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Abstract. Apache Spark is a popular framework for writing large scale
data processing applications. Our long term goal is to develop automatic
tools for reasoning about Spark programs. This is challenging because
Spark programs combine database-like relational algebraic operations
and aggregate operations, corresponding to (nested) loops, with User
Defined Functions (UDFs). In this paper, we present a novel SMT-based
technique for verifying the equivalence of Spark programs.
We model Spark as a programming language whose semantics imitates
Relational Algebra queries (with aggregations) over bags (multisets) and
allows for UDFs expressible in Presburger Arithmetics. We prove that the
problem of checking equivalence is undecidable even for programs which
use a single aggregation operator. Thus, we present sound techniques for
verifying the equivalence of interesting classes of Spark programs, and
show that it is complete under certain restrictions. We implemented our
technique, and applied it to a few small, but intricate, test cases.

1 Introduction

Spark [17, 29,30] is a popular framework for writing large scale data processing
applications. It is an evolution of the Map-Reduce paradigm, which provides
an abstraction of the distributed data as bags (multisets) of items. A bag r can
be accessed using higher-order operations such as map, which applies a user
defined function (UDF) to all items in r; filter , which filters items in r using a
given boolean UDF; and fold which aggregates items together, again using a
UDF. Intuitively, map, filter and fold can be seen as extensions to the standard
database operations project, select and aggregation, respectively, with arbitrary
UDFs applied. Bags also support by-key, join and cartesian product operators. A
language such as Scala or Python is used as Spark’s interface, allowing to embed
calls to the underlying framework, as well as defining UDFs that Spark executes.
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This paper shows how to harness SMT solvers to automatically reason about
small subsets of Spark programs. Specifically, we are interested in developing
tools that can check whether two Spark programs are equivalent and produce a
witness input for the different behavior of inequivalent ones. Reasoning about the
equivalence of Spark programs is challenging—not only is the problem undecidable
even for programs containing a single aggregate operation, some specific intricacies
arise from the fact that the input datasets are bags (rather than simple sets or
individual items), and that the output might expose only a partial view of the
results of UDF-based aggregations.

Our main tool for showing equivalence of Spark programs is reducing the
equivalence question to the validity of a formula in Presburger arithmetic, which
is a decidable theory [12, 22]. More specifically, we present a simplified model
of Spark by defining SparkLite, a functional programming language in which
UDFs are expressed over a decidable theory. We show that SMT solvers can
effectively verify equivalence of and detect potential differences between Spark
programs. We present different verification techniques which leverage certain
semantic restrictions which, in certain cases, make the problem decidable. These
restrictions can also be validated through SMT. Arguably, the most interesting
aspect of our technique is that it can reason about higher order operations
such as fold and foldByKey, corresponding to limited usage of loops and nested
loops, respectively. The key reason for the success of our techniques is that our
restrictions make it possible to automatically infer inductive hypotheses simple
enough to be mechanically checked by SMT solvers, e.g., [10].
Main Results Our main technical contributions can be summarized as follows:
– We prove that verifying the equivalence of SparkLite programs is undecidable

even in our limited setting.
– We identify several interesting restrictions of SparkLite programs, and de-

velop sound, and in certain cases complete, methods for proving program
equivalence. (See Table 1, which we gradually explain in Section 2.)

– We implemented our approach on top of Z3 [10], and applied it to several
interesting programs inspired by real-life Spark applications. When the imple-
mentation employs a complete method and determines that a pair of programs
is not equivalent, it produces a (real) counterexample of bag elements which
are witnesses for the difference between the programs. This counterexample
is guaranteed to be valid for programs which have a complete verification
method, and can help understand the differences between these programs.

2 Overview

For space considerations, we concentrate on presenting an informal overview
through a series of simple examples, and formalize the results in [13].

Figure 1 shows two equivalent Spark programs and the formula that we use
for checking their equivalence. The programs accept a bag of integer elements.
They return another bag where each element is twice the value of the original
element, for elements which are at least 50. The programs operate differently:
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Method Syntactic restriction Semantic restriction Complete?
NoAgg No folds - X
AggOnep Single fold, primitive output - -
AggOneb Single fold, bag output - -
AggMultp Non-nested folds, primitive output - -
AggOnep

sync Single fold, primitive output Synchronous collapsible X
aggregations

AggOneKb Single fold by key, bag output Isomorphic keys -

Table 1. Sound methods for verifying equivalence of Spark programs, their syntactic and
semantic prerequisites, and completeness. By abuse of notation, we refer to SparkLite
programs adhering to the syntactic restriction of one of the first four verification methods
as belonging to the class of SparkLite programs of the same name.

P1(R : BagInt): P2(R : BagInt):
R′1 = map(λx.2 ∗ x)(R) R′2 = filter(λx.x ≥ 50)(R)
R′′1 = filter(λx.x ≥ 100)(R′1) R′′2 = map(λx.2 ∗ x)(R′2)
return R′′1 return R′′2

∀x.ite(2 ∗ x ≥ 100, 2 ∗ x,⊥) = 2 ∗ ite(x ≥ 50, x,⊥) .

Fig. 1. Equivalent Spark programs and a formula attesting for their equivalence.

