up
 - Transfer functions can never lower values back down below where they were in the past (monotonicity)
 - Values cannot increase indefinitely (finite height)

An "optimality" result

- A transfer function *f* is distributive if
 f(a ⊔ b) = f(a) ⊔ f(b)
 for every domain elements *a* and *b*
- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths

- Join over all paths

• Optimal if we ignore program conditions

An "optimality" result

• A transfer function f is distributive if $f(a \sqcup b) = f(a) \sqcup f(b)$

for every domain elements *a* and *b*

• If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths

Join over all paths

- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

Loop optimizations

- Most of a program's computations are done inside loops
 - Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
 - Loop-invariant code motion
 - (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
 - Reaching definitions
 - (Also useful for improving register allocation)

Loop invariant computation

Loop invariant computation

Code hoisting

What reasoning did we use?

What about now?

Loop-invariant code motion

- $d: t = a_1 \text{ op } a_2$
 - *d* is a program location
- $a_1 \text{ op } a_2 \text{ loop-invariant}$ (for a loop *L*) if computes the same value in each iteration
 - Hard to know in general
- Conservative approximation
 - Each a_i is a constant, or
 - All definitions of a_i that reach d are outside L, or
 - Only one definition of of a_i reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

• A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined

- A definition d: t = ... reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions `
- Join operator: union
- Transfer function:

 $f_{d: a=b op c}(\mathsf{RD}) = (\mathsf{RD} - defs(a)) \cup \{d\}$ $f_{d: not-a-def}(\mathsf{RD}) = \mathsf{RD}$

- Where *defs(a)* is the set of locations defining *a* (statements of the form *a*=...)
- Initial value: {}

Initialization

Iteration 1

Iteration 6

Which expressions are loop invariant?

Inferring loop-invariant expressions

- For a statement *s* of the form $t = a_1 \text{ op } a_2$
- A variable a_i is immediately loop-invariant if all reaching definitions IN[s]={d₁,...,d_k} for a_i are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants LOOP-INV = LOOP-INV ▶ {x | d: x = a₁ op a₂, d is in the loop, and both a₁ and a₂ are in LOOP-INV}
 Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants

Induction variables

Strength-reduction

Compilation

0368-3133 Lecture 10b

Register Allocation Noam Rinetzky

What is a Compiler?

Registers

- Dedicated memory locations that
 - can be accessed quickly,
 - can have computations performed on them, and

Registers

- **Dedicated memory** locations that
 - can be accessed quickly,
 - can have computations performed on them, and
- Usages
 - Operands of instructions
 - Store temporary results
 - Can (should) be used as loop indexes due to frequent arithmetic operation
 - Used to manage administrative info
 - e.g., runtime stack

Register allocation

• Number of registers is **limited**

- Need to **allocate** them in a clever way
 - Using registers intelligently is a critical step in any compiler
 - A good register allocator can generate code orders of magnitude better than a bad register allocator

Register Allocation: IR

Simple approach

- Straightforward solution:
 - Allocate each variable in activation record
 - At each instruction, bring values needed into registers, perform operation, then store result to memory

$$x = y + z$$

mov 16(%ebp), %eax mov 20(%ebp), %ebx add %ebx, %eax mov %eax, 24(%ebp)

 Problem: program execution very inefficient moving data back and forth between memory and registers

Simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg, reg, reg (*)
- assume that we have all registers available for our use
 - Ignore registers allocated for stack management
 - Treat all registers as general-purpose

Simple code generation

• assume machine instructions of the form

Register allocation

- In **TAC**, there is an unlimited number of variables (temporaries)
- On a physical machine there is a small number of registers:
 - x86 has 4 general-purpose registers and a number of specialized registers
 - MIPS has 24 general-purpose registers and 8 special-purpose registers
- Register allocation is the process of assigning variables to registers and managing data transfer in and out of registers

simple code generation

• assume machine instructions of the form

- We will assume that we have all registers available for any usage
 - Ignore registers allocated for stack management
 - Treat all registers as general-purpose

Plan

- Goal: Reduce number of temporaries (registers)
 - Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Machine-dependent optimization
 - Use at most K registers
 - K is machine dependent

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
 - Minimizes number of temporaries for a single expression

Generating Compound Expressions

- Use registers to store temporaries
 - Why can we do it?
- Maintain a counter for temporaries in c
- Initially: c = 0

```
• cgen(e<sub>1</sub> op e<sub>2</sub>) = {
    Let A = cgen(e<sub>1</sub>)
    c = c + 1
    Let B = cgen(e<sub>2</sub>)
    c = c + 1
    Emit(_tc = A op B; ) // _tc is a register
    Return _tc
}
```


Improving cgen for expressions

- Observation naïve translation needlessly generates temporaries for leaf expressions
- Observation temporaries used exactly once
 - Once a temporary has been read it can be reused for another sub-expression

• Temporaries **cgen**(e₁) can be reused in **cgen**(e₂)

