
Fast Concurrent Queues for x86 Processors

Adam Morrison Yehuda Afek
Blavatnik School of Computer Science, Tel Aviv University

Abstract
Conventional wisdom in designing concurrent data structures
is to use the most powerful synchronization primitive, namely
compare-and-swap (CAS), and to avoid contended hot spots.
In building concurrent FIFO queues, this reasoning has led re-
searchers to propose combining-based concurrent queues.

This paper takes a different approach, showing how to rely on
fetch-and-add (F&A), a less powerful primitive that is available
on x86 processors, to construct a nonblocking (lock-free) lineariz-
able concurrent FIFO queue which, despite the F&A being a con-
tended hot spot, outperforms combining-based implementations by
1.5× to 2.5× in all concurrency levels on an x86 server with four
multicore processors, in both single-processor and multi-processor
executions.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: Lists,
stacks, and queues

Keywords concurrent queue, nonblocking algorithm, fetch-and-
add

1. Introduction
Avoiding contended hot spots is a fundamental principle in the de-
sign of concurrent algorithms [13]. The concurrent FIFO queue, a
fundamental and commonly used data structure, is a prime exam-
ple of this principle in action: Both of Michael and Scott’s classic
algorithms [19], one lock-based and one nonblocking, do not scale
past a small amount of concurrency because threads contend on the
queue’s tail and head [11, 13]. To get around this seemingly in-
herent bottleneck, researchers have recently applied combining ap-
proaches in which one thread gathers pending operations of other
threads and executes them on their behalf [7, 8, 11].

Most non-combining concurrent algorithms synchronize using
compare-and-swap (CAS) loops: a thread observes the shared
state, performs a computation, and uses CAS to update the shared
state. If the CAS succeeds, this read-compute-update sequence
appears to be atomic; otherwise the thread must retry. Essentially,
the idea behind combining is that the synchronization cost of a
contended CAS hot spot (due to cache coherency traffic on the
contended location) is so large that performing all the work serially,
to save synchronization, performs better [11]. In this paper we show
that the truth is more nuanced: it is work wasted due to CAS failures

Copyright c© ACM, 2013. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The defini-
tive version was published in PPoPP’13, February 23–27, 2013, Shenzhen, China.,
http://doi.acm.org/10.1145/2442516.2442527.
PPoPP’13, February 23–27, 2013, Shenzhen, China.
Copyright c© 2013 ACM 978-1-4503-1922-5/13/02. . . $10.00

compare- swap test-and- fetch-
and-swap set and-add

ARM LL/SC deprecated no no
POWER LL/SC no no no
SPARC yes deprecated yes no
x86 yes yes yes yes

Table 1: Synchronization primitives supported as machine instruc-
tions on dominant multicore architectures.

that largely causes the poor performance of algorithms with a CAS
hot spot, not just the synchronization cost.

Observing this distinction, let alone exploiting it, is not possible
on most commercial multicore architectures which only support the
universal primitives CAS or load-linked/store-conditional
(LL/SC). While in theory these can implement weaker primitives
in a wait-free manner [12], such implementations are heavyweight
and in practice vendors direct programmers to use CAS loops [1].
However, there is an interesting exception: the (64 bit) x86 architec-
ture, which dominates the server and desktop markets, directly sup-
ports various theoretically weaker primitives whose crucial prop-
erty for our purpose is that they always succeed (see Table 1).

Consider, for example, the fetch-and-add (F&A) primitive.
Figure 1 shows the difference in the time it takes a thread to in-
crement a contended counter on a modern x86 system when using
F&A vs. a CAS loop. Avoiding the retries and paying only the syn-
chronization price leads to a 4×−6× performance improvement.
In this paper we transfer this insight to the domain of FIFO queues,
henceforth simply queues.