P1 first multiplies, then filters, while P2 goes the other way around. map and
filter are operations that apply a function on each element in the bag, and
yield a new bag. For example, let bag R be the bag R = {{2, 2, 103, 64}} (note that
repetitions are allowed). R is an input of both P1 and P2. The map operator in
the first line of P1 produces a new bag, R′

1, by doubling every element of R, i.e.,
R′

1 = {{4, 4, 206, 128}}. The filter operator in the second line generates bag R′′
1 ,

containing the elements of R′
1 which are at least 100, i.e., R′′

1 = {{206, 128}}. The
second program first applies the filter operator, producing a bag R′

2 of all the
elements in R which are not smaller than 50, resulting in the bag R′

2 = {{103, 64}}.
P2 applies the map operator to produce bag R′′

2 which contains the same elements
as R′′

1 . Hence, both programs return the same value.
To verify that the programs are indeed equivalent, i.e., given the same inputs

produce the same outputs, we encode them symbolically using formulae in
first-order logic, such that the question of equivalence boils down to proving
the validity of a formula. In this example, we encode P1 as a program term:
φ(P1)= ite(2 ∗ x ≥ 100, 2 ∗ x,⊥), and P2 as: φ(P2)=2 ∗ ite(x ≥ 50, x,⊥), where
ite denotes the if-then-else operator and ⊥ is used to denote that the element has
been removed. The variable symbol x can be thought of as an arbitrary element
in the bag R, and the terms φ(P1) and φ(P2) record the effect of P1 and P2,
respectively, on x. The constant symbol ⊥ records the deletion of an element due
to not satisfying the condition checked by the filter operation. The formula
whose validity attests for the equivalence of P1 and P2 is ∀x.φ(P1)=φ(P2). It
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is expressible in a decidable extension of Presburger Arithmetics, which supports
the special ⊥ symbol (see [13, Section 8]). Thus, its validity can be decided.

This example points out an important property of the map and filter opera-
tions, namely, their locality: they handle every element separately, with no regard
to its multiplicity (the number of duplicates it has in the bag) or the presence of
other elements. Thus, we can symbolically represent the effect of the program
on any bag, by encoding its effect on a single arbitrary element from that bag.
Interestingly, the locality property transcends to the cartesian product operator
which conjoins items across bags.
Decidability. The validity of the aforementioned formula suffices to prove the
equivalence of P1 and P2 due to a tacit fact: both programs operate on the same
bag. Consider, however, programs P1′ and P2′ which receive bags R1 and R2
as inputs. P1′ maps all the elements of R1 to 1 and P2′ does the same for R2.
Their symbolic encoding is φ(P1′) = (λx.1)x1 and φ(P1′) = (λx.1)x2, where x1
and x2 represent, respectively, arbitrary elements from R1 and R2. The formula
∀x1, x2.φ(P1′) = φ(P2′) is valid. Alas, the programs produce different results if
R1 and R2 have different sizes. Interestingly, we show that unless both programs
always return the empty bag, they are equivalent iff their program terms are
equivalent and use the same variable symbols.4 Furthermore, it is possible to
decide whether a program always returns the empty bag by determining if
its program term is equivalent to ⊥. Theorem 1 (Section 4.1) shows that the
equivalence of NoAgg programs, i.e., ones not using aggregations, can be decided.

Usage of inductive reasoning We use inductive reasoning to determine the
equivalence of programs that use aggregations. Theorem 2 (presented later on)
shows that equivalence in AggOnep, that is, of programs that use a single fold
operation and return a primitive value, is undecidable. Thus, we consider different
classes of programs that use aggregations in limited ways.

Figure 2 contains an example of two simple equivalent AggOnep programs.
The programs operate over a bag of pairs (product IDs, price). The programs
check if the minimal price in the bag is at least 100. The second program does this
by subtracting 20 from each price in the bag and comparing the minimum to 80.
P3 computes the minimal price in R using fold, and then returns true if it is at
least 100 and false otherwise. P4 first applies discount to every element, resulting
in a temporary bag R′, and then computes the minimum of R′. It returns true if
the minimum is at least 80, and false otherwise.

The fold operation combines the elements of a bag by repeatedly applying a
UDF. fold cannot be expressed in first order terms. Thus, we use induction to
verify that two fold results are equal. Roughly speaking, the induction leverages
the somewhat local nature of the fold operation, specifically, that it does not
track how the temporarily accumulated value is obtained: Note that the elements
of R′ can be expressed by applying the discount function on the elements of R.
Thus, intuitively, we can assume that in both programs, fold iterates on the input

4 Recall that intuitively, these variables pertain to arbitrary elements in the input bags.
In our example, φ(P1′) uses variable x1 and φ(P2′) uses x2.
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discount = λ(prod, p).(prod, p− 20)
min2 = λA, (x, y).if A < y then A else y

P3(R : BagProd×Int): P4(R : BagProd×Int):
minP = fold(+∞,min2 )(R) R′ = map(λ(prod, p).discount((prod, p)))(R)
return minP ≥ 100 minDiscountP = fold(+∞,min2)(R′)

return minDiscountP ≥ 80(
prod′ = prod ∧ p′ = p− 20 assumptions
∧M2 = ite(M1 < p,M1, p) ∧M ′2 = ite(M ′1 < p′,M ′1, p

′) assumptions

)
=⇒ (+∞ ≥ 100 ⇐⇒ +∞ ≥ 80) base case
∧((M1 ≥ 100 ⇐⇒ M ′1 ≥ 80) =⇒ (M2 ≥ 100 ⇐⇒ M ′2 ≥ 80)) induction step

Fig. 2. Equivalent Spark programs with aggregations and an inductive equivalence
formula. Variables prod, p, prod′, p′,M1,M

′
1,M2,M

′
2 are universally quantified.

bag R in the same order. (It is permitted to assume a particular order because
the applied UDFs must be commutative for the fold to be well-defined [17].5)
The base of the induction hypothesis checks that the programs are equivalent
when the input bags are empty, and the induction step verifies the equivalence is
retained when we apply the fold’s UDF on some arbitrary accumulated value
and an element coming from each input bag.6 In our example, when the bags are
empty, both programs return true. (The fold operation returns +∞.) Otherwise,
we assume that after n prices checked, the minimum M1 in P3 is at least 100
iff the minimum M ′