Register Allocation

- Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Expression trees
 - Basic blocks
- Machine-dependent optimization
 - K registers
 - Some have special purposes
 - Control flow graphs (whole program)

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
 - Minimizes number of temporaries for a single expression

Example (optimized): b*b-4*a*c

Generalizations

- More than two arguments for operators
 Function calls
- Multiple effected registers
 - Multiplication
- Spilling
 - Need more registers than available
- Register/memory operations

Simple Spilling Method

- Heavy tree Needs more registers than available
- A "heavy" tree contains a "heavy" subtree whose dependents are "light"
- Simple spilling
 - Generate code for the light tree
 - Spill the content into memory and replace subtree by temporary
 - Generate code for the resultant tree

Example (optimized): x:=b*b-4*a*c

Example (spilled): x := b*b-4*a*c

Example: b*b-4*a*c

Example (simple): b*b-4*a*c

Example (optimized): b*b-4*a*c

Spilling

- Even an optimal register allocator can require more registers than available
- Need to generate code for every correct program
- The compiler can save temporary results
 - Spill registers into temporaries
 - Load when needed
- Many heuristics exist

Simple Spilling Method

- Heavy tree Needs more registers than available
- A `heavy' tree contains a `heavy' subtree whose dependents are 'light'
- Generate code for the light tree
- Spill the content into memory and replace subtree by temporary
- Generate code for the resultant tree

Spilling

- Even an optimal register allocator can require more registers than available
- Need to generate code for every correct program
- The compiler can save temporary results
 - Spill registers into temporaries
 - Load when needed
- Many heuristics exist

Simple approach

- Straightforward solution:
 - Allocate each variable in activation record
 - At each instruction, bring values needed into registers, perform operation, then store result to memory

$$x = y + z$$

mov 16(%ebp), %eax mov 20(%ebp), %ebx add %ebx, %eax mov %eax, 24(%ebx)

 Problem: program execution very inefficient moving data back and forth between memory and registers

Register Allocation

- Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Expression trees (tree-local)
 - Basic blocks (block-local)
- Machine-dependent optimization
 - K registers
 - Some have special purposes
 - Control flow graphs (global register allocation)

Example (optimized): b*b-4*a*c

Example (spilled): x := b*b-4*a*c

Simple Spilling Method

Available register set \ Target register; WHILE Node /= No node: Compute the weights of all nodes of the tree of Node; SET Tree node TO Maximal non large tree (Node); Generate code (Tree node, Target register, Auxiliary register set); IF Tree node /= Node: SET Temporary location TO Next free temporary location(); Emit ("Store R" Target register ",T" Temporary location); Replace Tree node by a reference to Temporary location; Return any temporary locations in the tree of Tree node to the pool of free temporary locations; ELSE Tree node = Node: Return any temporary locations in the tree of Node to the pool of free temporary locations; SET Node TO No node; FUNCTION Maximal non large tree (Node) RETURNING a node: IF Node .weight <= Size of Auxiliary register set: RETURN Node; IF Node .left .weight > Size of Auxiliary register set: RETURN Maximal non large tree (Node .left); DIOD Via - winke winker - dies se bundlie winder - ------
Register Memory Operations

- Add_Mem X, R1
- Mult_Mem X, R1

 No need for registers to store right operands

Can We do Better?

- Yes: Increase view of code
 - Simultaneously allocate registers for multiple expressions

But: Lose per expression optimality

 Works well in practice

Register Allocation

- Machine-agnostic optimizations
 - Assume unbounded number of registers
 - Expression trees
 - Basic blocks
- Machine-dependent optimization
 - K registers
 - Some have special purposes
 - Control flow graphs (whole program)

Basic Blocks

- **basic block** is a sequence of instructions with
 - single entry (to first instruction), no jumps to the middle of the block
 - single exit (last instruction)
 - code execute as a sequence from first instruction to last instruction without any jumps
- edge from one basic block B1 to another block B2 when the last statement of B1 may jump to B2

control flow graph

- A directed graph G=(V,E)
- nodes V = basic blocks
- edges E = control flow
 - (B1,B2) ∈ E when control from B1 flows to B2
- Leaders-based construction
 - Target of jump instructions
 - Instructions following jumps

control flow graph

- A directed graph G=(V,E)
- nodes V = basic blocks
- edges E = control flow
 - (B1,B2) ∈ E when control from B1 flows to B2

AST for a Basic Block

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,Rl
Add_Mem	c,Rl
Store_Reg	R1,x
Load_Reg	X1,R1
Add_Const	1,R1
Mult_Mem	d,R1
Store_Reg	R1,Y

y, dead or alive?

x, dead or alive?

