6.1 Weak and Strong Learners

In the PAC model there is a distribution D on X. Random examples $< x, c^*(x) >$ are drawn according to the distribution D and the target function $c^* \in C$. The goal is to find a hypothesis $h \in H$ such that $\text{error}(h, c^*) \leq \epsilon$, with probability $1 - \delta$.

This is a strong learning model, since ϵ and δ can be arbitrarily small.

Recall that ϵ is the error rate of the algorithm and $1 - \delta$ represents the confidence. However, suppose we have an algorithm with low error rate but also low confidence, say confidence 50%, or alternatively an algorithm with an error rate of 49% (slightly better than flipping a coin) but high confidence level.

Is it possible to drive those weak algorithms to be strong learners? Intuitively, it is easier to find hypothesis that is correct only 51 percent of the time, rather than a hypothesis that is correct 99 percent of the time.

6.1.1 Boosting the confidence $(1 - \delta)$

Suppose algorithm A returns with probability $\delta \geq \frac{1}{2}$ a hypothesis h such that $\text{error}(h, c^*) \leq \epsilon$. An interesting question is whether it is possible to build a PAC learning algorithm A' (from A)? The answer is Yes.

Algorithm BoostConfidence(A):

1. Run A for $k = \log_\frac{2}{\delta}^2$ times (on fresh data each time) with parameter $\epsilon' = \frac{\epsilon}{2}$.
 Algorithm A outputs hypothesis $h_1 \ldots h_k$.

2. Draw a new sample S of size $m = \frac{2}{\epsilon} \ln \frac{4k}{\delta} = O(\frac{1}{\epsilon} \ln \frac{k}{\delta})$ and test each hypothesis h_i on it, let $\hat{\text{error}}(h_i)$ be the observed error.
 Return $\hat{h}^* = \min(\hat{\text{error}}(h_i(S)))$.

1Based on scribes written by Yoel Sharf, Livnat Jerby and Alon Ardenboim (November 21, 2010)
Analysis of Algorithm \textit{BoostConfidence}(A)

After the first stage of the algorithm, with probability at most \(\left(\frac{1}{2} \right)^k \), \(\forall i : \text{error}(h_i) > \frac{\epsilon}{2} \). Hence, with probability at least \(1 - \left(\frac{1}{2} \right)^k \), \(\exists i : \text{error}(h_i) \leq \frac{\epsilon}{2} \). Therefore, if we set \(k = \log_2 \frac{2}{\delta} \), we will get that with probability \(1 - \frac{\delta}{2} \) for one of \(h_1 \ldots h_k \) holds \(\text{error}(h_i) \leq \frac{\epsilon}{2} \).

Now we will show that after the second stage of the algorithm \textit{BoostConfidence}(A), with probability \(1 - \frac{\delta}{2} \), outputs the hypothesis \(\hat{h}^* \) (with minimum errors on \(S \)) such that,
\[
\text{error}(\hat{h}^*) \leq \frac{\epsilon}{2} + \min(\text{error}(h_i)) \leq \epsilon .
\]