1 in P4 is at least 80. The programs are equivalent if this
invariant is kept after checking the next product and price ((prod, p), (prod′, p′))
giving updated intermediate values M2 and M ′

2.
Completeness of the inductive reasoning. In the example in Figure 2, we use
a simple form of induction by proving that two higher-order operations are
equivalent iff they are equivalent on every input element and arbitrary temporarily
accumulated values (M1 and M ′

1 in Figure 2). Such an approach is incomplete.
We now show an example for incompleteness, and a modified verification formula
that is complete for a subset of AggOnep, called AggOnepsync. In Figure 3, P3
and P4 were rewritten into P5 and P6, respectively, by using = instead of ≥. The
rewritten programs are equivalent. We show both the “naïve” formula, similar
to the formula from Figure 2, and a revised version of it. (We explain shortly
how the revised formula is obtained.) The naïve formula is not valid, since it
requires that the returned values be equivalent ignoring the history of applied
fold operations generating the intermediate values M1 and M ′

1. For example,

5 We note that our results do not require UDFs to be associative, however, Spark does.
6 Note that AggOnep programs can fold bags produced by a sequence of filter, map,
and cartesian product operations. Our approach is applicable to such programs
because if the program terms of two folded bags use the same variable symbols, then
any selection of elements from the input bags produces an element in the bag being
folded in one program iff it produces an element in the bag that the other program
folds. (See Lemma 1)
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for M1 =60, M ′
1 =120, and p=100, we get a spurious counterexample to equality,

leading to the wrong conclusion that the programs may not be equivalent. In
fact, if P5 and P6 iterate over the input bag in the same order, it is not possible
that their (temporarily) accumulated values are 60 and 120 at the same time.

Luckily, we observe that, often, the fold UDFs are somewhat restricted. One
such natural property, is the ability to “collapse” any sequence of applications
of the aggregation function f using a single application. We can leverage this
property for more complete treatment of equivalence verification, if the programs
collapse in synchrony; given their respective fold functions f1, f2, initial values
i1, i2, and the symbolic representation of the program term pertaining to the
folded bags ϕ1, ϕ2, the programs collapse in synchrony if the following holds:

∀x, y.∃a. f1(f1(i1, ϕ1(x)), ϕ1(y)) = f1(i1, ϕ1(a)) (1)
∧ f2(f2(i2, ϕ2(x)), ϕ2(y)) = f2(i2, ϕ2(a))

Note that the same input a is used to collapse both programs. In our exam-
ple, min(min(+∞, x), y) = min(+∞, a), and min(min(+∞, x − 20), y − 20) =
min(+∞, a− 20), for a = min(x, y). The reader may be concerned how this clo-
sure property can be checked. Interestingly, for formulas in Presburger arithmetic,
an SMT solver can decide this property.

We utilized the above closure property by observing that any pair of interme-
diate results can be expressed as single applications of the UDF. Surely any M1
must have been obtained by repeating applications of the form f1(f1(· · · )), and
similarly for M ′

1 with f2(f2(· · · )). Therefore, in the revised formula, instead of
quantifying on any M1 and M ′

1, we quantify over the argument a to that single
application, and introduce the assumption incurred by Equation (1). We can
then write an induction hypothesis that holds iff the two fold operations return
an equal result.

Handling ByKey Operations Spark is often used to aggregate values of
groups of records identified by a shared key. For example, in Figure 4 we present
two equivalent programs that given a bag of pairs of student IDs and grades,
return a histogram graph of all passing grades (≥ 60), in deciles. P7 first maps
each student’s grade to its decile, while making the decile the key. (The key is
the first component in the pair.) Then, it computes the count of all students in
a certain decile using the foldByKey operation, and filters out all non-passing
deciles (< 6) from the resulting histogram. P8 first filters out all failing grades,
and then continues similarly with the histogram computation.

Verifying the equivalence of P7 and P8 is challenging because, intuitively,
the by-key operation corresponds to a nested loop: It partitions the bag into
“buckets” according to the key element of the bag and folds every bucket separately.
Furthermore, note that the two programs fold bags which contain different keys.

Our approach to verify programs using by-key operations is based on a reduc-
tion to the problem of verifying programs using fold: We rewrite the programs,
so instead of applying the fold operation on one bucket at a time (as foldByKey
does), we apply it on the entire bag to get the global aggregated result. We then
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min2 = λA, (x, y). ite(A < y,A, y)
P5(R : BagProd×Int): P6(R : BagProd×Int):
minP = fold(+∞,min2 )(R) R′ = map(λ(prod, p).discount((prod, p)))(R)
return minP = 100 minDiscountP = fold(+∞,min2)(R′)

return minDiscountP = 80

Naïve formula:(
prod′ = prod ∧ p′ = p− 20 assumptions
∧M2 = ite(M1 < p,M1, p) ∧M ′2 = ite(M ′1 < p′,M ′1, p

′) assumptions

)
=⇒ (+∞ = 100 ⇐⇒ +∞ = 80) base case
∧((M1 = 100 ⇐⇒ M ′1 = 80) =⇒ (M2 = 100 ⇐⇒ M ′2 = 80)) induction step

Revised formula: prod′ = prod ∧ p′ = p− 20 assumptions
∧ a = (a0, a1) ∧M1 = ite(+∞ < a1,+∞, a1)

}
closure

∧M ′1 = ite(+∞ < a1 − 20,+∞, a1 − 20) property
∧M2 = ite(M1 < p,M1, p) ∧M ′2 = ite(M ′1 < p′,M ′1, p

′) assumptions


=⇒ (+∞ = 100 ⇐⇒ +∞ = 80) base case
∧((M1 = 100 ⇐⇒ M ′1 = 80) =⇒ (M2 = 100 ⇐⇒ M ′2 = 80)) induction step

Fig. 3. Equivalent Spark programs for which a more elaborate induction is required.
All variables are universally quantified.

