Compilation
 Lecture 10a

Abstract Interpretation
Noam Rinetzky

Optimization points

IR Optimization

- Making code "better"

Overview of IR optimization

- Formalisms and Terminology
- Control-flow graphs
- Basic blocks
- Local optimizations
- Speeding up small pieces of a procedure
- Global optimizations
- Speeding up procedure as a whole
- The dataflow framework
- Defining and implementing a wide class of optimizations

Program Analysis

- In order to optimize a program, the compiler has to be able to reason about the properties of that program
- An analysis is called sound if it never asserts an incorrect fact about a program
- All the analyses we will discuss in this class are sound
- (Why?)

Visualizing IR

main:

$$
\begin{aligned}
& \text { tmp0 = Call_ReadInteger; } \\
& \mathrm{a}=\text { tmp0; } \\
& \overline{\mathrm{tmp}}=\mathrm{Call} \text { ReadInteger; } \\
& \mathrm{b}=\text { tmp1; }
\end{aligned}
$$

LO:
$-\operatorname{tmp} 2=0 ;$
_tmp3 $=\mathrm{b}==$ _tmp2;
-tmp4 $=0$;
_tmp5 $=$ _tmp3 $==$ _tmp4;
$\bar{I} f Z \quad$ tmp $\overline{5}$ Goto _LI;
c $=a ;$
$\mathrm{a}=\mathrm{b}$;
_tmp6 $=c$ \% $a ;$
$\overline{\mathrm{b}}=$ _tmp 6 ;
Goto _L0;
L1:
Push a;
Call PrintInt;

```
tmp0 = Call _ReadInteger;
a = _tmp0;
\overline{b}
b = _tmp1;
```


Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b
...
v2 = a op b
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as v1 = a op b
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Common Subexpression Elimination

- If we have two variable assignments
v1 = a op b [or: v1 = a]
...
$\mathrm{v} 2=\mathrm{aop} \mathrm{b} \quad$ [or: $\mathrm{v} 2=\mathrm{a}$]
- and the values of $v 1, a$, and b have not changed between the assignments, rewrite the code as v1 = a op b [or: v1 = a]
$\mathrm{v} 2=\mathrm{v} 1$
- Eliminates useless recalculation
- Paves the way for later optimizations

Copy Propagation

- If we have a variable assignment v1 = v2
then as long as v 1 and v 2 are not reassigned, we can rewrite expressions of the form
a = ... v1 ...
as
a = ... v2 ...
provided that such a rewrite is legal

Dead Code Elimination

- An assignment to a variable v is called dead if the value of that assignment is never read anywhere
- Dead code elimination removes dead assignments from IR
- Determining whether an assignment is dead depends on what variable is being assigned to and when it's being assigned

Abstract Interpretation

- Theoretical foundations of program analysis
- Cousot and Cousot 1977
- Abstract meaning of programs
- Executed at compile time

Another view of local optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program
- Could we run the program and just watch what happens?
- Idea: Redefine the semantics of our programming language to give us information about our analysis

Assigning new semantics

- Example: Available Expressions
- Redefine the statement $\mathbf{a}=\mathbf{b}+\mathbf{c}$ to mean "a now holds the value of $b+c$, and any variable holding the value a is now invalid"
- Run the program assuming these new semantics
- Treat the optimizer as an interpreter for these new semantics

Join semilattices

- A join semilattice is a ordering defined on a set of elements
- Any two elements have some join that is the smallest element larger than both elements
- There is a unique bottom element, which is smaller than all other elements
- Intuitively:
- The join of two elements represents combining information from two elements by an overapproximation
- The bottom element represents "no information yet" or "the least conservative possible answer"

Join semilattices and ordering

Formal definitions

- A join semilattice is a pair (V, U), where
- V is a domain of elements
- \sqcup is a join operator that is
- commutative: $x \sqcup y=y \sqcup x$
- associative: $(x \sqcup y) ~ ل z=x \sqcup(y \sqcup z)$
- idempotent: $x \bigsqcup x=x$
- If $x \sqcup y=z$, we say that z is the join or (least upper bound) of x and y
- Every join semilattice has a bottom element denoted \perp such that $\perp \sqcup \mathrm{x}=\mathrm{x}$ for all x