Our contribution We present LCRQ, a linearizable nonblocking
FIFO queue that uses contended F&A objects to spread threads
among items in the queue, allowing them to enqueue and dequeue
quickly and in parallel, in contrast the inherently serial behavior
of combining-based approaches. As a result, LCRQ outperforms
prior queue implementations by 1.5× to 2.5× on a system with four
Intel Xeon E7-4870 multicore processors, both on single-processor
and on multi-processor executions. Because LCRQ is nonblocking,
it maintains its performance in oversubscribed scenarios in which
there are more threads than available hardware threads. In such
workloads it outperforms by more than 20× lock-based combining
queues, which cannot make progress if a combiner gets scheduled
out.

Our LCRQ algorithm is essentially a Michael and Scott linked
list queue [19] in which a node is a concurrent ring (cyclic array)
queue, CRQ for short. A CRQ that fills up becomes closed to
further enqueues, who instead append a new CRQ to the list and
begin working in it. Most of the activity in the LCRQ occurs in the
individual CRQs, making contention on the list’s head and tail a
non-issue. Within a CRQ, the head and tail are F&A objects which
are used to spread threads around the slots of the ring, where they
synchronize using (uncontended in the common case) CAS.

This version fixes errors in Figure 3 and Figure 5 that are present in the proceedings version. Last updated: December, 2013

Figure 1: Time to increment a contended counter on a system with four Intel Xeon E7-4870 (Westmere EX) processors, each of which has
10 2.40 GHz cores that multiplex 2 hardware threads. The right vertical axis shows the number of CAS it takes to complete an increment.

One of the CRQ’s distinctive properties compared to prior con-
current circular array queues [2–4, 9, 10, 22, 23] is that in the com-
mon case an operation accesses only the CRQ’s head or tail but not
both. This reduces the CRQ’s synchronization cost by a factor of
two, since the contended head and tail are the algorithm’s bottle-
neck.

2. Related work
We refer the reader to Michael and Scott’s extensive survey [19] for
discussion of additional work that predates theirs.

List based queues Michael and Scott present two linked list
queues, one nonblocking (henceforth MS queue) and one lock-
based [19]. However, due to contention on the queue’s head and
tail, their algorithms do not scale past a low level of concur-
rency [7, 11]. Kogan and Petrank introduce a wait-free variant of
the MS queue with similar performance characteristics [16]. Sev-
eral works attempt to improve the MS queue’s scalability, however
all these still suffer from the CAS retry problem [15, 17, 20].

Cyclic array queues Prior concurrent cyclic array queues are
bounded and can contain a fixed number of items. One of the
challenges in these algorithms is correctly determining when the
queue is full and empty. The queues of Gottlieb et al. [10] and of
Freudenthal and Gottlieb [9] maintain a size counter that is updated
using F&A. Such a F&A might bring the queue into an inconsis-
tent state (e.g., size < 0) and the algorithm then tries to recover us-
ing a compensating F&A. Still, the inconsistent states make these
queues non-linearizable 1. Blelloch et al. [3] use room synchroniza-
tion, which prevents enqueues from running concurrently to de-
queues, to construct a queue that is linearizable despite temporar-
ily entering inconsistent states when its head/tail are updated us-
ing F&A. Another queue by Blelloch et al. [2] avoids inconsistent
states of the head and tail by updating these indices using hardware
memory block transactions which are not supported by commer-
cial hardware. Tsigas and Zhang [23], Colvin and Groves [4] and
Shafiei [22] present cyclic array queues that avoid inconsistent head
and tail states by performing the updates using CAS, but are there-
fore prone to the CAS failure effect.

In contrast to these prior designs, LCRQ is an unbounded queue
formed by linking CRQs (array queues) in a list, with a new CRQ

1Blelloch et al. [3] show a non-linearizable execution for Gottlieb et
al.’s queue. A similar scenario applies to Freudenthal and Gottlieb’s queue.

added when an enqueue operation fails to make progress. The
ability to close a CRQ, forcing enqueues to move to the next
CRQ in the list, makes LCRQ nonblocking whereas prior F&A-
based designs [2, 3, 9, 10] are blocking. In addition, since we
do not need to determine when the queue is full in a linearizable
way, we can recover from inconsistent states that result from using
F&A for head/tail updates without compromising linearizability.
Performance-wise, a CRQ operation accesses only one end of the
queue in the common case, whereas the operations in the previous
designs access both the head and tail indices.