map each key to the global aggregated result, instead of the aggregated result
for the bucket. It is then possible to write an inductive hypothesis based on
the rewritten program. The reduction is sound if the two compared programs
partition the bag’s elements to buckets consistently: If program Q1 sends two
elements to the same bucket, then Q2 must also send those two elements to the
same bucket (although it does not have to be the same bucket as Q1), and vice
versa. As with the property of collapsibility seen earlier, this property can also
be expressed in Presburger arithmetic, and be verified using an SMT solver: for
functions k1 and k2 that describe expressions for keys, we require:

∀x, x′.
(
(k1(x) = k1(x′) ∧ k1(x) 6= ⊥) =⇒ (k2(x) = k2(x′))

)
(2)

∀x, x′.
(
(k2(x) = k2(x′) ∧ k2(x) 6= ⊥) =⇒ (k1(x) = k1(x′))

)
(3)

Figure 4 shows the inductive hypothesis whose validity ensures the equivalence
of P7 and P8, as well as the resulting instantiation of Equations (2) and (3).
AggOneKb is a sound method for verifying equivalence of pairs of programs that
use single foldByKey and satisfy Equations (2) and (3). (See [13, Lemma 7].)7

7 Our approach is not sound if Equations (2) and (3) do not hold. To illustrate such a
case, consider a hypothetical a case in which P7′ computes the histogram by deciles,
P8′ by percentiles, and then both programs map all the elements to a constant,
ignoring the aggregated value. P7′ produces at most 10 elements (one per decile),
while P8′ produces at most 100, so they are clearly inequivalent.
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getDecile = λ(sId, g). (g/10, sId) ; count = λA, v. A+ 1
isPassingDecile = λ(d, sId).d ≥ 6 ; isPassingGrade = λ(sId, g).g ≥ 60

P7(R : BagStudentID×Int): P8(R : BagStudentID×Int):
R′ = map(getDecile)(R) R′ = filter(isPassingGrade)(R)
H = foldByKey(0, count)(R′) R′′ = map(getDecile)(R′)
return filter(isPassingDecile)(H) return foldByKey(0, count)(R′′)(
d = g/10 assumptions

)
=⇒

(
ite(d ≥ 6, (d, 0),⊥) = (ite(g ≥ 60, d,⊥), 0) base case

∧
(
ite(d ≥ 6, (d,C),⊥) = (ite(g ≥ 60, d,⊥), C′) =⇒ induction step
ite(d ≥ 6, (d,C + 1),⊥) = (ite(g ≥ 60, d,⊥), C′ + 1)

))
∀g, g′.(g/10 = g′/10 ∧ g 6= ⊥) =⇒ ite(g ≥ 60, g/10,⊥) = ite(g′ ≥ 60, g′/10,⊥) (2)
∀g, g′.ite(g ≥ 60, g/10,⊥) = ite(g′ ≥ 60, g′/10,⊥) ∧ ite(g ≥ 60, g/10,⊥) 6= ⊥ =⇒ g/10 = g′/10 (3)

Fig. 4. Equivalent Spark programs with aggregation by-key. All variables are universally
quantified. If any component of the tuple is ⊥, then the entire tuple is considered as ⊥.

Decidability. Table 1 characterizes the programs for which our method is ap-
plicable, together with the strength of the method.8 The example programs
in Figure 1 are representative of programs that belong to the NoAgg class of
programs, for which we have a decision procedure for verifying equivalence. We
consider five classes of programs containing fold operations. Equivalence in
AggOnep is undecidable, and the result is extended naturally to the special
cases of AggOneKb, AggOneb and AggMultp. On the other hand, AggOnepsync
is a complete verification method. The equivalence of the programs in Figures 2
and 3 can be verified using AggOnepsync. Note that applying AggOnepsync and
AggOneKb require also checking the validity of Equation (1), respectively Equa-
tions (2) and (3). Fortunately, these requirements are expressed in Presburger
arithmetic and thus can be decided.
Limitations We restrict ourselves to programs using map, filter, cartesian
product, fold, and foldByKey where UDFs are defined in Presburger Arithmetic.
We forbid self products—it is possible, but technically cumbersome, to extend
our work to support self-products. However, supporting operators such as union
and subtract can be tricky because of the bag semantics. Presburger arithmetic
can be implemented with solvers such as Cooper’s algorithm [9]. For simplicity
we use Z3 which does not support full Presburger arithmetic, but supports
the fragment of Presburger arithmetic used in this paper. Z3 also supports
uninterpreted functions, which are useful to prove equivalence of other classes of
Spark programs, but this is beyond the scope of this paper.

8 Due to space considerations, we do not discuss equivalence of programs from mixed
syntactic classes with comparable output types. In essence, there is a reduction from
these instances such that one of the methods presented here will be applicable.
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First-Order Functions Fdef ::= def f = λy : τ . e : τ
Second-Order Functions PFdef ::= def F = λx : τ . λy : τ . e : τ
Function Expressions f ::= f | F (e)
Bag Expressions µ ::= cartesian(µ, µ′) | map(f)(µ) | filter(f)(µ) | r
General Expressions η ::= e | µ | fold(e, f)(µ) | foldByKey(e, f)(µ)
Let expressions E ::= let x= η in E | ε
Programs Prog ::= P (r : Bagτ , v : τ ) = Fdef PFdef E η