\textbf{Proof:} First, we use Chernoff Bound to bound the probability for “bad” event, i.e., the difference between the empirical error of any \(h_i \) and its real error is grater than \(\frac{\epsilon}{2} \):
\[
\Pr[|\text{error}(h_i) - \text{error}(h_i)| \geq \frac{\epsilon}{2}] \leq 2e^{-2(\frac{\epsilon}{2})^2 m}
\]
Second, we will bound by \(\frac{\delta}{2} \) the probability that such bad event will happen to any of the \(k \) hypothesis \(h_i \) using a Union Bound:
\[
2ke^{-\left(\frac{\epsilon}{2}\right)^2 m} \leq \frac{\delta}{2} .
\]
Then, by isolating \(m \), we will get:
\[
\frac{1}{e^{\frac{\epsilon^2}{4}} m} \leq \frac{\delta}{4k} ,
\]
\[
\frac{4k}{\delta} \leq e^{\frac{\epsilon^2}{2} m}
\]
\[
\ln \frac{4k}{\delta} \leq \frac{\epsilon^2}{2} m .
\]
\[
\frac{2}{\epsilon^2} \ln \frac{4k}{\delta} \leq m .
\]
We have that for a sample of size at least \(m \), with probability \(1 - \frac{\delta}{2} \), for each of those \(h_i \):
\[
|\text{error}(h_i) - \text{error}(h_i)| < \frac{\epsilon}{2}
\]
thus
\[
\text{error}(\hat{h}^*) - \min(\text{error}(h_i)) < \frac{\epsilon}{2} .
\]
From the first stage of the algorithm we already know that \(\min(\text{error}(h_i)) \leq \frac{\epsilon}{2} \), hence:
\[
\text{error}(\hat{h}^*) < \frac{\epsilon}{2} + \min(\text{error}(h_i)) \leq \epsilon
\]
\[\square\]
6.1.2 Boosting the accuracy (ϵ)

One question we can ask: given an algorithm that outputs hypothesis with $\epsilon = \frac{1}{2}$, can we drive it to learn PAC? The answer is No, because such an algorithm will do exactly like flipping a coin.

Definition: Weak learning

Algorithm A learn Weak-PAC a concept class C with H if:

\[\exists \gamma > 0, \forall c^* \in C, \forall D, \forall \delta > \frac{1}{2}, \]

Algorithm A outputs hypothesis $h \in H$ and with probability $1 - \delta$, such that $error(h) \leq \frac{1}{2} - \gamma$.

Intuitively, A will guarantee an error rate of 49% instead of 1% of the PAC model. We show, that if a concept class has a weak learning algorithm, then there is a PAC learning algorithm for the class. Note that running A multiple times on the same distribution D, does not work because A might return the same hypothesis over and over again.

Example

Suppose we have the following target function c^* (over bits) with a Uniform distribution D:

if $x_1 = x_2 = 1 \implies c^*(x) = \text{some very hard function}$

otherwise $\implies c^*(x) = 0$

(e.g., the hardness depends on the first and the second bits.)

We can easily achieve 87.5% accuracy by flipping a coin if $x_1 = x_2 = 1$ and otherwise predicting zero.

The probability for the event $x_1 = x_2 = 1$ is 0.25 which gives us a total accuracy of 87.5%. On the other hand, getting better than 87.5% accuracy is hard. For this reason we want our weak learner to perform well with any distribution D! (In the example a natural distribution is $x_1 = x_2 = 1$ and uniform otherwise).

Conclusion: An important requirement in weak learning model is: *for all distribution.* (in the example we assumed a specific distribution)
Proof of Equivalence between Weak and Strong Learning

Preliminary: We are going to concentrate on the case of a sample with finite size, so that, given \(x_1 \ldots x_m \) goal is to find a hypothesis classifies all of them correctly.

Given: \(x_1 \ldots x_m \) and their labels,

\(H \) - A weak hypothesis class,

We will use a Regret Minimization algorithm RM.

The Algorithm:

1. The algorithm basic action: to choose a distribution over \(x_1 \ldots x_m \).

2. For each step \(t \), the RM(Regret Minimization) algorithm chooses a distribution (over \(x_1 \ldots x_m \)).

3. For each step \(t \), the opponent returns loss (for each \(x_i \)) such that, \(\text{error}(h_t, D_t) \leq \frac{1}{2} - \gamma \). The loss to be returned will be 1 for correct classification and 0 for error (opposite of what we expect).

4. After \(T \) steps, we will require that \(\text{MAJ}(h_1(x) \ldots h_T(x)) \) classify all the sample correctly.

Notes:

1. Since at each stage we return a weak-learner \(h \), that is classified correctly at least \(\frac{1}{2} + \gamma \) fraction, then the loss of RM is at least \(\left(\frac{1}{2} + \gamma \right)T \).