Join semilattices and orderings

- Every join semilattice (V, L) induces an ordering relationship \sqsubseteq over its elements
- Define $x \sqsubseteq y$ iff $x \sqcup y=y$
- Need to prove
- Reflexivity: $\mathrm{x} \sqsubseteq \mathrm{x}$
- Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$
- Transitivity: If $\mathrm{x} \sqsubseteq \mathrm{y}$ and $\mathrm{y} \sqsubseteq \mathrm{z}$, then $\mathrm{x} \sqsubseteq \mathrm{z}$

A general framework

- A global analysis is a tuple (D, V, $\sqsubseteq, F, I)$, where
- D is a direction (forward or backward)
- The order to visit statements within a basic block, not the order in which to visit the basic blocks
- V is a set of values
$-\downarrow$ is a join operator over those values
- F is a set of transfer functions $f: \mathbf{V} \rightarrow \mathbf{V}$
- I is an initial value
- The only difference from local analysis is the introduction of the join operator

Running global analyses

- Assume that ($\mathrm{D}, \mathrm{V}, \mathrm{L}, \mathrm{F}, \mathrm{I}$) is a forward analysis
- Set OUT[s] $=\perp$ for all statements \mathbf{s}
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}$:
- Set $\operatorname{IN}[\mathbf{s}]=\operatorname{OUT}\left[\boldsymbol{p}_{1}\right] \sqcup \operatorname{OUT}\left[\boldsymbol{p}_{2}\right] \sqcup \ldots \mathrm{I} . . \mathrm{OUT}\left[\boldsymbol{p}_{n}\right]$
- Set OUT[s] = $\mathrm{f}_{\mathrm{s}}(\operatorname{IN}[\mathbf{s}])$
- The order of this iteration does not matter
- This is sometimes called chaotic iteration

Global constant propagation

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant
- An elegant example of the dataflow framework

Defining a join operator

- The join of any two different constants is Not-a-Constant
- (If the variable might have two different values on entry to a statement, it cannot be a constant)
- The join of Not a Constant and any other value is Not-aConstant
- (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant)
- The join of Undefined and any other value is that other value
- (If \mathbf{x} has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value)

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

The lattice is infinitely wide

A semilattice for constant propagation

- One possible semilattice for this analysis is shown here (for each variable):

- Note:
- The join of any two different constants is Not-a-Constant
- The join of Not a Constant and any other value is Not-a-Constant
- The join of Undefined and any other value is that other value

Global constant propagation

Global constant propagation

Global constant propagation

Global constant propagation

Dataflow for constant propagation

- Direction: Forward
- Semilattice: Vars \rightarrow \{Undefined, $0,1,-1,2,-2, \ldots$, Not-a-Constant $\}$
- Join mapping for variables point-wise $\{x \mapsto 1, y \mapsto 1, z \mapsto 1\} \sqcup\{x \mapsto 1, y \mapsto 2, z \mapsto$ Not-a-Constant $\}=$ $\{x \mapsto 1, y \mapsto$ Not-a-Constant, $z \mapsto$ Not-a-Constant $\}$
- Transfer functions:
$-\mathrm{f}_{\mathrm{x}=\mathrm{k}}(\mathrm{V})=\left.\mathrm{V}\right|_{\mathrm{x} \mapsto \mathrm{k}}$ (update V by mapping x to k)
$-f_{x=a+b}(V)=\left.V\right|_{x \mapsto \text { Not-a-Constant }}$ (assign Not-a-Constant)
- Initial value: \mathbf{x} is Undefined
- (When might we use some other value?)

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Given this, how do we know the analyses will eventually terminate?
- In general, we don't

Terminates?

Liveness Analysis

- A variable is live at a point in a program if later in the program its value will be read before it is written to again

Join semilattice definition

- A join semilattice is a pair (V, ப), where
- V is a domain of elements
- \sqcup is a join operator that is
- commutative: $x \sqcup y=y \sqcup x$
- associative: $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$
- idempotent: $x \bigsqcup x=x$
- If $x \sqcup y=z$, we say that z is the join or (Least Upper Bound) of x and y
- Every join semilattice has a bottom element denoted \perp such that $\perp \sqcup \mathrm{x}=\mathrm{x}$ for all x

