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Our topics today 

●  Two basic garbage collection paradigms: 
○  Mark-Sweep GC 
○  Mark-Compact GC 

 



Definitions 

●  Heap - a contiguous* array of memory 
words. 

●  Granule - the smallest unit of allocation 
(usually a word or a double word) in the 
heap. 

●  Roots - objects in the heap, directly 
accessible by the application code. 



Definitions (cont.) 

●  A collector is the thread(s) responsible for 
garbage collection. 

●  Mutators are threads that alter the heap 
(application code). 

 



Notation 

●  ← is the assignment operator. 
●  =  is the equality operator.  
●  Pointers(obj) - all of obj’s fields (which 

might be data, objects, or pointers to 
objects). 



Assumptions 

●  In our code, possibly multiple mutator 
threads, only one collector thread. 

●  Stop-the-world assumption - all mutator 
threads are stopped when the collector 
thread runs: 
○  Simulates atomicity. 

 



Liveness 

●  An object is live if it will be accessed by a 
mutator at some point in the future. 

●  It’s dead otherwise. 
●  True liveness is undecidable, so we turn to 

an approximation - pointer reachability. 



Pointer reachability 

●  In our context: 
○  An object is live iff it can be reached by following a 

chain of references from the roots. 
○  An object is dead iff it cannot be reached by any 

such chain. 
●  A safe estimate - all dead objects are 

certainly dead (cannot be brought back to 
life by mutator threads). 

 



The tricolor abstraction 

●  A convenient way to describe object states: 
○  Initially, every node is white. 
○  When a node is first encountered (during tracing), it 

is colored grey. 
○  When it has been scanned, and its children 

identified, it is colored black. 
●  At the end of each sweep, no references 

from black to white objects. 
○  All the white objects are unreachable = garbage. 



Mark-Sweep (McCarthy, 1960) 

●  Two main phases: 
○  Tracing/Marking:  

■  Traverse the graph of objects from the roots 
■  Follow pointers  
■  Mark each encountered object.  

○  Sweeping:  
■  Examine every object in the heap 
■  Reclaim the space of any unmarked object 

(garbage). 
 



Bitmap marking 

●  Use a mark-bit to determine the liveness of 
an object (1 = live, 0 = dead). 

●  Two ways to keep track of mark-bits: 
○  A bit in the header of an object. 
○  A bitmap. 



Mark-Sweep (cont.) 

●  An indirect collection algorithm: 
○  Doesn’t identify garbage. 
○  Identifies all the live objects. 

■  Concludes that all the rest is garbage.  
●  Recalculates the live set (a set of all the 

marked/live objects) with each invocation. 
●  Whiteboard example. 



New 

GC’s interaction with the mutator: 



markFromRoots 

Note: mark() doesn't have to be called after adding every root 
object. Its call can be moved outside the loop. 



mark 

●  Worklist implementation: 
○  A single-thread collector can be implemented with a stack. 
○  Meaning - the traversal is done using DFS. 

 



Correctness of mark 

●  Termination is enforced by not adding 
already marked objects to the worklist.  

●  Eventually, the list becomes empty. 
●  At that point, every object reachable from the 

roots has been visited and was marked. 



sweep 

●  Reminder: we call sweep from collect with HeapStart and 
HeapEnd as the parameters. 

●  We then traverse the whole heap, and reclaim the space of any 
unmarked object. 



Possible issues with mark-sweep 

●  Severe fragmentation (caused by not 
moving objects). 

●  Heap traversal in the presence of padding. 



Improving Mark-Sweep 

●  Linear bitmaps [Printezis and Detlefs, 2000] 
●  Lazy sweeping [Hughes, 1982] 
●  If there’s time: 

○  FIFO prefetch buffer [Cher et al, 2004] 
○  Edge marking [Garner et al, 2007] 



Bitmaps 

●  A bitmap is a table of mark-bits. 
●  Each bit corresponds to an object on the 

heap. 
●  Fast access (may be held in the RAM). 
●  Can find the corresponding bit in O(1) time. 