2. Suppose that there is \(x_i \) such that MAJ does not classify it correctly, then the loss of \(x_i \) is at most \(\frac{T}{2} \).

3. \(\text{loss}(RM) = \left(\frac{1}{2} + \gamma \right)T \leq \frac{T}{2} + 2\sqrt{T \log m} \).
 \((2\sqrt{T \log m} \) is the regret bound of RM) For this inequality to hold, it is required that:

\[
\gamma T \leq 2\sqrt{T \log m} \\
T \leq \frac{4 \log m}{\gamma^2}
\]
4. Conclusion: If you execute the above RM algorithm, after $\frac{4 \log m}{\gamma^2}$ iterations you will get a consistent hypothesis.

Thus, by Occam Razor Theorem, we can PAC learn the class.

5. Remark: RM will naturally concentrate on examples with the ‘most errors’.

6.2 Recursive Construction

6.2.1 Algorithm Description

Let A be a weak learning algorithm, and p the error probability of A.

Step 1: Run A with the initial distribution D_1 to obtain h_1 (error $\leq \frac{1}{2} - \gamma$).

Step 2: Define a new distribution D_2, such that

$S_c = \{ x | h_1(x) = c^*(x) \}$

$S_e = \{ x | h_1(x) \neq c^*(x) \}$

$D_2(S_c) = D_2(S_e) = \frac{1}{2}$

To do so we will define D_2 as follows:

$$D_2(x) = \begin{cases}
\frac{0.5}{1-p} \cdot D_1(x) & x \in S_c \\
\frac{0.5}{p} \cdot D_1(x) & x \in S_e,
\end{cases}$$

where $p = D_1(S_c)$.

To obtain h_2 we will run A with D_2.

Step 3: The distribution D_3 would be defined only on examples x for which $h_1(x) \neq h_2(x)$:

$$D_3(x) = \begin{cases}
\frac{D_1(x)}{Z} & h_1(x) \neq h_2(x) \\
0 & otherwise,
\end{cases}$$

where $Z = P[h_1(x) \neq h_2(x)]$.

Our combined hypothesis would be:

$$H(x) = \begin{cases}
h_1(x) & h_1(x) = h_2(x) \\
h_3(x) & otherwise
\end{cases}$$

Which is equivalent to $H(x) = MAJ(h_1(x), h_2(x), h_3(x))$.

6.2.2 Estimation of the Error

Suppose each hypothesis h_i errors with a probability of p, independently. What would be the error of the majority of h_1, h_2, h_3?

$$\text{Error} = 3p^2(1-p) + p^3 = 3p^2 - 2p^3 = p^2(3 - 2p)$$

We would like to show that this is the error probability without assuming the hypotheses are independent. To do so we would partition the space into four subspaces:

$$S_{cc} = \{x| h_1(x) = c^*(x) \land h_2(x) = c^*(x)\}$$
$$S_{ee} = \{x| h_1(x) \neq c^*(x) \land h_2(x) \neq c^*(x)\}$$
$$S_{ce} = \{x| h_1(x) \neq c^*(x) \land h_2(x) = c^*(x)\}$$
$$S_{ec} = \{x| h_1(x) = c^*(x) \land h_2(x) \neq c^*(x)\}$$

Let $P_{cc} = D_1(S_{cc}), P_{ee} = D_1(S_{ee}), P_{ce} = D_1(S_{ce})$ and $P_{ec} = D_1(S_{ec})$.

The error probability, with respect to the initial distribution D_1, is $P_{ee} + (P_{ec} + P_{ce})p$.

Let us define $\alpha = D_2(S_{ee})$. Therefore, from the definition of D_2, in terms of D_1 we get $P_{ee} = 2(1-p)\alpha$.