Fig. 5. Syntax for SparkLite

3 The SparkLite language

In this section, we describe SparkLite, a simple functional programming language
based on the operations provided by Spark [29].
Preliminaries. We denote a (possibly empty) sequence of elements coming from
a set X by X. An if-then-else expression ite(p, e, e′) denotes an expression that
evaluates to e if p holds and to e′ otherwise. A bag m over a domain X is a
multiset, i.e., a set which allows for repetitions, with elements taken from X.
We denote the multiplicity of an element x in bag m by m(x), where for any
x, either 0 < m(x) or m(x) is undefined. We write x ∈ m as a shorthand for
0 < m(x). We write {{x;n(x) | x ∈ X ∧ φ(x)}} to denote a bag with elements
from X satisfying some property φ with multiplicity n(x), and omit the conjunct
x ∈ X if X is clear from context. We denote the size (number of elements) of
a bag m by |m| and the empty bag by {{}}. We denote the i-th component of a
tuple x by pi(x), and extend pi(·) to bags containing tuples in the natural way.
SparkLite The syntax of SparkLite is defined in Figure 5. SparkLite supports
two primitive types: integers (Int) and booleans (Boolean). On top of this, the
user can define record types τ , which are tuples of primitive types, and Bags:9
Bagτ is (the type of) bags containing elements of type τ . We refer to primitive
types and records as basic types, and, by abuse of notation, range over them using
τ . We use e to denote a basic expression containing only basic types, written
in Presburger arithmetics extended to include tuples in a straightforward way.
(See [13, Section 8].) We range over variables using v and r for variables of basic
types and Bag, respectively.

A program P (r : Bagτ ,v : τ ) = Fdef PFdef E η is comprised of a header and
a body, which are separated by the = sign. The header contains the name of the
program (P ) and a sequence of the names and types of its input formal parameters,
which may be Bags (r) or records or primitive types (v). The body of the program
is comprised of two sequences of function declarations (Fdef and PFdef ), variable
declarations (E), and the program’s main expression (η). Fdef binds function
names f with first-order lambda expressions, i.e., to a function which takes as
input a sequence of arguments of basic types and returns a value of a basic
type. PFdef associates function names F with a restricted form of second-order
lambda expressions, which we refer to as parametric functions. As in the Kappa
9 Bags is an abstraction of the main data-structure used in Spark, called RDD [17,29,30].
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Calculus [15], a parametric function F receives a sequence of basic expressions
and returns a first order function. Parametric functions can be instantiated to
form an unbounded number of functions from a single pattern. For example,
def addC = λx : Int. λy : Int. x + y : Int can create any first order function
which adds a constant to its argument, e.g., addC(1) = λx : Int. 1 + x : Int and
addC(2) = λx : Int. 2 + x : Int.

The program declares variables with a sequence of let expressions which
bind general expressions to variables. A general expression is either a basic
expression (e), a bag expression (µ), or an aggregate expression (fold(e, f)(µ)
or foldByKey(e, f)(µ)). The expression cartesian(µ, µ′) returns the cartesian
product of µ and µ′. map(f)(µ) produces a Bag by applying the unary UDF f
to every element x of µ. filter(f)(µ) evaluates to a copy of µ, except that all
elements in µ which do not satisfy f are removed. The aggregate expression
fold(e, f)(µ) accumulates the results obtained by iteratively applying the binary
UDF f to every element x in a Bag µ in some arbitrary order together with the
accumulated result obtained so far, which is initialized to the initial element e. If
µ is empty, then fold(e, f)(µ) = e. The foldByKey(e, f) operation applied on
a Bag µ of record type K × V produces a Bag of pairs, where every key k ∈ K
which appears in µ is associated with the result obtained by applying fold(e, f)
to the Bag containing all the values associated with k in µ.

We denote the meaning of a SparkLite program P by JP K, which receives
input environments ρ0, assigning values to P ’s formal variables, to either bags or
basic types. (See [13, Section 7].)
Remarks. We assume that the signature of UDFs given to either map, filter, fold
or foldByKey match the type of the Bag on which they are applied. Also, to
ensure that the meaning of fold(e, f)(r) and foldByKey(e, f)(r) is well defined,
i.e., we require, as Spark does [17], that f be commutative on its second argument:
∀x, y1, y2.f(f(x, y1), y2) = f(f(x, y2), y1).

4 Verifying Equivalence of SparkLite Programs
Programs P1 and P2 are comparable if they receive the same sequence of formal
input parameters, and produce the same output type. They are equivalent if, in
addition, for any input environment ρ0, it holds that JP1K(ρ0) = JP2K(ρ0). We
assume that we only check the equivalence of comparable programs. Also, without
loss of generality, we define programs without let expressions; as variables are
never reassigned, these can always be eliminated by substituting every variable
by its definition.We can now state our result regarding decidability of NoAgg
programs, defined as programs without aggregate terms. (cf. [13, Section 9].)
Theorem 1. The equivalence of programs in the NoAgg class is decidable.

Unsurprisingly, however, equivalence in the general case is undecidable. The re-
duction in [13, Theorem 2] from the halting problem for 2-counter machines shows
that verifying equivalence of AggOnep programs, is an undecidable problem.
Theorem 2. The problem of deciding whether two arbitrary AggOnep SparkLite
programs are equivalent is undecidable.
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4.1 Program Terms

The first step of our technique is the construction of program terms: Given a
program P with main expression η, we generate a program term φ(P ) which,
roughly speaking, reflects the effect of the program on arbitrary elements taken
from its input bags. It is obtained by applying the translation function φ, shown
in Figure 6, on P ’s main expression. φ recursively traverses the expression and
generates a logical term over the vocabulary of built-in operations and UDFs
defined in P . The base case of the recursion is input bag variables r, which φ
replaces with fresh variables xr. We refer to these variables as representative
variables. Translation of a SparkLite operation on Bags produces a term cor-
responding to the application of its UDF on a single Bag element, which is a
new bag expression: A map(f)(µ) operation is translated into the expression re-
ceived by applying the lambda expression that corresponds to f , on the program
term of µ. A filter(f)(µ) operation is translated to an ite expression which
returns the program term of µ on the then branch and ⊥ on the else branch. The
cartesian(µ, µ′) operation is translated to a pair of program terms pertaining
to its arguments. Note that in the absence of aggregate operations, φ(·) is a
first-order term and thus can be used directly in formulas.