Partial ordering induced by join

- Every join semilattice (V, L) induces an ordering relationship \sqsubseteq over its elements
- Define $x \sqsubseteq y$ iff $x \$ y=y$
- Need to prove
- Reflexivity: $x \sqsubseteq x$
- Antisymmetry: If $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$
- Transitivity: If $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$

A join semilattice for liveness

- Sets of live variables and the set union operation
- Idempotent:

$$
-x \cup x=x
$$

- Commutative:

$$
-x \cup y=y \cup x
$$

- Associative:

$$
-(x \cup y) \cup z=x \cup(y \cup z)
$$

- Bottom element:
- The empty set: $\varnothing \cup x=x$
- Ordering over elements = subset relation

Join semilattice example for liveness

Dataflow framework

- A global analysis is a tuple (D, V, ப, F, I), where
- D is a direction (forward or backward)
- The order to visit statements within a basic block, NOT the order in which to visit the basic blocks
- V is a set of values (sometimes called domain)
$-\downarrow$ is a join operator over those values
- F is a set of transfer functions $f_{\mathrm{s}}: \mathbf{V} \rightarrow \mathbf{V}$ (for every statement s)
- I is an initial value

Running global analyses

- Assume that (D, V, $\mathrm{L}, \mathrm{F}, \mathrm{I}$) is a forward analysis
- For every statement s maintain values before - IN[s] - and after - OUT[s]
- Set OUT[s] $=\perp$ for all statements \mathbf{s}
- Set OUT[entry] = I
- Repeat until no values change:
- For each statement s with predecessors PRED[s]=\{ $\left.\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right\}$
- Set $\operatorname{IN}[\mathbf{s}]=\operatorname{OUT}\left[p_{1}\right] \perp$ OUT[$\left.p_{2}\right] \sqcup \ldots$... ப OUT[p$\left.p_{n}\right]$
- Set OUT[s] $=f_{s}(\operatorname{IN}[\mathbf{s}])$
- The order of this iteration does not matter
- Chaotic iteration

Proving termination

- Our algorithm for running these analyses continuously loops until no changes are detected
- Problem: how do we know the analyses will eventually terminate?

A non-terminating analysis

- The following analysis will loop infinitely on any CFG containing a loop:
- Direction: Forward
- Domain: \mathbb{N}
- Join operator: max
- Transfer function: $f(n)=n+1$
- Initial value: 0

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Iteration 1

Iteration 1

Choose a block

Iteration 2

Iteration 2

Iteration 2

Choose a block

Iteration 3

Iteration 3

Iteration 3

Why doesn't this terminate?

- Values can increase without bound
- Note that "increase" refers to the lattice ordering, not the ordering on the natural numbers
- The height of a semilattice is the length of the longest increasing sequence in that semilattice
- The dataflow framework is not guaranteed to terminate for semilattices of infinite height
- Note that a semilattice can be infinitely large but have finite height
- e.g. constant propagation

Height of a lattice

- An increasing chain is a sequence of elements $\perp \sqsubseteq \mathrm{a}_{1} \sqsubseteq \mathrm{a}_{2} \sqsubseteq \ldots \sqsubseteq \mathrm{a}_{\mathrm{k}}$
- The length of such a chain is k
- The height of a lattice is the length of the maximal increasing chain
- For liveness with n program variables:
$-\{ \} \subseteq\left\{v_{1}\right\} \subseteq\left\{v_{1}, v_{2}\right\} \subseteq \ldots \subseteq\left\{v_{1}, \ldots, v_{n}\right\}$
- For available expressions it is the number of expressions of the form $a=b$ op c
- For n program variables and m operator types: $m n^{3}$

Another non-terminating analysis

- This analysis works on a finite-height semilattice, but will not terminate on certain CFGs:
- Direction: Forward
- Domain: Boolean values true and false
- Join operator: Logical OR
- Transfer function: Logical NOT
- Initial value: false

A non-terminating analysis

A non-terminating analysis

Initialization

Fixed-point iteration

Choose a block

Iteration 1

Iteration 1

Iteration 2

Iteration 2

Iteration 3

Iteration 3

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever

Why doesn't it terminate?

- Values can loop indefinitely
- Intuitively, the join operator keeps pulling values up
- If the transfer function can keep pushing values back down again, then the values might cycle forever
- How can we fix this?