Combining Researchers have recently shown that combining-
based queues scale better than CAS-based list queues [7, 8, 11].
A combining algorithm is essentially a universal construction [12]
that can implement any shared object. The idea is that a single
thread scans a list of pending operations and applies them to the
object. Such algorithms greatly reduce the synchronization cost of
accessing the object, at the cost of executing work serially.

Hendler et al. describe a linked list queue based on flat combin-
ing, a lock-based combining construction [11]. Fatourou and Kalli-
manis present SimQueue [8], a queue based on a wait-free com-
bining construction, and CC-Queue, a queue based on a blocking
combining algorithm [7]. Section 5 details these algorithms.

Both of Fatourou and Kallimanis’ algorithms use weak synchro-
nization primitives (F&A and SWAP). However, they do so to re-
duce the synchronization cost of the combining algorithm, which
still needs to perform serial work that is linear in the number of
threads. In contrast, we use F&A to enable parallelism in the seem-
ingly inherently sequential FIFO queue.

3. Preliminaries
System model Most concurrent algorithms work assumes a se-
quentially consistent shared memory system, particularly for cor-
rectness proofs, as this allows modeling the execution as a sequence
of interleaved memory operations performed by the threads. While
the x86 memory model is not sequentially consistent, the only dif-
ference is that on the x86 a write gets buffered in a write buffer
before reaching the memory, allowing a read to be satisfied from
memory before a write preceding it becomes globally visible [21].

However, in our algorithms threads write to shared data only
with atomic operations, such as CAS and F&A. Atomic operations
flush the write buffer and are globally ordered [21], allowing us to
treat the system as sequentially consistent. Formally, we have a set

of T sequential threads that communicate by performing operations
on the shared memory, as described below.

Memory operations The memory is an array of locations, each
holding a 64-bit value. We use the notation m[a] for the value
stored in address a of the memory. Our algorithms use the follow-
ing primitives supported by the x86 architecture: (1) read(a) which
returns m[a], (2) fetch-and-add, denoted F&A(a,x), which re-
turns v = m[a] and changes m[a]’s value to v+x, (3) swap, denoted
SWAP(a,x), which returns v = m[a] and changes m[a]’s value to
x, (4) test-and-set, denoted T&S(a), which returns v = m[a]
and changes m[a]’s value to 1, (5) compare-and-swap, denoted
CAS(a,o,n), which changes m[a]’s value to n if m[a] = o and re-
turns TRUE, or returns FALSE otherwise, (6) compare-and-swap2,
denoted CAS2(a,〈o0,o1〉 ,〈n0,n1〉), which changes m[a]’s value to
n0 and m[a+1]’s value to n1 if m[a] = o0 and m[a+1] = o1 before
returning TRUE, or else returns FALSE 2.

Concurrent objects The threads implement a high-level object
defined by a sequential specification, a state machine specifying
the object’s states and the operations used to transition between
the states. Here we are concerned with the FIFO queue, an object
whose state, Q, is a (possibly empty) sequence of items. It supports
an enqueue(x) operation that appends x to Q and returns OK, and
a dequeue() operation which removes the first item x from Q and
returns x, or returns EMPTY if Q is the empty sequence.

Implementations, executions and linearizability We use the
standard definitions of a high-level object implementation and its
execution [14]. Our correctness condition is linearizability [14],
which (informally) requires that a high-level operation appears to
take place at one point in time during its execution interval.

Progress According to Herlihy’s now standard definition [12], an
implementation is nonblocking if it guarantees that some thread
completes an operation in a finite number of steps. In other words,
an individual operation may starve, but some operation always
makes progress. This guarantee still allows some undesirable sce-
narios for queues, e.g., an execution in which enqueuers are starved
by dequeuers returning EMPTY. Nonblocking queues in the liter-
ature [4, 19, 22, 23] actually provide a stronger guarantee, which
we call op-wise nonblocking 3: some enqueue() completes in a
finite number of steps by enqueuing threads, and some dequeue()
completes in a finite number of steps by dequeuing threads.

