
Machine Learning: Foundations Fall semester, 2012

Lecture 12: January 20, 2012
Lecturer: Yishay Mansour Scribe: Yuval Globerson, Ilia Gorelik, Oleg Zlydenko1

11.1 Model Selection - Introduction

So far, each learning model determined the number of examples needed in order to learn a
concept class. However, in many real cases, only a limited number of examples is available,
and the learning algorithm is supposed to come up with the best hypothesis it can from the
available data.

In the algorithms discussed previously, we solved accuracy problems of our hypothesis
by requiring a sufficiently large number of examples, which reduces the probability of the
hypothesis’ error. We now deal with the case in which this cannot be done.

One example for such a case is when we have a class of an infinite V Cdim. As we’ve
seen in the previous lectures, if a concept class C has V Cdim =∞ then C is not learnable
by any static learning algorithm, i.e., for any number of examples we will always be able to
find a bad hypothesis which is consistent with the examples. So how can we learn such a
class?

11.1.1 Naive Algorithm

Say we have a countable class of hypothesis H = {h1, h2, ...} and a target function c∗. We
will assume, for simplicity, that c∗ ∈ H. We will describe a PAC algortihm that learns H.

Algorithm
For each i:
Sample mi = 1

ε
· ln(1

δi
) examples.

If hi is consistent with the mi samples, stop and return hi.

Analysis

1. The algorithm will always stop. Since c∗ ∈ H, there exists j s.t. hj = c∗. Therefore,
the algorithm will stop at most after j iterations.

1Based on a scribe written by Oana Sidi, Inbal Avraham and Vera Vsevolohzky (January, 2011), Gil
Freundlich (June, 1996) and Roi Yehoshua, Ophir Gvirtzer, Zohar Ganon (May,2002).

1

2 Lecture 12: January 20, 2012

2. Assume the algorithm stopped at iteration number i.

Pr[hi is consistent|error(hi) ≥ ε] = (1− error(hi))mi ≤ e−ε·mi = δi

3. In order for the algorithm to be PAC, we demand that
∑∞
i=1 δi = δ. If this is true, then

by Union Bound:

Pr[∃i s.t hi is consistent on mi|error(hi) ≥ ε] ≤ δ (11.1)

This can be achieved by choosing δi = δ
2i

, or δi = δ
i2
· 6
π2 , or, indeed, any series that

converges to δ.

4. We will require m =
∑j
i=1mi examples. If we reuse examples, then m is reduced to

maxi≤jmi = mj.

This gives us an algorithm that can handle classes H with V Cdim = ∞. However, the
number of examples becomes a function of the complexity of c∗, in addition to ε and δ.

11.1.2 Further Discussion

To demonstrate the problem, let’s look at the concept class of a finite union of intervals
on the line [0,1] (which has V Cdim = ∞). Let us assume that we’re given the following
examples in the interval [0,1] :

+ + + - + + - - - - + - - + - - -

| |

0 1

The target concept ct is a set of intervals within [0,1].

Obviously, if we allow a sufficiently large number of intervals, we could easily come up with
a hypothesis that is completely consistent with the data (e.g. surround every positive point
with its own tiny positive interval). However, we want to predict the correct classifications
also for examples other than the original training set.

Adding more intervals to our hypothesis reduces the hypothesis’ error on the training set,
but may increase its error on new examples. For example, a positive interval surrounding
a positive point may consist in the target concept of a 2/3 negative sub-interval and a 1/3
positive sub-interval, so adding this interval to the hypothesis can increase its “real” error.
This way we may get hypotheses which are overfitted to the data, and may not generalize
well to new examples.

11.2. THEORETICAL MODEL 3

Therefore, by Occam’s Razor, in such cases we prefer simpler hypotheses which may have
some error on the training set, but with high probability will predict better future observa-
tions. Returning to our example, we can make a table of the amount of errors generated by
a hypothesis related to the number of intervals in the hypothesis :

Number of Intervals: 0 1 2 3 4 5 6 7 . . .
Number of Errors: 7 3 2 1 0 0 0 0 . . .