MS Improvement: Linear bitmaps 

●  Use bitmaps to reduce the amount of space 
used for the mark stacks (the worklist): 
○  Mark all the root objects in the bitmap. 
○  Next, linearly traverse the bitmap, top down, and 

only add new children to the worklist if they are 
below a “finger”.  

●  Maintain the invariant that marked object 
below the “finger” are black, and those 
above it are grey. 

 



Bitmap mark 

●  Main change is in the highlighted row: new objects are only added 
to the worklist if they are above the current “finger”.  

●  Possibly a constant improvement in running time (not asymptotic).  



MS Improvement: Lazy sweeping 

●  Motivation: reduce (or even eliminate) 
mutators  stop time during the sweep phase. 

●  Two observations: 
a.  Once an object is garbage, it remains garbage: it 

can neither be seen nor resurrected by a mutator. 
b.  Mutators cannot access mark-bits. 

●  Conclusion: the sweeper can be executed 
in parallel with mutator threads. 



 
Lazy sweeping 

●  Amortise the cost of sweeping by having the 
allocator perform the sweep. 

●  allocate advances the sweep pointer until 
it finds sufficient space. 
○  Usually more practical to sweep a block at a time. 



collect and allocate 

●  Note: blocks are grouped by their size class (sz). 



lazySweep 



Lazy sweep benefits 

●  Good locality:  
○  Object slots tend to be used soon after they are 

swept. 
●  Complexity is now proportional to the size of 

the live data in the heap (as opposed to the 
whole heap). 

●  Performs best when most of the heap is 
empty. 



Bonus: Snapshot mark-sweep 

●  The basic mark and sweep algorithm stops 
all mutator threads during both mark and 
sweep phases. 

●  Use the observation that the set of 
unreachable objects does not shrink 
○  So the only time mutator threads must be stopped is 

during the mark phase. 



Snapshot mark-sweep (cont.) 

●  Basic algorithm: 
○  Stop all mutators 
○  Take a snapshot (replica) of the heap and roots 
○  Resume mutators 
○  Trace the replica 
○  Sweep all objects in the original heap whose 

replicated counterparts are unmarked.  
■  These objects must have been unreachable at 

the time the snapshot was taken. 
■  They will remain unreachable until the collector 

frees them. 



Snapshot mark-sweep (limitations) 

●  The problem with this approach is that 
making a snapshot of the heap is not 
realistic. 
○  Requires too much space and time.  

●  Usually, only a small part of the heap it is 
modified at a time. 

●  A full solution to this problem exists, but is 
outside the scope of this discussion. 



Mark-sweep GC advantages 

●  Low overhead:  
○  Basic mark-sweep imposes no overhead on mutator 

read and write operations. 
●  Good throughput:  

○  Setting a bit or byte is cheap 
○  The mark phase is very inexpensive. 

●  Good space usage:  
○  A single bit/byte for an object is an inexpensive way 

to store that object’s state. 



Moving objects 

●  The benefit in not moving objects is that 
mark-sweep is suitable for use in 
environments with no type-safety.  
○  Moving an object forces us to update the roots. 

●  The disadvantage is severe fragmentation, 
especially for long-running programs. 



Possible solution to not moving 

●  Some collectors that use mark-sweep, also 
periodically employ another algorithm, such 
as mark-compact, to defragment the heap. 

●  Especially useful in cases where the 
program doesn’t use consistent object sizes. 



Mark-compact GC 

●  Two main phases: 
○  Tracing/marking:  

■  Mark all the live objects. 
○  Compacting:  

■  Relocate live objects 
■  Update the pointer values of all the live 

references to objects that were moved. 
○  The number/order of passes and the way in which 

objects are relocated varies. 



Compaction order 

●  Three ways to rearrange objects in the heap: 
○  Arbitrary: objects are relocated without regard for 

their original order. 
■  Fast, but leads to poor spatial locality. 

○  Linearising: objects are relocated to be adjacent to 
related objects (siblings, pointer and reference, etc.) 

○  Sliding: objects are slid to one end of the heap, 
“squeezing out” garbage, and maintaining the 
original allocation order in the heap. 
■  Used by most modern mark-compact collectors. 