Monotone transfer functions

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y \text {, then } f(x) \sqsubseteq f(y)
$$

- Intuitively, if you know less information about a program point, you can't "gain back" more information about that program point
- Many transfer functions are monotone, including those for liveness and constant propagation
- Note: Monotonicity does not mean that $x \sqsubseteq f(x)$
- (This is a different property called extensivity)

Liveness and monotonicity

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y, \text { then } f(x) \sqsubseteq f(y)
$$

- Recall our transfer function for $\mathbf{a}=\mathbf{b}+\mathbf{c}$ is

$$
-f_{a=b+c}(V)=(V-\{a\}) \cup\{b, c\}
$$

- Recall that our join operator is set union and induces an ordering relationship

$$
X \sqsubseteq Y \text { iff } X \subseteq Y
$$

- Is this monotone?

Is constant propagation monotone?

- A transfer function f is monotone iff

$$
\text { if } x \sqsubseteq y \text {, then } f(x) \sqsubseteq f(y)
$$

- Recall our transfer functions
$-\mathrm{f}_{\mathrm{x}=\mathrm{k}}(\mathrm{V})=\mathrm{V}[\mathrm{x} \mapsto \mathrm{k}]$ (update V by mapping x to k)
$-\mathrm{f}_{\mathrm{x}=\mathrm{a}+\mathrm{b}}(\mathrm{V})=\mathrm{V}[\mathrm{x} \mapsto$ Not-a-Constant] (assign Not-aConstant)
- Is this monotone?

The grand result

- Theorem: A dataflow analysis with a finiteheight semilattice and family of monotone transfer functions always terminates
- Proof sketch:
- The join operator can only bring values up
- Transfer functions can never lower values back down below where they were in the past (monotonicity)
- Values cannot increase indefinitely (finite height)

An "optimality" result

- A transfer function f is distributive if

$$
f(a \sqcup b)=f(a) \sqcup f(b)
$$

for every domain elements a and b

- If all transfer functions are distributive then the fixed-point solution is the solution that would be computed by joining results from all (potentially infinite) control-flow paths
- Join over all paths
- Optimal if we ignore program conditions

An "optimality" result

- A transfer function f is distributive if

$$
f(a \sqcup b)=f(a) \sqcup f(b)
$$

for every domain elements a and b

- If all transfer functions are distributive then the fixed-point solution is equal to the solution computed by joining results from all (potentially infinite) control-flow paths
- Join over all paths
- Optimal if we pretend all control-flow paths can be executed by the program
- Which analyses use distributive functions?

Loop optimizations

- Most of a program's computations are done inside loops
- Focus optimizations effort on loops
- The optimizations we've seen so far are independent of the control structure
- Some optimizations are specialized to loops
- Loop-invariant code motion
- (Strength reduction via induction variables)
- Require another type of analysis to find out where expressions get their values from
- Reaching definitions
- (Also useful for improving register allocation)

Loop invariant computation

Loop invariant computation

Code hoisting

What reasoning did we use?

What about now?

Loop-invariant code motion

- $d: \mathrm{t}=a_{1}$ op a_{2}
- d is a program location
- a_{1} op a_{2} loop-invariant (for a loop L) if computes the same value in each iteration
- Hard to know in general
- Conservative approximation
- Each a_{i} is a constant, or
- All definitions of a_{i} that reach d are outside L, or
- Only one definition of of a_{i} reaches d, and is loop-invariant itself
- Transformation: hoist the loop-invariant code outside of the loop

Reaching definitions analysis

- A definition $d: t=\ldots$ reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined

Reaching definitions analysis

- A definition $d: t=\ldots$ reaches a program location if there is a path from the definition to the program location, along which the defined variable is never redefined
- Direction: Forward
- Domain: sets of program locations that are definitions
- Join operator: union
- Transfer function:

$$
\begin{aligned}
& f_{d: a=b \text { oo } c}(\mathrm{RD})=(\mathrm{RD}-\operatorname{defs}(a)) \cup\{d\} \\
& f_{\text {d: } n o t-a-d e f}(\mathrm{RD})=\mathrm{RD}
\end{aligned}
$$

- Where $\operatorname{defs}(a)$ is the set of locations defining a (statements of the form $a=$...)
- Initial value: $\}$

Reaching definitions analysis

Reaching definitions analysis

Initialization

Iteration 1

Iteration 1

Iteration 2

Iteration 2

Iteration 2

Iteration 2

Iteration 3

Iteration 3

Iteration 4

Iteration 4

Iteration 4

Iteration 5

Iteration 6

Which expressions are loop invariant?