We can see that the more complex the hypothesis is, the smaller its error on the given
examples. Beyond a certain complexity, all hypotheses yield 0 errors. So far, we’ve consid-
ered only those hypotheses which yield 0 errors on the training set, but now we’re limited to
the given examples and these examples may not be representative of the domain. Therefore,
we want to consider simpler hypotheses, which may have some errors on the training set but
generalize better to new examples.

To make the things worse, there is still the problem of noise. For a hypothesis to be
completely consistent with the data, it becomes very complex. However, some of the incon-
sistencies in the data may be due to “noise”, and the true concept may be much simpler than
our consistent hypothesis. In the given example, the true concept may consist of a single
interval (e.g. [0, 1/2]), and the inconsistent examples were generated due to noise. In such
a case, adapting our hypothesis to the data causes the noise to get into the hypothesis.

So now we have to deal with a sample set which may be too small to accurately represent
the domain, and may itself be “noisy”.

In the following sections we’ll consider different models for dealing with this problem.
But first we’ll start with building the theoretical model.

11.2 Theoretical Model

11.2.1 The Setup

Let us consider the following theoretical model.
Let Hi be the class of hypotheses, all having the same complexity-level, i (where

V Cdim(Hi) = i). Clearly, we get nested hypothesis classes :

H1 ⊆ H2 ⊆ · · · ⊆ Hi ⊆ · · ·

any hypothesis of a lower complexity is included in any class of hypotheses of a higher
complexity. Let H = ∪∞i=1Hi.

For the sake of simplicity, we will assume

|Hi| = 2i−1.

4 Lecture 12: January 20, 2012

Let c∗ be the the target concept. In contrast to our previous methods, we now do not
assume that c∗ is included within one of the Hi. The objective of the learning algorithm will
be to produce a hypothesis which is ”sufficiently close” to c∗ (but not necessarily c∗ itself).

11.2.2 Definitions

• ε(h) - the ”real” error of h, i.e. the error of h over the entire domain X.

ε(h) = Prob[h 6= c∗]

• εi - the lowest error found for any of the hypotheses in class Hi.

εi = min
h∈Hi

{ε(h)}

Note that since Hi ⊆ Hi+1, εi+1 ≤ εi (the probability of error decreases as the com-
plexity level increases).

• ε∗ - the optimal error level, i.e. the value towards which εi converges as i increases.

ε∗ = inf
i
{εi}

It might be that ε∗ will not be obtained by any hypothesis h ∈ H, but it is the lower-
bound on any εi and could be approximated arbitrarily well. If for some i, c∗ ∈ Hi

then ε∗ = 0.

• ε̂(h) - the observed error, i.e. the error of hypothesis h on the given examples.

ε̂(h) =
1

m

∑
xi∈S

I(h(xi) 6= ct(xi)) ,

where S is the given set of m examples.

• ε̂i - the lowest observed error of any of the hypotheses in Hi.

ε̂i = min
h∈Hi

{ε̂(h)} .

11.2. THEORETICAL MODEL 5

11.2.3 The Problem: Overfitting

As the complexity level i of the hypothesis increases, its error on the given data ε̂i is reduced.
Beyond complexity level m (where m is the number of examples in the given set) all the
ε̂i will equal 0, since classes with V Cdim ≥ m include all the possible classifications of m
points, and thus one of their hypotheses must be consistent with the data. (For simplicity,
we assume that any set of m points is shattered)

This will happen even when the same hypothesis’ real error-level, ε(h) (i.e. measured
over the entire domain), is greater than 0, and even when ε∗ >> 0.

This happens because at high levels of complexity, the hypotheses (with the lowest levels
of error on the given data) become too fitted to the given data. This phenomenon is called
’overfitting’.

In our case, we can not require a sufficiently large set of examples. The given data may
be too small to accurately represent the entire domain. The presence of noise makes the
given data even less representative of the entire domain. Thus, the overfitted hypothesis
might turn out to be quite far from the true concept.

The simplistic approach for finding a good hypothesis would be to choose a hypothesis g
which has the lowest value of ε̂(g):

g = arg min
h∈∪Hi

{ε̂(h)}

However, using this simplistic approach for choosing g will cause us to prefer overfitted
hypotheses, because they yield the lowest ε̂(h), namely zero observed error.