Aggregate operations require iterating over all the elements of µ. Therefore,
it is clear that the translation of fold cannot be masqueraded as a first-order
term. For fold(e, f)(µ) we are using a special operator [φ(µ)]i,f , where φ(µ) is
the term pertaining to the bag being folded, i is the initial value, and f is the
fold function. We refer to [φ(µ)]i,f as an aggregate term.
RepVarSet. For an expression µ consisting only of input bags and input parameters
of basic types, RepVarSet(µ) denotes the set of all representative variables
corresponding to the input bags appearing in µ. We can thus similarly define
RepVarSet(P ) for the main expression of P . FV(P ) denotes the entire set of free
variables (both representative and non-bag inputs) in the program term of P .
Example 1. Consider the main expression η = filter(geq(100))(map(double)(R))
of the program P1′′ obtained by inlining the let expressions in program P1 (see
Section 2), defining the doubling function as double = λx.2 ∗ x, and instantiating
the parametric function geq = λy. λx.x ≥ y to act as the condition of the filter.
The program term of P1′′ is φ(P1′′) = ite(2 ∗ xR ≥ 100, 2 ∗ xR,⊥). Intuitively,
we can learn how P1′′ affects every element of, e.g., input Bag {{2, 2, 103, 64}},
by treating φ(P1′′) as a “function” of xR and “applying” it to 2, 2, 103, and
64. It is easy to see that FV(P1′′) = RepVarSet(P1′′) = {xR}. Consider now
instead P5′ also obtained by inlining of the let expressions in P5. In this case,
φ(P5′′) = [xR]+∞,λA,(x,y).ite(A<y,A,y) = 100.

4.2 Verifying Equivalence of SparkLite Programs with Aggregation

In this section, we discuss the generation of inductive hypotheses for programs
with aggregations. We focus on the AggOnep and AggOnepsync methods (recall
Table 1), applicable on programs with a single fold operation. For space reasons, we
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φ(r) = xr

φ(v) = v
φ(c) = c, c is const
φ(map(f)(µ)) = f(φ(µ))

φ(filter(f)(µ)) = ite(f(φ(µ)) = tt, φ(µ),⊥)
φ(cartesian(µ1, µ2)) = (φ(µ1), φ(µ2))
φ(fold(e, f)(µ)) = [φ(µ)]e,f

φ(e) is defined recursively based on the structure of e, e.g. φ(e1 + e2) = φ(e1) + φ(e2).

Fig. 6. A translation of a general expression to program terms.

relegate to [13, Section 13 and 14] the discussion of the other methods: AggOneb,
AggMultp and AggOneKb, which are all sound techniques generalizing AggOnep.

We note that in the presence of fold operations, The resulting terms are
no longer legal terms in first order logic, and thus, we cannot use them directly
in formulae. Instead, we extract out of them a set of formulae whose validity,
intuitively, amounts to the establishment of an inductive invariant regarding the
effect of fold operations.
Verifying equivalence of AggOnep programs Arguably, the simplest class
of programs with aggregations is the class of programs that return a primitive
expression that depends on the result of the aggregation operation. Technically, a
pair of SparkLite programs is in class AggOnep if each program P in the pair be-
longs to AggOnep, i.e., there is a an expression g in Presburger Arithmetic with a
single free variable x such that the program term of P is of the form g[[φ(µ)]i,f/x],
where µ is a bag expression that does not include fold or foldByKey operations;
that is, if φ(P ) can be obtained by substituting x in g with the aggregate term
pertaining to the application of a fold operation on µ. In the following, we refer
to g as P ’s top expression. By abuse of notation, we use the functional notation
g(t) as a shorthand for g[t/x], the expression obtained by substituting the term t
with g’s free variable. Similarly, given an expression e with two free variables x
and y, we write e(t1, t2) as a shorthand for e[t1/x, t2/y].

Lemma 1 formalizes the sound method that we used in Section 2 to show
that P3 and P4 (see Figure 2) are equivalent.

Lemma 1 (Sound method for verifying equivalence of Agg1 programs).
Let P1 and P2 be AggOnep programs such that FV(P1) = FV(P2). Assume that
φ(P1) = g1([φ(µ1)]i1,f1) and φ(P2) = g2([φ(µ2)]i2,f2), where f1 = λx, y. e1 and
f2 = λx, y. e2. P1 and P2 are equivalent if the following conditions hold:

RepVarSet(µ1) = RepVarSet(µ2) (4)
valid

(
∀FV(P1). g1(i1) = g2(i2)

)
(5)

valid
(
∀FV(P1),M1,M2. g1(M1) = g2(M2) =⇒ (6)

g1(e1(M1, φ(µ1))) = g2(e2(M2, φ(µ2)))
)

Intuitively, Equations (5) and (6) formalize the concept of inductive reasoning
described in Section 2 for the base of the induction and the induction step,
respectively. Equation (4) requires that the free variables of the folded bag
expressions use the same representative variables. It ensures that the two fold
operations iterate over bags of the same size. Note that we do not require that
the bag folded by the two programs be equivalent. However, in Equation (6)
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we still use the fact that corresponding elements in the two folded bags can be
produced by instantiating the program terms e1,2 with corresponding elements
from the input bags.
Complete verification techniques for subclasses of AggOnep. Lemma 1
provides a sound, but incomplete, verification technique. This means that there
are cases in which a pair of equivalent programs does not satisfy one or more of
the requirements of Lemma 1. Luckily, some of these cases can be identified and
subsequently have their equivalence verified using other methods. As a simple
example, in [13] we show that the equivalence of SparkLite programs whose fold
operations return a constant value can be reduce to the (decidable) problem
of verifying equivalence of NoAgg programs. We now describe the AggOnepsync
verification method.