Inferring loop-invariant expressions

- For a statement s of the form $t=a_{1}$ op a_{2}
- A variable a_{i} is immediately loop-invariant if all reaching definitions $\operatorname{IN}[s]=\left\{\mathrm{d}_{1}, \ldots, \mathrm{~d}_{k}\right\}$ for a_{i} are outside of the loop
- LOOP-INV = immediately loop-invariant variables and constants
LOOP-INV $=$ LOOP-INV $\left\{\mathrm{x} \mid \mathrm{d}: \mathrm{x}=a_{1} \mathrm{op} a_{2}, \mathrm{~d}\right.$ is in the loop, and both a_{1} and a_{2} are in LOOP-INV $\}$
- Iterate until fixed-point
- An expression is loop-invariant if all operands are loop-invariants

Computing LOOP-INV

Induction variables

```
j is a linear function of the induction variable with multiplier 4
```


[^0]
Strength-reduction

Compilation 0368-3133
 Lecture 10b

Register Allocation Noam Rinetzky

What is a Compiler?

Registers

- Dedicated memory locations that
- can be accessed quickly,
- can have computations performed on them, and

Registers

- Dedicated memory locations that
- can be accessed quickly,
- can have computations performed on them, and
- Usages
- Operands of instructions
- Store temporary results
- Can (should) be used as loop indexes due to frequent arithmetic operation
- Used to manage administrative info
- e.g., runtime stack

Register allocation

- Number of registers is limited
- Need to allocate them in a clever way
- Using registers intelligently is a critical step in any compiler
- A good register allocator can generate code orders of magnitude better than a bad register allocator

Register Allocation: IR

Source
code
(program)

Lexical	Syntax Analysis	AST
Analysis		
Parsing		
	Symbol Table etc.	

Inter.	Code Generation
Rep.	

Target code
 (executable)

Simple approach

- Straightforward solution:
- Allocate each variable in activation record
- At each instruction, bring values needed into registers, perform operation, then store result to memory
$x=y+z$

mov 16(\%ebp), \%eax mov 20(\%ebp), \%ebx add \%ebx, \%eax mov \%eax, 24(\%ebp)

- Problem: program execution very inefficientmoving data back and forth between memory and registers

Simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg,reg,reg (*)
- assume that we have all registers available for our use
- Ignore registers allocated for stack management
- Treat all registers as general-purpose

Simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg,reg,reg (*)

Fixed number of Registers!

Register allocation

- In TAC, there is an unlimited number of variables (temporaries)
- On a physical machine there is a small number of registers:
- x86 has 4 general-purpose registers and a number of specialized registers
- MIPS has 24 general-purpose registers and 8 special-purpose registers
- Register allocation is the process of assigning variables to registers and managing data transfer in and out of registers

simple code generation

- assume machine instructions of the form
- LD reg, mem
- ST mem, reg
- OP reg,reg,reg (*)

Fixed number of Registers!

- We will assume that we have all registers available for any usage
- Ignore registers allocated for stack management
- Treat all registers as general-purpose

Plan

- Goal: Reduce number of temporaries (registers)
- Machine-agnostic optimizations
- Assume unbounded number of registers
- Machine-dependent optimization
- Use at most K registers
- K is machine dependent

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
- Minimizes number of temporaries for a single expression

Generating Compound Expressions

- Use registers to store temporaries
- Why can we do it?
- Maintain a counter for temporaries in c
- Initially: c=0
- $\operatorname{cgen}\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let $A=\operatorname{cgen}\left(e_{1}\right)$
$\mathrm{c}=\mathrm{C}+1$
Let $B=\operatorname{cgen}\left(e_{2}\right)$
$\mathrm{c}=\mathrm{C}+1$
Emit(_tc = A op B;) // _tc is a register
Return _tc

Improving cgen for expressions

- Observation - naïve translation needlessly generates temporaries for leaf expressions
- Observation - temporaries used exactly once
- Once a temporary has been read it can be reused for another sub-expression
- cgen $\left(\mathrm{e}_{1}\right.$ op $\left.\mathrm{e}_{2}\right)=\{$