6 Lecture 12: January 20, 2012

11.3 Fighting Overfitting

11.3.1 Penalty Based Models

One way to overcome the overfitting problem is to impose a complexity penalty on the
complexity of the chosen hypothesis; we will then try to minimize both the observed error
of the chosen hypothesis and its complexity penalty.

The chosen hypothesis g∗ will, therefore, be defined as

g∗ = arg min
g ∈∪Hi

{ε̂(g) + Penalty(g)} ,

where Penalty(g) depends on the complexity of g.
We will define a measure d(h) for the complexity of a hypothesis h as the lowest com-

plexity level i such that h is found in Hi:

d(h) = min
i
{h ∈ Hi} .

Since the penalty is calculated based on d(h), which is the first class in which h is found,
the penalty will be the same for all hypotheses with the same complexity.

Figure 11.1: Principle of penalty based models.

Figure 11.1 shows the principle of penalty based models. As the complexity level of
the hypothesis increases, its observed error is reduced but the penalty for its complexity
increases. The penalty based model will try to find the minimum of the sum of the observed
error and the penalty. Thus we will choose hypotheses that are not too fitted to the given
examples.

11.3. FIGHTING OVERFITTING 7

11.3.2 SRM: Structural Risk Minimization

The Model

The SRM (Structural Risk Minimization) model is a penalty based model, which uses the
following as the Penalty :

Penalty(h) =

√
2d(h) · ln(2) + ln(1/δ)

m
, (11.2)

where m is the number of examples, and δ is a confidence parameter (its meaning will be
clear in the following section). This penalty defines a tradeoff between the complexity of the
hypothesis and the size of the given sample. The hypothesis g∗ chosen by the SRM model
will therefore be:

g∗ = arg min
g ∈H

{
ε̂(g) + Penalty(g)

}
(11.3)

Analysis

Let h∗ be the best possible hypothesis there is in H, i.e., the hypothesis with the lowest
actual error-level (error measured over the entire domain):

h∗ = arg min
h∈H
{ε(h)} . (11.4)

Let g∗ be the hypothesis chosen by SRM, i.e. (11.3).

Theorem 11.1 (SRM Theorem) With probability of at least 1− δ the actual error of g∗

is smaller than or equal to the actual error of h∗ plus twice the SRM complexity-penalty of
h∗. Formally :

ε(g∗) ≤ ε(h∗) + 2 · Penalty(h∗) (11.5)

Recall that by definition (of h∗) the actual error of h∗ is smaller than or equal to the
actual error of g∗. So, according to the SRM theorem, the actual error of g∗ is bounded on
both sides by:

ε(h∗) ≤ ε(g∗) ≤ ε(h∗) + 2 · Penalty(h∗) (11.6)

It can be clearly seen from this inequality that the larger the number of examples (the
larger m), the smaller the value of the complexity-penalty becomes, and the difference be-
tween the two hypotheses diminishes.

For the proof of the SRM theorem, we’ll use the following claim :

8 Lecture 12: January 20, 2012

Claim 11.2 The probability that the observed error of h (ε̂(h)) will diverge from the actual
error of h (ε(h)) by more than some threshold, λ, is bounded from above:

Prob
[
|ε(h)− ε̂(h)| ≥ λ

]
≤ 2e−λ

2m (11.7)

Proof: This is obtained by simple application of the Chernoff Inequality.

Proof of SRM Theorem

The proof consists of two stages. First, we’ll bound the error of the hypothesis in any given
class Hi. Second, we’ll bound the error across the classes Hi.

First stage : Bounding the error in Hi

Let gi be the hypothesis with the lowest observed error in Hi:

gi = arg min
h∈Hi

{ε̂(h)}

We want to estimate the probability of difference between the actual error and the ob-
served error of gi:

Prob
[
|ε(gi)− ε̂(gi)| ≥ λi

]
(we use λi, because it will depend on the complexity-level i).

We cannot use Claim 11.2 directly to bound this probability, because gi is determined
according to the given sample set (and in Claim 11.2 the probability is computed over all
the possible sample sets).