Mark-compact GC 

●  The compacting technique minimizes (or 
even eliminates) fragmentation.  

●  Very fast, sequential allocation: 
○  Test against a heap limit. 
○  ‘Bump’ a free pointer by the size of the allocation 

request. 
●  We only discuss in-place compaction (as 

opposed to copying collection). 



The algorithms we will discuss 

●  Edward’s Two-finger compactions 
[Saunders, 1974] 

●  Lisp 2 collector 
●  If there’s time: 

○  Threaded compaction [Jonkers, 1979] 
○  One pass algorithms [Abuaiadh et al, 2004, 

Kermany and Petrank, 2006] 



Invocation 

●  All compaction algorithms are invoked as 
follows: 

 



Two-finger compaction 

●  A two-pass, arbitrary order algorithm 
●  Works best if objects are of a fixed size. 
●  Basic idea:  

○  Given the number of live objects, 
○  Set a high-water mark: 

■  Move all the live objects into gaps below it. 
■  Reclaim all the space above it. 



TF compaction: relocate 

The forwarding address will allow us to update old values of pointers to objects 
above the high-water mark (that free is pointing to, at the end of the first pass). 



 
 
TF compaction: updateReferences 



TF compaction: pros and cons 

●  Pros: 
○  Simplicity and speed: minimal work is done at each 

iteration. 
○  No memory overhead: forwarding addresses are 

written into slots above the high-water mark, after 
the information has been moved, so no information 
is ever destroyed. 

●  Cons: 
○  The movement of scan requires the ability to 

traverse the heap backwards. 
○  Arbitrary move order. 



TF compaction: an improvement 

●  A possible improvement to the mutator 
locality is to move groups of consecutive 
live objects into large gaps, using the fact 
that objects tend to live and die together in 
clumps. 



Lisp 2 

●  A sliding collector algorithm. 
●  Adds a field to the header of every object for 

the forwarding address. 
○  Can also be used for the mark-bit. 
○  That memory overhead is the chief drawback of the 

algorithm. 
●  Can be used with objects of varying sizes. 
●  Arguably the fastest compaction algorithm. 
 



Three passes over the heap 

●  The first pass (after marking): 
○  Compute the future location of each live object. 
○  Store it in the object’s forwardingAddress field. 

●  The second pass: 
○  Updates all pointers to the new forwarding address. 

●  The third pass: 
○  Moves the actual objects to the forwarding address. 



Pass direction 

●  The direction of the passes (upward in the 
heap) is opposite to the object’s moving 
direction (downward).  

●  This guarantees that when the object is 
copied (in the third pass), the location is 
already vacant. 



computeLocations 

Ignore any dead objects - no need to relocate them. 



updateReferences 

Use the forwarding addresses to update the references of the live 
objects. 



relocate 

Move every object to the forwarding address. 



Mark-compact collection: pros 

●  Compaction is very effective way to deal with 
heap fragmentation. 

●  Allows for very fast sequential allocation, 
after compaction. 

●  Effective in the case of long lived (or 
immortal) objects, that remain unmoved at 
the bottom of the heap. 

 



Mark-compact collection: cons 

●  Has some space overheads incurred by 
storing forwarding addresses. 

●  Usually has a slower throughput than mark-
sweep or copying GC, as it requires more 
passes over the heap. 



Discussion 

●  In MS, think of a way to prefetch objects 
ahead of time. 

●  In MS, think of a way to reduce the size of 
the worklist. 

●  In MC, think of a way to not use any extra 
space. 

●  In MC, think of a way to sweep in one pass. 



Fin 
 
 

＼(^o^)／ 

Questions? 
                                 
 



Appendix 

Additional algorithms 



MS Improvement: FIFO prefetch buffer 

●  Use a FIFO buffer alongside the mark stack: 
○  To add an object to the worklist: 

■  Push it onto the mark stack. 
○  To remove an object from the worklist 

■  Remove the oldest item from the buffer. 
■  Insert the entry at the top of the stack to the 

buffer. 
■  Prefetch the object to which the entry points. 