4. The LCRQ algorithm
LCRQ can be viewed as a practical realization of the following
simple but unrealistic queue algorithm (Figure 2). The algorithm
represents the queue using an infinite array, Q, with (unbounded)
head and tail indices that identify the part of Q which may contain
items. Initially, each cell Q[i] is empty and contains a reserved value
⊥ that may not be enqueued.

An enqueue(x) operation obtains a cell index t via a F&A on
tail. The enqueue then atomically swaps the value in Q[t] with x. If
the swap returns ⊥, the enqueue operation completes; otherwise, it
repeats this process.

A dequeue, D, obtains a cell index h using F&A on head and
atomically swaps the value in Q[h] with another reserved value >.
If Q[h] contained some x 6=⊥, D returns x. If D finds⊥ in Q[h], the
fact that D stored> in the cell guarantees that an enqueue operation
which later stores an item in Q[h] will not complete. D then returns
EMPTY if tail ≤ h+ 1 (h+ 1 is the value of head following D’s
F&A). If D cannot return EMPTY, it repeats this process.

2On the x86 these atomic primitives are known as LOCK XADD, XCHG,
LOCK BTS, LOCK CMPXCHG and LOCK CMPXCHG16B.

3We are not aware of this property being explicitly pointed out before.

1 enqueue(x : Object) {
2 while (true) {
3 t := F&A(&tail, 1)
4 if (SWAP(&Q[t], x) =⊥) return OK
5 } }
6 dequeue() {
7 while (true) {
8 h := F&A(&head, 1)
9 x := SWAP(&Q[h], >)

10 if x 6=⊥ return x
11 if (tail ≤ h+1) return EMPTY
12 } }

Figure 2: Infinite array queue.

While this algorithm is a linearizable FIFO queue 4 it has two
major flaws that prevent it from being relevant in practice: using
an infinite array and susceptibility to livelock (a dequeuer contin-
uously swaps > into the cell an enqueuer is about to access). We
obtain the practical LCRQ algorithm by solving these problems.

Our array queue, CRQ, transforms the infinite array to a cyclic
array (ring) of R nodes. The head and tail indices still strictly
increase, but now the value of an index modulo R specifies the
ring node it points to. Since now more than one enqueuer and de-
queuer can concurrently access a node, we replace the infinite array
queue’s SWAP-based exchange with a CAS2-based protocol. This
protocol is unique in that, unlike prior work [2, 10], an operation
does not have to wait for the completion of operations whose F&A
returns smaller indices that also point to the same ring node.

The CRQ’s crucial performance property is that in the common
fast path, an operation accesses only one F&A. We use the addi-
tional synchronization in the ring nodes to detect corner cases, such
as an empty queue. Since head and tail are heavily contended, our
approach halves an operation’s synchronization cost in the common
case. We detail the CRQ algorithm in Section 4.1.

The LCRQ algorithm (Section 4.2) builds on CRQ to prevent
the livelock problem. We represent the queue as a linked list of
CRQs. An enqueue(x) operation failing to make progress in the tail
CRQ closes it to further enqueues. Upon noticing the tail CRQ is
closed, each enqueuer tries to append a new CRQ, initialized to
contain its item, to the list. One enqueuer succeeds and completes;
the rest move into the new tail CRQ, leaving the old tail CRQ with
only dequeuers inside it, which allows the dequeuers to complete.
The LCRQ is thus op-wise nonblocking.

4.1 The CRQ algorithm
The pseudocode of the basic CRQ algorithm appears in Figure 3.
The CRQ represents the queue as a ring (cyclic array) of R nodes,
with 64-bit head and tail indices (Figure 3a). An index with value
i points to node i mod R, which we denote by node(i). We reserve
the most significant bit of tail to denote the CRQ’s CLOSED state.
We thus make the realistic assumption that both head and tail do
not exceed 263.