However, we can bound this probability P by the probability that any hypothesis in Hi

will have the difference between the actual error and observed error larger than λi:

P ≤ Prob
[
∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]
.

By applying the inequality of Claim 11.2 we obtain:

Prob
[
∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]
≤ |Hi| · 2e−λ

2
im.

Recall that we assumed for simplicity that |Hi| = 2i−1, so we get :

Prob
[
∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]
≤ 2i · 2e−λ2im. (11.8)

Let’s define this upper bound (the probability of error for any hypothesis in Hi) as δi , i.e.:

δi = 2i−1 · 2e−λ2im. (11.9)

11.3. FIGHTING OVERFITTING 9

Solving for λi we get:

λ2im = ln
(

2i

δi

)
,

λi =

√
i · ln(2) + ln(1/δi)

m
. (11.10)

If we set the upper bound δi for each class Hi to δi = δ
2i

(i.e., splitting the confidence
level δ between the different classes), then we get δ =

∑
i δi and thus we can use the union

bound to get :

Prob
[
∀i ∀h ∈ Hi | |ε(h)− ε̂(h)| ≤ λi

]
= 1− Prob

[
∃i ∃h ∈ Hi | |ε(h)− ε̂(h)| ≥ λi

]

≥ 1−
∑
i

δi = 1− δ (11.11)

Therefore, with probability of at least 1− δ,

|ε(h)− ε̂(h)| ≤ λi (11.12)

for any hypothesis h in ∪Hi.

In this case λi is as follows:

λi =

√
i · ln(2) + ln(2i/δ)

m
=

√
2i · ln(2) + ln(1/δ)

m
(11.13)

Second stage : Bounding the error across Hi

In the previous stage, we’ve proved that with probability of at least 1−δ, for any hypothesis
h in ∪Hi,

|ε(h)− ε̂(h)| ≤ λi

where λi depends on the complexity level i of h.
Among other hypotheses, this is also true for h∗ and g∗, which leads to the following:

ε̂(h∗) ≤ ε(h∗) + λi (11.14)

ε(g∗)− λj ≤ ε̂(g∗) (11.15)

where,

10 Lecture 12: January 20, 2012

• i = d(h∗), i.e., i is the complexity level of h∗.

• j = d(g∗), i.e., j is the complexity level of g∗.

Let’s define Pi, Pj as the SRM complexity-penalties for h∗ and g∗, respectively. Therefore,
from the definition of the SRM model we get :

ε̂(g∗) + Pj ≤ ε̂(h∗) + Pi (11.16)

(otherwise the SRM model would not have chosen g∗).

From the three inequalities (11.14), (11.15) and (11.16) we get:

ε(g∗)− λj + Pj ≤ ε(h∗) + λi + Pi (11.17)

and therefore,
ε(g∗) ≤ ε(h∗) + λi + Pi + λj − Pj . (11.18)

Now, from the definition of the penalty-value for complexity-level j we get :

Pj =

√
(2j + 1) ln(2) + ln(1/δ)

m
= λj (11.19)

Hence the penalty is greater than the actual divergence with probability of at least 1− δ.
Now we can return to inequality (11.18) and get from (11.19):

ε(g∗) ≤ ε(h∗) + λi + Pi + (λj − Pj) = ε(h∗) + 2 · Pi (11.20)

which proves the SRM theorem.

In Practice

In theory, we can consider all classes Hi in ∪Hi, even when i goes to infinity, and search for
the best hypothesis g∗. However, in practice, we have to stop at some level of complexity,
imax; what should this level be? By the time i reaches m, the hypotheses are complex enough
to reach an observed error of zero, ε̂m = 0 (we assumed V Cdim(Hi) = i, and any subset
of i points is shattered). Beyond this level there is no need to search, because the observed
error will remain 0, and only the complexity penalty will rise (therefore we will never choose
those hypotheses, because we have ones with lower complexity penalties).

11.4. CROSS VALIDATION 11

11.4 Cross Validation

The Model

The SRM model tackled the overfitting problem by imposing a complexity penalty on the
“price” of a hypothesis, which will steer us to prefer simpler hypotheses rather than com-
plex ones. The model shows that the chosen hypotheses will not be too fitted to the given
examples; this will enable the hypotheses to correctly classify also new examples which were
not used in the learning process.