In Section 2 we showed that although programs P5 and P6 do not satisfy the
requirements of Lemma 1, we can verify their equivalence using a more specialized
verification technique, AggOnepsync. We now present a more detailed discussion
of AggOnepsync. We recall that the three main properties of pairs of programs
that AggOnepsync applies to are (1) both belong to AggOnep; (2) the folds in
both programs can be collapsed; and (3) the process of collapsing the folds can
be done in synchrony.

The collapsing property states that any value produced by consecutive appli-
cations of the fold UDF can be obtained by a single application. For example, if
the UDF is sum=λx, y. x+ y and the initial value is 0, then the result obtained
by applying sum consecutively on any two elements a and b can also be obtained
by applying sum once on a+ b. Also, recall that the bag being folded contains
elements which are obtained via a sequence of map, filter and cartesian oper-
ations applied to elements taken out of the input bags. Synchronized collapsing
occurs when given the same input elements to two consecutive applications of
the fold UDF, it is possible to collapse them both using the same input element.

Thus, synchronized collapsing is a semantic property of fold UDFs, aggregated
terms, and initial values of a pair of programs that belong to AggOnepsync. In
the following, we denote by FVr(P ) and FVb(P ) the subsets of FV(P ) comprised
of bag, respectively, non-bag, input formal parameters.

Definition 1 (The AggOnepsync class). Let P1 and P2 be AggOnep programs
such that FV(P1) = FV(P2). Assume that φ(P1) = g1([φ(µ1)]i1,f1) and φ(P2) =
g2([φ(µ2)]i2,f2), where f1 = λx, y. e1 and f2 = λx, y. e2. We say that P1 and
P2 belong together to AggOnepsync, denoted by 〈P1, P2〉 ∈ AggOnepsync, if the
following conditions hold:

RepVarSet(µ1) = RepVarSet(µ2) (7)
∀b̄, ū, v̄.∃w̄. e1(i1, φ(µ1))[b̄/FVb, w̄/FVr] = (8)

e1((e1(i1, φ(µ1))[b̄/FVb, ū/FVr], φ(µ1)[b̄/FVb, v̄/FVr])
∧ e2(i2, φ(µ2))[b̄/FVb, w̄/FVr] =

e2((e2(i2, φ(µ2))[b̄/FVb, ū/FVr], φ(µ2)[b̄/FVb, v̄/FVr])
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Note that in Equation (8), all applications of the fold UDF functions agree on the
values of the non-bag input formal parameters used to “generate” the accumulated
elements. Also note that checking if 〈P1, P2〉 ∈ AggOnepsync involves determining
the validity of an additional decidable formula, namely Equation (8). Theo-
rem 3 shows that verifying the equivalence of a pair of programs in AggOnepsync
effectively reduces to checking a single application of the fold UDFs.
Theorem 3 (Equivalence in AggOnepsync is decidable). Let P1 and P2 be
AggOnep programs as in Lemma 1, such that 〈P1, P2〉 ∈ AggOnepsync. P1 and
P2 are equivalent if and only if the following holds:

valid(∀FV(P1). g1(i1) = g2(i2)) (9)

valid
(
∀v̄, w̄,M1,M2.

(
M1 = e1(i1, φ(µ1)[v̄/FV(P1)])∧
M2 = e2(i2, φ(µ2)[v̄/FV(P1)])

)
=⇒ Ind

)
where Ind =

(
g1(M1) = g2(M2) =⇒ (10)
g1(e1(M1, φ(µ1))) = g2(e2(M2, φ(µ2)))

)
[w̄/FV(P1))]

5 Prototype Implementation

We developed a prototype implementation verifying the equivalence of Spark
programs. The tool is written in Python 2.7 and uses the Z3 Python interface
to prove formulas. We ran our experiments on a 64-bit Windows host with a
quad core 3.40 GHz Intel Core i7-6700U processor, with 32GB memory. The tool
accepts pairs of Spark program written using the Python interface, determines
the class of SparkLite program they belong to, and verifies their equivalence
using the appropriate method.

A total of 23 test-cases of both equivalent and non-equivalent instances were
tested, including all the examples from this paper. In Figure 7, we highlight
test cases inspired by real Spark uses taken from [17, 28] and online resources
(e.g., open-source Spark clients), and belong to one of the defined SparkLite
classes. The full list of tested programs appears in [13, Section 15]. They include
join optimizations, different aggregations, and various UDFs. For each instance,
the tool either verifies that the given programs are equivalent, or produces a
counterexample, that is, an input for which the programs produce different
outputs. Each example was analyzed in less than 0.5 seconds. It is also interesting
to note that most examples with a primitive aggregation output are verified
using AggOnepsync and not AggOnep, indicating that the AggOnepsync class is not
esoteric, but wide enough to cover useful programs. Our tool was able to prove the
equivalence of all equivalent programs, and find counterexamples for inequivalent
ones, with the exception of . P15′′ and P16′′ which belong to AggOnep. While it
is immediate that these programs are equivalent (we note the intermediate fold
results in both programs are the same, and apply the same transformation on
the fold result), our tool was not able to show the equivalence. This is because
the AggOnepsync technique is not applicable to this particular example, as count
is not a collapsible fold function, and the AggOnep technique is effective only
when the equivalence claim is inductive, which is not the case here.
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Test Description Eq. Ver. Method
P1,P2 From Section 2. Showing map and filter commutativity. Y Y NoAgg
P1,P2′ P2 changed to filter elements smaller than 100. N Y NoAgg
P3, P4 From Section 2. Also proved using AggOnep

sync. Y Y AggOnep

P5, P6 From Section 2. Y Y AggOnep
sync

P7, P8 From Section 2. Describe distribution of passing students’ grades. Y Y AggOneKb

P9, P10 Distributivity of map UDFs with respect to join. Y Y NoAgg
P9′, P10 Map UDFs which are not distributive with respect to join. N Y NoAgg
P11, P12 Distributivity of filter UDFs with respect to join. Y Y NoAgg
P13, P14 Count on a filtered bag / sum on a bag mapped to a constant (0/1). Y Y AggOnep

P15, P16 Modular arithmetic: Divisibility by 5 of the sum of the elements, vs.
divisibility by 5 of the sum of the elements, each multiplied by 3.