Let _t1 = $\operatorname{cgen}\left(\mathrm{e}_{1}\right)$
Let _t2 $=\operatorname{cgen}\left(\mathrm{e}_{2}\right)$
Emit (_t1 =_t1 op _t2;)
Return _t1
\}

- Temporaries cgen $\left(\mathrm{e}_{1}\right)$ can be reused in $\operatorname{cgen}\left(\mathrm{e}_{2}\right)$

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees
- Basic blocks
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (whole program)

Sethi-Ullman translation

- Algorithm by Ravi Sethi and Jeffrey D. Ullman to emit optimal TAC
- Minimizes number of temporaries for a single expression

Example (optimized): b*b-4*a*c

Generalizations

- More than two arguments for operators
- Function calls
- Multiple effected registers
- Multiplication
- Spilling
- Need more registers than available
- Register/memory operations

Simple Spilling Method

- Heavy tree - Needs more registers than available
- A "heavy" tree contains a "heavy" subtree whose dependents are "light"
- Simple spilling
- Generate code for the light tree
- Spill the content into memory and replace subtree by temporary
- Generate code for the resultant tree

Example (optimized): x:=b*b-4*a*c

Example (spilled): x := b*b-4*a*

t7 := b * b

$$
x:=t 7-4 * a * c
$$

Example: b*b-4*a*c

Example (simple): b*b-4*a*c

Example (optimized): b*b-4*a*c

Spilling

- Even an optimal register allocator can require more registers than available
- Need to generate code for every correct program
- The compiler can save temporary results
- Spill registers into temporaries
- Load when needed
- Many heuristics exist

Simple Spilling Method

- Heavy tree - Needs more registers than available
- A `heavy’ tree contains a `heavy’ subtree whose dependents are 'light'
- Generate code for the light tree
- Spill the content into memory and replace subtree by temporary
- Generate code for the resultant tree

Spilling

- Even an optimal register allocator can require more registers than available
- Need to generate code for every correct program
- The compiler can save temporary results
- Spill registers into temporaries
- Load when needed
- Many heuristics exist

Simple approach

- Straightforward solution:
- Allocate each variable in activation record
- At each instruction, bring values needed into registers, perform operation, then store result to memory
$x=y+z$

mov 16(\%ebp), \%eax mov 20(\%ebp), \%ebx add \%ebx, \%eax mov \%eax, 24(\%ebx)

- Problem: program execution very inefficientmoving data back and forth between memory and registers

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees (tree-local)
- Basic blocks (block-local)
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (global register allocation)

Example (optimized): b*b-4*a*c

Example (spilled): x := b*b-4*a*

t7 := b * b

$$
x:=t 7-4 * a * c
$$

Simple Spilling Method

```
    Available register set \ Target register;
    WHILE Node /= No node:
    Compute the weights of all nodes of the tree of Node;
    SET Tree node TO Maximal non_large tree (Node);
    Generate code
        (Tree node, Target register, Auxiliary register set);
    IF Tree node /= Node:
        SET Temporary location TO Next free temporary location();
        Emit ("Store R" Target register ",T" Temporary location);
        Replace Tree node by a reference to Temporary location;
        Return any temporary locations in the tree of Tree node
            to the pool of free temporary locations;
    ELSE Tree node = Node:
        Return any temporary locations in the tree of Node
            to the pool of free temporary locations;
        SET Node TO No node;
FUNCTION Maximal non_large tree (Node) RETURNING a node:
    IF Node . weight <= Size of Auxiliary register set: RETURN Node;
    IF Node . left , weight > Size of Auxiliary register set:
        RETURN Maximal non_large tree (Node .left);
```


Register Memory Operations

- Add_Mem X, R1
- Mult_Mem X, R1

- No need for registers to store right operands

Example: b*b-4*a*c

Can We do Better?