The synchronization protocol in a CRQ ring node needs to
handle more cases than the infinite array queue, which only needs
to distinguish whether an enqueue or dequeue arrives first at the
node. We proceed to describe this protocol and how it handles these
cases.

Node structure (Figure 3a) Physically, a ring node contains two
64-bit words. Logically, a ring node is a 3-tuple (s, i,v) consisting
of (1) a safe bit s (used by a dequeuer to notify the matching
enqueuer that storing an item in the node is unsafe as the dequeuer
will not be around to dequeue it; we explain the details below), (2)
an index i, and (3) a value v. Initially, node u’s state is (1,u,⊥) for
every 0≤ u < R.

4We omit the full proof, which is similar to the proof in Section 4.1.2.

13 struct Node {
14 safe : 1 bit (boolean)
15 idx : 63 bits (int)
16 val : 64 bits (int or pointer)
17 // padded to cache line size
18 }
19 struct CRQ { // fields are on distinct cache lines
20 head : 64 bit int
21 tail : struct { closed : 1 bit , t : 63 bits }
22 next : pointer to CRQ, initially null
23 ring : array of R Nodes, initially node u = <1,u,⊥>
24 }

(a) Globals

25 dequeue(crq : pointer to CRQ) {
26 // local variables
27 val , idx : 64 bit int
28 h, t : 64 bit int
29 node : pointer to Node
30 closed : boolean
31 safe : boolean
32

33 while (true) {
34 h := F&A(&crq.head, 1)
35 node := &crq.array [h mod R]
36 while (true) {
37 val := node.val
38 <safe, idx> := <node.safe, node.idx> // one 64−bit read
39 if (idx > h) goto Line 52
40 if (val 6=⊥) {
41 if (idx = h) { // try dequeue transition
42 if (CAS2(node, <safe, h, val>, <safe, h+R, ⊥>))
43 return val
44 } else { // mark node unsafe to prevent future enqueue
45 if (CAS2(node, <safe, idx, val>, <0, idx, val>)) goto Line 52
46 }
47 } else { // idx≤ h and val =⊥: try empty transition
48 if (CAS2(node, <safe, idx, ⊥>, <safe, h+R, ⊥>))
49 goto Line 52
50 }
51 } // end of while loop , go back to Line 36
52 // failed to dequeue, check for empty
53 <closed, t> := crq . tail
54 if (t ≤ h+1) {
55 fixState (crq)
56 return EMPTY
57 } } }

(b) Dequeue

58 void fixState (crq : pointer to CRQ) {
59 // local variables
60 h, t : 64 bit int
61

62 while (true) {
63 t = F&A(&crq.tail, 0)
64 h = F&A(&crq.head, 0)
65

66 if (crq . tail 6= t)
67 continue // continue loop at Line 62
68

69 if (h ≤ t)
70 return // nothing to do
71

72 if (CAS(&crq.tail, t , h))
73 return
74 } }

(c) fixState()

75 enqueue(crq : pointer to CRQ, arg : Object) {
76 // local variables
77 val , idx : 64 bit int
78 h, t : 64 bit int
79 node : pointer to Node
80 closed : boolean
81 safe : boolean
82

83 while (true) {
84 <closed, t> := F&A(&crq.tail, 1) // F&A on all 64 bits of tail
85 if (closed)
86 return CLOSED
87 node = &crq.array [t mod R]
88 val := node.val
89 <safe, idx> := <node.safe, node.idx> // one 64−bit read
90 if (val =⊥) {
91 if ((idx ≤ t) and
92 (safe = 1 or crq.head ≤ t) and
93 CAS2(node, <safe, idx, ⊥>, <1, t, arg>)) {
94 return OK
95 }
96 }
97 h := crq .head
98 if (t − h ≥ R or starving ()) {
99 T&S(&crq.tail. closed) // atomically set tail . closed to true

100 return CLOSED
101 }
102 } }

(d) Enqueue

Figure 3: Pseudocode of CRQ algorithm.