The Cross Validation method does not change the price of the hypothesis, but leaves it to
be the observed error, ε̂(h). To overcome the overfitting problem, the Cross Validation splits
the given set of examples, S, into two sets, S1 and S2. The set S1, is used as the training
sample set in the learning process; this yields for each Hi some hypothesis which is estimated
to be the best according to the training set. The examples of the other set, S2, are then used
as a test set, to test the error of the chosen hypotheses on the “new” examples. The chosen
hypothesis will be the one with the lowest observed error on the “test” set, S2. Therefore,
Cross Validation deals with the overfitting problem by estimating how bad a hypothesis is
when learning new examples (how tightly fit it is to the training sample set).

We denote by γ the fraction (0 < γ < 1) of the original set, S, which is reserved as
the test set, S2. Therefore, if the original set S contains m examples, then the test set S2

contains γm examples, and the training set S1 contains (1 − γ)m examples. Usually γ will
be small, because after choosing the best hypotheses according to the training set S1, the
number of candidate hypotheses is reduced and thus we need less examples to choose the
best one of the selected hypotheses according to the test set S2.

We will divide the algorithm into two stages:

1. Learning from S1:
From each hypotheses class, Hi, we choose the best hypothesis gi according to the
training sample set S1, i.e., the hypothesis which has the lowest observed error on Si.
Let

gi = arg min
h∈Hi

{ε̂1(h)},

where ε̂1(h) is the observed error of hypothesis h on the training sample set S1.

This will yield a set of hypotheses, G, with one hypothesis for each class Hi.

Note that, for practicality’s sake, we take 1 ≤ i ≤ m; the best hypotheses from classes
with complexity greater than or equal to m will have already become completely fitted
to the data, and yield ε̂1(h) = 0. We will therefore assume that |G| = m. (Alternatively,
we will include gi in G only if ε̂1(gi) < ε̂1(gi−1), and this can happen at most m times.)

12 Lecture 12: January 20, 2012

2. Testing on S2:
From G we now choose the hypothesis which has the lowest error on the test sample
set S2. Let

g∗ = argmin
gi∈G
{ε̂2(gi)},

where ε̂2(h) is the observed error of hypothesis h on the test sample set S2.

Analysis

The analysis will show that Cross Validation approximates SRM.

Theorem 11.3 Let εCV (m) be the error of Cross Validation (CV) on m samples, and εA(m)
be the error of some algorithm A on m samples.

With probability 1− δ,

εCV (m) ≤ εA((1− γ)m)+2 ·
√

ln(2m/δ)

γm

Proof:
We’ll assume that algorithm A chooses the best hypothesis gk from some class Hk, by

learning from the training sample set S1. This is the case for the SRM algorithm, since as
we’ve seen the complexity penalty is the same for all hypotheses in Hk, thus if the algorithm
chooses an hypothesis gk from class Hk we’re guaranteed that gk is the best hypothesis in
Hk (the hypothesis with the lowest observed error on S1). The penalty only chooses between
the best hypotheses in different classes.

Cross Validation, however, may choose a different hypothesis, gj, because it better classi-
fies the examples from the test set S2. Note that gj belongs to Hj, which is a different class
from Hk. As shown before, gk was the best in class Hk, and therefore inserted into G; it is
the only member of Hk in G. If gj is not gk, then it comes from a different class.

First, we would like to bound the difference between the observed error and the actual
error (both on the test set S2) of any hypothesis gi in G (the set of best hypothesis from
each Hi, as chosen by Cross Validation).

We will use Claim 11.2 from the analysis of SRM, and state that the probability that a
hypothesis gi in G will have the difference between its observed error on S2 and its actual
error larger than λ, is bounded as follows:

Prob
[
|ε(gi)− ε̂2(gi)| ≥ λ

]
≤ 2 · e−λ2γm (11.21)

where ε̂2(gi) is the observed error on the test set S2 for hypothesis gi.