- Yes: Increase view of code
- Simultaneously allocate registers for multiple expressions
- But: Lose per expression optimality
- Works well in practice

Register Allocation

- Machine-agnostic optimizations
- Assume unbounded number of registers
- Expression trees
- Basic blocks
- Machine-dependent optimization
- K registers
- Some have special purposes
- Control flow graphs (whole program)

Basic Blocks

- basic block is a sequence of instructions with
- single entry (to first instruction), no jumps to the middle of the block
- single exit (last instruction)
- code execute as a sequence from first instruction to last instruction without any jumps
- edge from one basic block B1 to another block B2 when the last statement of B1 may jump to B2

control flow graph

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- nodes $\mathrm{V}=$ basic blocks
- edges $\mathrm{E}=$ control flow
- $(B 1, B 2) \in E$ when control from B1 flows to B2

$$
t_{2}:=a\left[t_{1}\right]
$$

$$
\mathrm{t}_{4}:=\mathrm{b}\left[\mathrm{t}_{3}\right]
$$

- Leaders-based construction
- Target of jump instructions
- Instructions following jumps

$$
\begin{aligned}
& \text { prod }:=0 \\
& \mathrm{i}:=1 \\
& \mathrm{t}_{1}:=4 * \mathrm{i}
\end{aligned}
$$

$$
\mathrm{t}_{3}:=4 * i
$$

$$
t_{5}:=t_{2} * t_{4}
$$

$$
\mathrm{t}_{6}:=\operatorname{prod}+\mathrm{t}_{5}
$$

$$
\operatorname{prod}:=\mathrm{t}_{6}
$$

$$
\mathrm{t}_{7}:=\mathrm{i}+1
$$

$$
\mathrm{i}:=\mathrm{t}_{7}
$$

$$
\text { if } \mathrm{i}<=20 \text { goto } \mathrm{B}_{2}
$$

control flow graph

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- nodes $V=$ basic blocks
- edges E = control flow
- ($\mathrm{B} 1, \mathrm{~B} 2$) $\in \mathrm{E}$ when control from B1 flows to B2

AST for a Basic Block


```
```

int n;

```
```

int n;
n := a + 1;
n := a + 1;
x := b + n * n + c;
x := b + n * n + c;
n := n + 1;
n := n + 1;
y := d * n;

```
```

y := d * n;

```
```

Dependency graph

```
int n;
n:=a+1;
n := n + 1;
y := d * n;
```


Simplified Data

 Dependency Graph

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	C,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

```
int n;
n := a + 1;
x := b + n * n + c;
n := n + 1;
y := d * n;
```


Question: Why " y "?

y , dead or alive?

x, dead or alive?

Another Example

Creating Basic Blocks

- Input: A sequence of three-address statements
- Output: A list of basic blocks with each three-address statement in exactly one block
- Method
- Determine the set of leaders (first statement of a block)
- The first statement is a leader
- Any statement that is the target of a jump is a leader
- Any statement that immediately follows a jump is a leader
- For each leader, its basic block consists of the leader and all statements up to but not including the next leader or the end of the program

source

for i from 1 to 10
do
for \mathbf{j} from 1 to 10
do
$a[i, j]=0.0 ;$
for i from 1 to 10 do
$a[i, i]=1.0 ;$

Example: Code Block

$$
\begin{aligned}
& \text { \{ int } \mathrm{n} ; \\
& \quad \begin{array}{l}
\mathrm{n}:=\mathrm{a}+1 ; \\
\mathrm{x}:=\mathrm{b}+\mathrm{n} * \mathrm{n}+\mathrm{c} ; \\
\mathrm{n} \\
\quad \mathrm{y}=\mathrm{n}+1 ; \\
\mathrm{y}:=\mathrm{d} * \mathrm{n} ;
\end{array}
\end{aligned}
$$

Example: Basic Block

$$
\begin{aligned}
& \mathrm{n}:=\mathrm{a}+1 ; \\
& \mathrm{x}:=\mathrm{b}+\mathrm{n} * \mathrm{n}+\mathrm{c} ; \\
& \mathrm{n}:=\mathrm{n}+1 ; \\
& \mathrm{y}:=\mathrm{d} * \mathrm{n} ;
\end{aligned}
$$

AST of the Example

Optimized Code (gcc)

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1,R2
Mult_Reg	R1,R2
Add_Mem	b,R2
Add_Mem	C,R2
Store_Reg	R2, x
Add_Const	1,R1
Mult_Mem	d,R1
Store_Reg	R1,Y

Register Allocation for B.B.