A node can be in one of two states: if its value is ⊥ the node is
empty; otherwise the node is occupied. A CRQ operation attempts
to transition a node from empty to occupied or vice versa using
CAS2. We say that an operation, op, accesses node u using index
i if op’s F&A returns i and u = i mod R, and refer to the operation
as enqi or deqi as appropriate. An operation accessing a node uses
the value of the node’s safe bit and index, as described next, to
determine whether it can attempt a transition or should obtain a
new index and try accessing another node.

Dequeuing an item When a node is in an occupied state, (s, i,x),
it holds the item x that has been stored by enqi(x). In this case,
only deqi, the dequeue operation accessing the node using index
i – exactly i and not just equal to i modulo R – can return x.
Such a dequeue attempts to remove x by performing the transition
(s, i,x) 7→ (s, i+R,⊥) using CAS2 (Figure 3b, Line 42). We refer
to this as a dequeue transition.

Dequeue arrives before enqueuer while node is empty This case
occurs when an empty node whose state is (s, i,⊥) is accessed
by deq j with j = i+ kR, i.e., before the matching enqueue enq j
completes. Similarly to the infinite array queue, deq j prevents enq j

from storing its item in the node by performing an empty transition
(s, i,⊥) 7→ (s, j + R,⊥) (Line 48). In fact, the empty transition
prevents any operation using some index j− kR from performing
a transition on the node. This stronger property was not needed in
the infinite array queue, where only one enqueuer and one dequeuer
ever access a node.

Dequeue arrives before enqueuer while node is occupied This
case has no analog in the infinite array queue. It occurs when an
occupied node (s, i,x) is accessed by deq j with j = i+ kR (k > 0),
i.e., before deqi which is the dequeuer supposed to dequeue x.
While deq j cannot remove x, it must still mark the node somehow
before moving on, so that enq j knows not to enqueue an item
in the node. deq j uses the safe bit for this purpose, making an
unsafe transition (s, i,x) 7→ (0, i,x) (Line 45). Once a node is unsafe,
all dequeuer transitions keep the safe bit at 0. This prevents any
enqueuer from storing its item in the node unless it first verifies
that the corresponding dequeuer has not yet started, as explained
next.

Enqueuing an item When a node is in an empty state (s, i,⊥),
any enq j(x) operation with j = i + kR may attempt an enqueue

transition to store x in the node. If s = 1, enq j simply performs
the transition (1, i,⊥) 7→ (1, j,x) (Figure 3d, Line 93). However, if
s = 0, enq j needs to make sure that deq j is not the dequeuer that
set s to 0, since then deq j will not dequeue from the node. enq j
determines this by checking if head ≤ j (Line 92), which means
that deq j has not yet started. If so, then enq j makes the transition
(0, i,⊥) 7→ (1, j,x) (Line 93) which undoes the previous unsafe
transition. If deq j then starts after enq j’s check that head ≤ j and
performs a transition on the node before enq j’s transition, then deq j
performs an empty transition (Line 49) which changes the node’s
index and causes enq j’s CAS2 to fail.

We now turn to a walk-through of the algorithm’s pseudocode.
For simplicity, we describe optimizations in Section 4.1.1, omitting
them from the pseudocode.

Enqueue (Figure 3d) An enqueue enq repeats the following. It
obtains an index to a ring node with a F&A on tail (Line 84). If the
CRQ is closed, enq returns CLOSED (Lines 85-86). Otherwise, enq
attempts an enqueue transition (Lines 87-96). If this fails (because
the node is occupied or the CAS2 fails), enq decides to give up and
closes the queue in one of two cases: (1) enq’s index has passed
head by R places, indicating a possibly full queue, or (2) enq is
failing to make progress for a long time (checked by starving())
(Lines 97-101).