11.4. CROSS VALIDATION 13

Therefore, we can bound the probability that any hypothesis in G will have the difference
between its actual error and observed error on S2 larger than λ by:

Prob
[
∃g ∈ G | |ε(g)− ε̂2(g)| ≥ λ

]
≤ |G| · 2e−λ2γm (11.22)

Since |G| = m we get:

Prob
[
∃g ∈ G | |ε(g)− ε̂2(g)| ≥ λ

]
≤ m · 2e−λ2γm (11.23)

If we set this upper bound to δ, we get:

δ = m · 2e−λ2γm

Solving for λ leads to:
λ2γm = ln(2m/δ)

λ =

√
ln(2m/δ)

γm
(11.24)

Thus we get :
Prob

[
∃g ∈ G | |ε(g)− ε̂2(g)| ≥ λ

]
≤ δ (11.25)

Therefore, with probability 1− δ we have for any gi in G :

|ε(gi)− ε̂2(gi)| ≤ λ. (11.26)

From this we get:
ε(gj)− λ ≤ ε̂2(gj) (11.27)

and
ε̂2(gk) ≤ ε(gk) + λ. (11.28)

Since Cross Validation preferred gj to gk, we know:

ε̂2(gj) ≤ ε̂2(gk). (11.29)

Now, from the three inequalities (11.27), (11.28) and (11.29) we can get:

ε(gj)− λ ≤ ε̂2(gj) ≤ ε̂2(gk) ≤ ε(gk) + λ (11.30)

ε(gj) ≤ ε(gk) + 2λ. (11.31)

We note that:

• ε(gj) is εCV (m), the error of Cross Validation when learning from m examples.

• ε(gk) is εA((1− γ)m), the error of algorithm A when learning from (1− γ)m examples.

14 Lecture 12: January 20, 2012

• λ =
√

ln(2m/δ)
γm

Thus we get:

εCV (m) ≤ εA((1− γ)m) + 2 ·
√

ln(2m/δ)

γm
, (11.32)

which proves Theorem 11.3.

In Practice

The analysis showed that Cross Validation chooses a hypothesis which, with probability
1− δ, is within a very close range (2λ) to the hypothesis chosen by SRM.

Also, Cross Validation tests with S2 only a small subset of the hypotheses (|G| = m),
only the ones that are best (in their classes) in relation to S1.

However, the analysis compared how Cross Validation learns from m examples with how
algorithm A learns from (1−γ)m examples. This note is important, because there are many
cases in which reducing the number of examples might significantly increase the learning
error. In such cases, εA((1−γ)m), A’s learning error from (1−γ)m examples, is only a weak
boundary on εCV (m), the error of Cross Validation’s learning from m examples, and there-
fore is not very useful. This is typical in cases where there is a “turning-point”, a number
of examples beyond which learning becomes easy (few errors), and under which learning is
difficult (many errors).

For example, consider the problem of learning a vector x of length n, where the examples
are vectors vi (of length n as well) s.t. 〈vi, x〉 = 0. Say we have m ≥ n, (i.e we have m
examples), but (1 − γ)m ≤ n. In this case, an εA((1 − γ)m) is close to 1, but εCV (m) = 0
(assuming that we have n linearly independent vectors vi).

It is advisable, therefore, to select a γ which will not cause such a difference in the error-
level of A (estimate A’s learning error as a function of m, and select a good γ).

In practice, we could use 10-fold Cross Validation. We would randomly choose 9/10m
examples to be our training set, and test on the remaining 1/10m examples. By repeating
this process, we could estimate the error rate we’d expect from the eventual hypothesis.
After that, assuming we trust the algorithm, we could use all m examples. This would cause
a better hypothesis, which we wouldn’t be able to test.

11.5. MDL: MINIMUM DESCRIPTION LENGTH 15

11.5 MDL: Minimum Description Length

Consider the typical formulation of a definition in everyday speech. We prefer to define
new concepts by comparing them to a simple similar concept, and describing the differences
between the two. For example, we would define a car as a wagon with a motor; this is much
simpler (shorter) than defining it as a four wheeled land vehicle propelled by the force of an
engine. This pattern of concept definition is useful because a great deal of the information
is conveyed concisely in the simple concept (here “wagon”), and the list of corrections is
manageable (here “with a motor”). In many contexts, the length of the description is a
criteria for choosing a description; for example, we may want to transmit the definition, and
strive to minimize the length of transmission.