- Dependency graphs for basic blocks
- Transformations on dependency graphs
- From dependency graphs into code
- Instruction selection
- linearizations of dependency graphs
- Register allocation
- At the basic block level

Dependency graphs

- TAC imposes an order of execution
- But the compiler can reorder assignments as long as the program results are not changed
- Define a partial order on assignments
$-\mathrm{a}<\mathrm{b} \Leftrightarrow \mathrm{a}$ must be executed before b
- Represented as a directed graph
- Nodes are assignments
- Edges represent dependency
- Acyclic for basic blocks

Running Example

Sources of dependency

- Data flow inside expressions
- Operator depends on operands
- Assignment depends on assigned expressions
- Data flow between statements
- From assignments to their use
- Pointers complicate dependencies

Sources of dependency

- Order of subexpresion evaluation is immaterial
- As long as inside dependencies are respected
- The order of uses of a variable X are immaterial as long as:
- X is used between dependent assignments
- Before next assignment to X

Creating Dependency Graph from AST

- Nodes AST becomes nodes of the graph
- Replaces arcs of AST by dependency arrows
- Operator \rightarrow Operand
- Create arcs from assignments to uses
- Create arcs between assignments of the same variable
- Select output variables (roots)
- Remove ; nodes and their arrows

Running Example

Dependency Graph Simplifications

- Short-circuit assignments
- Connect variables to assigned expressions
- Connect expression to uses
- Eliminate nodes not reachable from roots

Running Example

Cleaned-Up Data Dependency Graph

Common Subexpressions

- Repeated subexpressions
- Examples

$$
\begin{aligned}
& x=a^{*} a+2{ }^{*} a * b+b^{*} b ; \\
& y=a * a-2 * a * b+b{ }^{*} b ; \\
& n[i]:=n[i]+m[i]
\end{aligned}
$$

- Can be eliminated by the compiler
- In the case of basic blocks rewrite the DAG

From Dependency Graph into Code

- Linearize the dependency graph
- Instructions must follow dependency
- Many solutions exist
- Select the one with small runtime cost
- Assume infinite number of registers
- Symbolic registers
- Assign registers later
- May need additional spill
- Possible Heuristics
- Late evaluation
- Ladders

Pseudo Register Target Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1, X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	c,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

Non optimized vs Optimized Code

Load_Mem	a,R1
Add_Const	1,R1
Load_Reg	R1, X1
Load_Reg	X1,R1
Mult_Reg	X1,R1
Add_Mem	b,R1
Add_Mem	C,R1
Store_Reg	R1, x
Load_Reg	X1,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1, Y

Load_Mem	a,R1
Add_Const	$1, R 1$
Load_Reg	R1,R2
Load_Reg	R2,R1
Mult_Reg	R2,R1
Add_Mem	b, R1
Add_Mem	C,R1
Store_Reg	R1, X
Load_Reg	R2,R1
Add_Const	$1, R 1$
Mult_Mem	d,R1
Store_Reg	R1,Y

dd_Mem	a, R1
l_Const	1, R1
1d_Reg	R1, R2
.t_Reg	R1, R2
L_Mem	b, R2
L_Mem	c, R2
re_Reg	R2, x
L_Const	1, R1
.t_Mem	d, R1
re_Reg	R1, Y

Register Allocation

- Maps symbolic registers into physical registers
- Reuse registers as much as possible
- Graph coloring (next)
- Undirected graph
- Nodes = Registers (Symbolic and real)
- Edges = Interference
- May require spilling

Register Allocation for Basic Blocks

- Heuristics for code generation of basic blocks
- Works well in practice
- Fits modern machine architecture
- Can be extended to perform other tasks
- Common subexpression elimination
- But basic blocks are small
- Can be generalized to a procedure

Problem
Technique
Quality
Expression trees, using register-register or memory-register instructions
with sufficient registers:
with insufficient registers:
Dependency graphs, using register-register or memory-register instructions

Expression trees, using any Bottom-up tree rewritinstructions with cost func- ing:
tion
with sufficient registers:
with insufficient registers:
Register allocation when all interferences are known

Weighted trees;
Figure 4.30

Optimal
Optimal
Ladder sequences; Heuristic
Section 4.2.5.2

Section 4.2.6
Optimal
Heuristic
Graph coloring; Heuristic Section 4.2.7

The End

[^0]: i is incremented by a loopinvariant expression on each iteration - this is called an induction variable