Another Example

Creating Basic Blocks

- **Input**: A sequence of three-address statements
- **Output**: A list of basic blocks with each three-address statement in exactly one block
- Method
 - Determine the set of **leaders** (first statement of a block)
 - The first statement is a leader
 - Any statement that is the target of a jump is a leader
 - Any statement that immediately follows a jump is a leader
 - For each leader, its basic block consists of the leader and all statements up to but not including the next leader or the end of the program

Example: Code Block

Example: Basic Block

AST of the Example

Optimized Code (gcc)

{
 int n;
 n := a + 1;
 x := b + n * n + c;
 n := n + 1;
 y := d * n;

}

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,R2
Mult_Reg	R1,R2
Add_Mem	b,R2
Add_Mem	c,R2
Store_Reg	R2,x
Add_Const	1,R1
Mult_Mem	d,R1
Store_Reg	R1,Y

Register Allocation for B.B.

- Dependency graphs for basic blocks
- Transformations on dependency graphs
- From dependency graphs into code
 - Instruction selection
 - linearizations of dependency graphs
 - Register allocation
 - At the basic block level

Dependency graphs

- TAC imposes an order of execution
 - But the compiler can reorder assignments as long as the program results are not changed

- Define a partial order on assignments
 - $-a < b \Leftrightarrow a$ must be executed before b
 - Represented as a directed graph
 - Nodes are assignments
 - Edges represent dependency
 - Acyclic for basic blocks

Running Example

Sources of dependency

- Data flow inside expressions
 - Operator depends on operands
 - Assignment depends on assigned expressions
- Data flow between statements
 - From assignments to their use

Pointers complicate dependencies

Sources of dependency

- Order of subexpresion evaluation is immaterial
 - As long as inside dependencies are respected
- The order of uses of a variable X are immaterial as long as:
 - X is used between dependent assignments
 - Before next assignment to X

Creating Dependency Graph from AST

- Nodes AST becomes nodes of the graph
- Replaces arcs of AST by dependency arrows
 - Operator \rightarrow Operand
 - Create arcs from assignments to uses
 - Create arcs between assignments of the same variable
- Select output variables (roots)
- Remove ; nodes and their arrows

Dependency Graph Simplifications

- Short-circuit assignments
 - Connect variables to assigned expressions
 - Connect expression to uses
- Eliminate nodes not reachable from roots

Cleaned-Up Data Dependency Graph

Common Subexpressions

- Repeated subexpressions
- Examples

$$x = a * a + 2 * a * b + b * b;$$

 $y = a * a - 2 * a * b + b * b;$
 $n[i] := n[i] + m[i]$

Can be eliminated by the compiler
 In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

- Linearize the dependency graph
 - Instructions must follow dependency
- Many solutions exist
- Select the one with small runtime cost
- Assume infinite number of registers
 - Symbolic registers
 - Assign registers later
 - May need additional spill
 - Possible Heuristics
 - Late evaluation
 - Ladders
Pseudo Register Target Code

Load_Mem Add_Const	a,R1 1,R1
Load_Reg	R1,X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,Rl
Add_Mem	c,Rl
Store_Reg	R1,x
Load_Reg	X1,R1
Add_Const	1,R1
Mult_Mem	d,R1
Store Reg	R1,y

Non optimized vs Optimized Code

Load_Mem Add_Const Load_Reg	a,R1 1,R1 R1,X1	Load_Mem Add_Const Load_Reg	a,R1 1,R1 R1,R2	d_Mem l_Const d_Reg	a,R1 1,R1 R1,R2
Load_Reg Mult_Reg Add_Mem Add_Mem Store_Reg Load_Reg Add_Const Mult_Mem	X1,R1 X1,R1 b,R1 c,R1 R1,x X1,R1 1,R1 d,R1	Load_Reg Mult_Reg Add_Mem Add_Mem Store_Reg Load_Reg Add_Const	R2,R1 R2,R1 b,R1 c,R1 R1,x R2,R1	.t_Reg l_Mem l_Mem >re_Reg l_Const .t_Mem >re_Reg	R1,R2 b,R2 c,R2 R2,x 1,R1 d,R1 R1,V
Store_Reg	R1,y	Mult_Mem Store Reg	d,R1 R1.V		
int n;		btore_keg	M1, J		
n := a + 1;					
x := b + n * n + c;					
n := n + 1;					

y := d * n;

}

Register Allocation

- Maps symbolic registers into physical registers
 - Reuse registers as much as possible
 - Graph coloring (next)
 - Undirected graph
 - Nodes = Registers (Symbolic and real)
 - Edges = Interference
 - May require spilling

Register Allocation for Basic Blocks

- Heuristics for code generation of basic blocks
- Works well in practice
- Fits modern machine architecture
- Can be extended to perform other tasks
 Common subexpression elimination
- But basic blocks are small
- Can be generalized to a procedure

Problem	Technique	Quality
Expression trees, using register-register or memory-register instruc- tions	Weighted trees; Figure 4.30	
with sufficient registers: with insufficient registers:		Optimal Optimal
Dependency graphs, using register-register or memory-register instruc- tions	Ladder sequences; Section 4.2.5.2	Heuristic
Expression trees, using any instructions with cost func- tion with sufficient registers: with insufficient registers:	Bottom-up tree rewrit- ing; Section 4.2.6	Optimal Heuristic
Register allocation when all interferences are known	Graph coloring; Section 4.2.7	Heuristic

The End