Of course, there is a balance to maintain between the complexity of the concept and the
amount of corrections. The more complex the concept described by the hypothesis, the longer
the description will be, but the description of the exceptions will be shorter. Conversely, the
simpler the concept, the shorter its own description, but the longer the description of the
exceptions.

For example, consider Alice wants to send classifications y1, ..., ym of samples x1, ..., xm
to Bob. One way to do this is to send all the classifications. Another way to do this is to
send a hypothesis h and a set of corrections yk1, ..., ykl.

The Minimal Description Length model proposes that when learning a new concept, we
do not have to aim for the most accurate hypothesis; we can represent an accurate hypothesis
by describing a simple hypothesis, which is similar to the concept but is not accurate, and
supplying a list of corrections (examples which should be classified differently than the de-
scribed hypothesis does). The overall description-length is the sum of the description length
of the hypothesis and the corrections.

MDL proposes to find a hypothesis which minimizes the overall description length:

g∗ = arg min
h∈∪Hi

{
size(corrections(h)) + size(h)

}
,

where size(h) is the description size of hypothesis h, and size(corrections) is the description
size of the examples misclassified by h.

This model can be viewed as a penalty-based model : size(corrections(h)) is a function
of the observed error of h, and size(h) acts as the complexity-penalty. The chosen hypothesis
g∗ can be described as:

g∗ = arg min
h∈∪Hi

{
f(ε̂(h)) + Penalty(h)

}
,

16 Lecture 12: January 20, 2012

where f(ε̂(h)) corresponds to the description size of the observed error of h, and Penalty(h)
is the description size of h.

This model is related to the MAP - Maximum A Posteriori approach. In MAP we choose
the hypothesis with the maximum a-posteriori probability given the data. The a-posteriori
probability of a hypothesis h given the data D can be computed by Bayes rule as follows :

Pr[h|D] =
Pr[D|h] · Pr[h]

Pr[D]

The chosen hypothesis according to the MAP approach is :

g∗ = arg max
h∈∪Hi

Pr[h|D]

Since Pr[D] doesn’t depend on h, we can get :

g∗ = arg max
h∈∪Hi

Pr[D|h] · Pr[h]

By taking log, we get :

g∗ = arg max
h∈∪Hi

log(Pr[D|h]) + log(Pr[h])

And by changing the sign :

g∗ = arg min
h∈∪Hi

log(
1

Pr[D|h]
) + log(

1

Pr[h]
)

The expression 1
Pr[D|h] corresponds to the description size of the corrections of h in relation

to the data D and the expression 1
Pr[h]

corresponds to the description size of h (this is a

concept taken from Information Theory, highly connected to the Enthropy term). Hence,
the problem of finding a minimum description length hypothesis is equivalent to the problem
of finding a maximum a-posteriori hypothesis.

11.6 Summary

Model Selection deals with finding a good hypothesis based on a given number of examples.
We introduced the problem of overfitting our hypothesis to the particular examples. This

problem arises only when we are limited in the number of examples, and therefore cannot
require a large number of examples to sufficiently reduce the probability of error.

We presented two approaches for dealing with the overfitting problem: Structural Risk
Minimization and Cross Validation.

11.6. SUMMARY 17

Both of these methods deal with the overfitting problem by repressing the tendency
towards overfitted hypotheses, which stems from the desire to minimize the hypothesis’
error-level on the given data. Structural Risk Minimization does this by imposing a penalty
on complexity; Cross Validation does it by learning the concept from only a portion of the
given data, and then testing the hypothesis on the remaining portion of the data.

We showed that the Cross Validation approach approximates the results of the Structural
Risk Minimization.

We ended by introducing a third method, Minimum Description Length, which strives
to minimize the description-length of the chosen hypothesis. We showed that this method
is basically a variation on the theme of Structural Risk Minimization. It values a hypothesis
based on its observed error (amount of corrections which have to be described) and simplicity
of the hypothesis (its description-length).