Since $D_2(S_{ee}) = p$, we have,

$$D_2(S_{ee}) = p - \alpha$$
$$P_{ee} = 2p(p - \alpha).$$

From the construction of D_2,

$$D_2(S_{ec}) = \frac{1}{2} - (p - \alpha)$$
$$P_{ec} = 2p\left(\frac{1}{2} - p + \alpha\right).$$

Therefore the error is:

$$P_{ee} + (P_{ec} + P_{ce})p = 2p(p - \alpha) + p(2p\left(\frac{1}{2} - p + \alpha\right) + 2(1-p)\alpha) = 3p^2 - 2p^3.$$

Given that the initial probability is $p_0 = \frac{1}{2} - \gamma_0$, each step improves upon the previous step:

$$\frac{1}{2} - \gamma_{t+1} = 3\left(\frac{1}{2} - \gamma_t\right)^2 - 2\left(\frac{1}{2} - \gamma_t\right)^3$$
$$\frac{1}{2} - \gamma_{t+1} \leq \frac{1}{2} - \gamma_t\left(\frac{3}{2} - \gamma_t\right)$$

The termination condition of the recursion would be to obtain an error of ϵ as required. For $\gamma_t > \frac{1}{4}$ we get that $p < \frac{1}{4}$, and therefore
\[
p_{t+1} \leq 3p_t^2 - 2p_t^3 \leq 2p_t^2 < \frac{1}{2}
\]

The recursion depth is therefore \(O(\log \frac{1}{\gamma} + \log(\log \frac{1}{\epsilon})) \), and the number of nodes in the recursion tree is \(3^{\text{depth}} = \text{poly}(\frac{1}{\gamma}, \log \frac{1}{\epsilon}) \). □

6.3 AdaBoost

AdaBoost is an iterative boosting algorithm that enables us to create a strong learning algorithm from a weak learning algorithm. The general idea of this algorithm is to maintain a distribution on the input sample, and increase the weight of the harder to classify examples so the algorithm would focus on them.

6.3.1 Algorithm Description

Input: A set of \(m \) classified examples: \(S = \{ < x_1, y_1 >, < x_2, y_2 >, \ldots, < x_m, y_m > \} \) where \(\forall i \in \{1, \cdots, m\} \times y_i \in \{-1, 1\} \).

Definitions: Let \(D_t \) denote the distribution of weights of the examples at time \(t \), and \(D_t(i) \) the weight of example \(x_i \) at time \(t \).

Initialization:

\[
D_1(i) = \frac{1}{m}, \quad \forall i \in \{1, \cdots, m\}
\]

Step: At each iteration we use a classifier \(h_t \in H: X \mapsto \{-1, +1\} \) that minimizes the error on the current distribution (defined as \(\epsilon_t = \Pr_{D_t}[h_t(x) \neq c_*(x)] \) where \(c_* \) is the target function).
At time $t+1$ we update the weights in the following manner:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & y_i = h_t(x_i) \\ e^{\alpha_t} & y_i \neq h_t(x_i) \end{cases}$$

$$= \frac{D_t(i)}{Z_t} \cdot e^{-y_i \alpha_t h_t(x_i)}$$

where Z_t is a normalizing factor to keep D_{t+1} a distribution and $\alpha_t = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$.

Output: The hypothesis we return after running the algorithm for T iterations is:

$$H(x) = \text{Sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

An advantage using the AdaBoost algorithm is that it removes the need of knowing the parameter γ. Another advantage is that it’s easy to implement and runs efficiently.

6.3.2 Bounding the Error

Theorem 6.1 Let H be the output hypothesis of AdaBoost. Then:

$$\hat{\text{error}}(H) \leq \prod_{t=1}^{T} 2^{\sqrt{\epsilon_t(1-\epsilon_t)}}$$

$$= \prod_{t=1}^{T} \sqrt{1-4\gamma_t^2}$$

$$\leq e^{-2\sum_{t=1}^{T} \gamma_t^2}$$

where the last line is obtained from the inequality $1 + x \leq e^x$.