●  It will be in the cache when the entry leaves the buffer. 



FIFO prefetch buffer 
 

mark stack 

roots 

children children 

... ... ... 

FIFO remove() 

prefetch() 

addr 

add() 

child 

obj 



Marking with a FIFO prefetch buffer 



MS Improvement: Edge marking 

●  Motivation: reduce the number of cache 
misses when checking isMarked(child) 
during mark. 

●  Add to the worklist every child of an 
unmarked object, without checking. 

●  Works in conjunction with the FIFO buffer. 



mark with edge marking 

●  We aren’t checking whether isMarked(child), but instead adding 
every child, regardless. 

●  isMarked and Pointers now operate only on obj, which has been 
(hopefully) prefetched using the FIFO queue, thus, much fewer misses 
should occur. 



MC improvement: Threaded compaction 

●  We allow all references to a node N to be 
found from N.  

●  Achieved by temporarily reversing the 
direction of pointers. 

●  The algorithm we discuss is by Jonkers 
[1979] 

●  Two passes over the heap:  
○  The first to thread references that point forward in 

the heap. 
○  The second to thread backward pointers. 



Threaded compaction (cont.) 

●  Threading requires no extra storage yet 
supports sliding compaction. 

●  Requires enough room in the header to store 
an address (a weak requirement). 

●  Also requires the ability to differentiate 
pointers from other values (may be harder). 



Threading: visualisation 

A B C 

N in
fo

 
(a)  Before threading: three objects refer to N. 

A B C 

N 

in
fo

 

(b)  After threading: all pointers to N have been 
‘threaded’ so that the objects that previously 
referred to N can now be found from N. The 
value previously stored in the header word of 
N, which is now used to store the threading 
pointer, has been (temporarily) moved to the 
first field (in A) that referred to N. 



compact, thread and update 

●  Illustration on the board. 

 



updateForwardReferences 

●  Unthreading means pointing all the threaded objects that used to 
point to scan to the address occupied by free, where the object 
that resides in scan will eventually move to. 



updateBackwardReferences 

●  Threading of all the children and forward references unthreading 
were done in the first pass. 

●  All the backward references were threaded during the first pass, 
and these are the only ones we’re updating now.  



Threaded compaction: pros and cons 

●  Pros: 
○  Doesn’t require any additional space  

●  Cons: 
○  Each pointer is modified twice (thread/unthread). 
○  Cache unfriendly - requires chasing pointers (3 times 

in Jonkers’ algorithm: mark/thread/unthread). 
○  Object fields must be large enough to hold a pointer. 
○  Pointers must be distinguishable from a normal 

value. 



MC improvement: One-pass 
algorithms 

●  Motivation: perform sliding compaction in 
one pass. 

●  Achieved by using a bitmap, and another 
table, to store forwarding addresses. 



The two tables 

●  A bitmap: 
○  One bit for each granule of the heap. 
○  Marking sets bits corresponding to the first and last 

granules of each live object. 
●  An offset table for the forwarding addresses: 

○  Divide the heap into small, equal-sized blocks (256 
or 512 bytes).  

○  Store the forwarding address of the first live object 
in each block in the table. 

 



Address derivations 

●  The new location of the other live objects in 
a block (other than the first one) can be 
computed on-the-fly from the offset and 
mark-bit vectors. 

●  Similarly, given a reference to any object, we 
can compute its block number, and thus 
derive its forwarding address from the entry 
in the offset table and the mark-bits. 



Visualization 

Consider the object in bold. Bits 2-3, 6-7 in the first block and 4-6 in the 
second are set. Thus, 7 granules are already taken by objects that 
come before. So the first live object in block 2 will be relocated to the 
8th slot in the heap (as seen in the offset vector - see the arrow). 



Visualization (cont.) 

Consider the object old. We obtain its block number and use it as an index 
into the offset vector. This is the address of the first object in the block. 
Then look at the bitmap, to find the offset in this block (3), and calculate the 
final address: offset[block]=7 plus offsetInBlock(old)=3 equals 
10. 



computeLocations 



updateReferencesRelocate 