Y Y AggOnep
sync

P15′, P16′ Modular arithmetic: Divisibility by 6 instead of 5 is not retained. N Y AggOnep
sync

P15′′, P16′′ Modular arithmetic: Divisibility by 5 of the elements’ count, vs.
divisibility by 5 of the count after multiplying the elements by 3.

Y N AggOnep

P17, P18 Maximum is expressed as inverted minimum of inverted elememts. Y Y AggOnep
sync

P17′, P18 As above, but there is a bug in the initial value of the maximum. N Y AggOnep
sync

P19, P20 Summation (by key) of positive vs. non-negative integers. Y Y AggOneKb

P21, P22 Summation of both keys and values in different ways. Y Y AggOneKb

Fig. 7. Highlighted test cases. Note that the join operator was implemented as a
combination of cartesian, filter and map operations, with designated UDFs.

6 Related Work and Conclusion

The problem considered (i.e., determining equivalence of expressions accessing a
dataset) is a classic topic in database theory. Query containment and equivalence
were first studied in seminal work by Chandra et al. [2]. This work was extended
in numerous papers, e.g., [18] for queries with inequalities and [4] for acyclic
queries. Of most relevance to this paper are the extensions to queries evaluated
under bag and bag-set semantics [3], and to aggregate queries, e.g., [7, 8, 14].
The latter papers consider specific aggregate functions, such as min, count, sum
and average, or aggregate functions defined by operations over abelian monoids.
In comparison, we do not restrict UDFs to monoids, and provide a different
characterization for decidability.

In the field of verification and programming languages, several works address
properties of relational algebra operators. Most notably, Cosette [6], is a fully au-
tomated prover for SQL equivalences, which provides a proof or a counterexample
to equivalence by utilizing both a theorem prover and a solver. The approach sup-
ports standard SQL features as well as predetermined aggregation functions such
as count, sum, and average. On the other hand, by addressing Spark programs,
our approach focuses on custom UDFs for selects, projections, and aggregation.
Similarly, Spec# [20] has a fixed set of comprehensions such as sum, count, min
and max, fitted into templates with both filters and expression terms akin to
map, which are encoded into the SMT solver using specialized axioms, e.g. the
distribution of plus over min/max. Our techniques, on the other hand, extract
automatically properties of comprehensions to define suitable verification con-
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ditions for equivalence. El Ghazi et al. [11] took the SMT solver approach to
verify relational constraints in Alloy [16], in order to be able to provide proofs,
and not just counterexamples. There is, however, no guarantee on completeness,
or the ability of the solver to provide a proof. It differs from this work, which
carefully defines criteria for decidability and soundness, even in the expense of
expressivity. Loncaric et al. [21] utilize a small-model property of sets to verify
synthesized data structures which is similar to the one we leverage in the NoAgg
method. We extend this property to bags and aggregate operations. Smith and
Albarghouthi [25] presented an algorithm for synthesizing Spark programs by
analyzing user examples fitted into higher-order sketches. They use SMTs to
verify commutativity of the fold UDFs. Chen et al. [5], studied the decidability
of the latter problem. We use SMT to verify program equality assuming that the
fold UDFs are commutative. In this sense, our approaches are complementary.

There are also generic frameworks for verifying functional programs, such as
F* [27] and Liquid Types [23, 24]. These prove program safety via type checking,
which also utilizes SMT to check validity of implications. Both approaches require
additional manual effort to verify programs like the ones we explore: in Liquid
Types, there is no notion of equivalence, so a suitable summary must be given
that holds for both programs. In F*, equivalence can be expressed via assertions,
but verifying assertions in F* is incomplete with respect to inductive data types,
such as lists. Appropriate invariants must be provided manually, essentially the
same ones that are constructed automatically in this paper. Another approach
to verifying functional programs is applied by Leon [1, 26], whose engine is based
on decision procedures for the quantifier-free theory of algebraic data types with
different fold functions, which allow handling recursive functions with first-order
constraints. However, the approach relies on finite unrolling of the recursive
calls, thus it cannot verify the equivalence of two programs when the equivalence
property is not inductive by itself. In contrast, our approach is successful because
of the novel specialized treatment of synchronous collapsible UDFs.

Dafny [19] supports functional programming, inductive data types, higher-
order functions, and also provides some automatic induction. Dafny can auto-
matically verify our NoAgg test cases. However, applying it to certain AggOnep
programs required supplying auxiliary lemmas. For example, verifying the equiv-
alence of P15 and P16 required the use of a lemma asserting that multiplying
the sum of elements in a bag by three produce the same result as summing
the bag obtained by multiplying every element by three. Essentially, the lemma
establishes equivalence relations between subprograms, and gives rise to a possible
heuristic extension of our tool by searching for relations between subprograms.
Conclusion. The main conceptual contribution of this paper is that the problem of
checking program equivalence of SparkLite programs, which reflect an interesting
subset of Spark programs, can be addressed via a reduction to the validity of
formulas in a decidable fragment of first-order logic. We believe the foundations
laid in this paper will lead to the development of tools that handle formal
verification and optimization of more classes of programs written in Spark and
similar frameworks, e.g., ones with nested aggregations and unions.
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