Conclusion: the error drops exponentially fast in T.

Proof: The proof follows in three steps:

1. First, obtain the following expression for $D_{T+1}(i)$:

$$D_{T+1}(i) = \frac{D_1(i)e^{-y_i f(x_i)}}{\prod_t Z_t}$$

where $f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$.

Proof: Since $D_{t+1}(i)$ is given by:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} e^{-y_i \alpha_t h_t(x_i)}$$
we can unravel the recurrence to obtain:

\[D_{T+1}(i) = D_1(i) \prod_{t=1}^{T} \frac{e^{-y_i \alpha_t h_t(x_i)}}{Z_t} \]

\[= D_1(i) \frac{e^{-y_i \sum_{t=1}^{T} \alpha_t h_t(x_i)}}{\prod_{t=1}^{T} Z_t} \]

\[= D_1(i) \frac{e^{-y_i f(x_i)}}{\prod_t Z_t} \]

\[\square \]

2. Second, we bound the training error of \(H \) by the product of the normalizing factors \(Z_t \):

\[\hat{\text{error}}(H) \leq \prod_{t=1}^{T} Z_t \]

Proof:

\[\hat{\text{error}}(H) = \frac{1}{m} \sum_{i=1}^{m} I(y_i \neq H(x_i)) \]

\[= \frac{1}{m} \sum_{i=1}^{m} I(y_i f(x_i) \leq 0) \]

\[\leq \frac{1}{m} \sum_{i=1}^{m} e^{-y_i f(x_i)} \]

\[= \frac{1}{m} \sum_{i=1}^{m} m \left(\prod_{t=1}^{T} Z_t \right) D_{T+1}(i) \]

\[= \left(\prod_{t=1}^{T} Z_t \right) \sum_{i=1}^{m} D_{T+1}(i) \]

\[= \prod_{t=1}^{T} Z_t, \]

where \(I \) is the indicator function. The third line follows from the observation that when \(I(y_i f(x_i) \leq 0) = 1 \), then \(y_i f(x_i) \leq 0 \) and so \(e^{-y_i f(x_i)} \geq 1 = I(y_i f(x_i) \leq 0) \). (Also, clearly when \(I(y_i f(x_i) \leq 0) = 0 \), then \(e^{-y_i f(x_i)} \geq 0 \). The fourth line follows from step 1. The last line is obtained from the fact that \(D_{T+1} \) is a probability distribution over the examples.

\[\square \]
3. Now that the training error has been bounded in step 2 by the product of the normalizing weights Z_t, the last step is to express Z_t in terms of ϵ_t:

$$Z_t = 2\sqrt{\epsilon_t(1 - \epsilon_t)}$$

Proof: By definition,

$$Z_t = \sum_{i=1}^{m} D_t(i) e^{-y_i \alpha_t h_t(x_i)}$$

$$= \sum_{i : y_i = h_t(x_i)} D_t(i) e^{-\alpha_t} + \sum_{i : y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t}$$

$$= (1 - \epsilon_t) e^{-\alpha_t} + \epsilon_t e^{\alpha_t},$$

where the last step follows from the definition of ϵ_t:

$$\sum_{i : y_i \neq h_t(x_i)} D_t(i) = \epsilon_t,$$

Since the expression above for Z_t is valid for all α_t, minimizing Z_t with respect to α_t for each t will produce the minimum training error $\hat{\text{error}}(H)$.

$$\frac{\partial Z_t}{\partial \alpha_t} = -(1 - \epsilon_t) e^{-\alpha_t} + \epsilon_t e^{\alpha_t} = 0$$

Solving, we find:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right).$$

Using this value of α_t in the expression for Z_t, and then plugging that into the bound on the training error for H, we end up with:

$$\hat{\text{error}}(H) \leq \prod_{t=1}^{T} \left(2\sqrt{\epsilon_t(1 - \epsilon_t)} \right)$$

which proves the theorem. □