Dequeue (Figure 3b) A dequeue deq repeats the following. It
obtains an index, h, to a ring node using F&A on head (Lines 34-
35). It then enters a loop in which it attempts to read a consistent
state of the node and perform a transition. If h < i, where i is the
node’s index, then deq has been overtaken between its F&A and
reading the node, and so it exits the loop (Line 39). If the node
is occupied, deq attempts a dequeue transition (Lines 40-47). If
the node is empty, deq attempts an empty transition (Line 48) and
exits the loop if successful. Throughout this process, if deq’s CAS2
fails (implying the node’s state changes) then deq restarts the loop
of reading the node and performing a transition. Whenever deq
exits the loop without successfully dequeuing an item, it verifies
that the queue is not empty before trying to dequeue with a new
index (Line 53-54). If the queue is empty, deq fixes (see below)
the queue’s state so that head ≤ tail before returning EMPTY
(Lines 55-56).

Fixing the queue state (Figure 3c) A dequeuer F&A may bring
the queue into an invalid state in which head > tail. In such a
case, the dequeuer can just perform an empty transition and return
EMPTY. However, doing so prevents the enqueuer with the same
index from using the node, forcing it to F&A tail again and increas-
ing contention. To avoid this problem, a dequeuer always verifies
that head ≤ tail before returning EMPTY (Lines 62-74).

4.1.1 Optimizations
Bounded waiting for matching enqueues When an enqueue and
dequeue operation using the same index are active concurrently, the
dequeue may arrive at the node before the matching enqueuer. Per-
forming an empty transition in such a case just leads to both opera-
tions restarting and accessing the F&A again, needlessly increasing
contention on head and tail.

To avoid this, before performing an empty transition (Line 48),
a dequeue operation checks whether tail ≥ h+ 1, where h is the
dequeue’s index. If so, then the matching enqueuer is active and the
dequeuer spins for a short while, waiting for the enqueue transition
to take place. Only after timing out on this spin loop does the
dequeue perform an empty transition.

Hierarchy awareness Large servers are typically built hierarchi-
cally, with clusters of cores such that inter-core communication in-
side a cluster is cheap, but cross-cluster communication is expen-
sive. For example, in a multiprocessor system a cluster consists of

all the cores on a (multicore) processor. In these hierarchical ma-
chines, creating batches of operations that complete on the same
cluster without interference from remote clusters reduces synchro-
nization cost.

To achieve this, we add a cluster field to the CRQ, which
identifies the current cluster from which most operations should
complete. Before starting a CRQ operation, a thread checks if it
is running on cluster. If not, the thread waits for a while, and
then CASes cluster to be its cluster and enters the algorithm
(even if the CAS fails). Similarly to prior NUMA-aware lock-based
algorithms [5, 7], this divides the execution into segments such that
in each segment most operations in the CRQ are from the same
cluster. However, our optimization does not rely on locks nor does
it introduce blocking, as every operation eventually enters the CRQ.

4.1.2 CRQ linearizability proof
The CRQ is not a standard FIFO queue because an enqueue can
return CLOSED. To deal with this we give the CRQ the semantics
of a tantrum queue: a queue in which an enqueue can nondetermin-
istically refuse to enqueue its item, returning CLOSED instead and
moving the queue to a CLOSED state. When a tantrum queue is
in the CLOSED state, every enqueue operation returns CLOSED
without enqueuing its item.

In the following, we prove that CRQ is a linearizable tantrum
queue. Let E = e1,e2, . . . be a possibly infinite execution of CRQ.
We assume every thread whose next local step is to complete does
indeed complete in E. We denote an operation op ∈ {deq,enq}
that returns ret in E by 〈op : ret〉. We now describe a procedure
P (Figure 4) to assign linearization points to the operations in E.

Essentially, the linearization order of 〈enq(x) : OK〉 operations
is by the index the enqueuer uses when successfully enqueuing its
item, and similarly 〈deq() : x〉 operations (x 6= EMPTY) are lin-
earized in the order of the index used to dequeue. The trick is to
order enqueues and dequeues consistently, since for example a de-
queuer’s F&A returning index i can occur before the corresponding
enqueuer’s F&A.

To do this, we track the CRQ’s state at each point in E using
an auxiliary sequential queue. The auxiliary queue consists of an

103 Input: CRQ execution, E = e1,e2, . . .
104

105 for j = 1 . . .
106 if e j is a T&S by 〈enq(x) : CLOSED〉 that sets tail’s closed bit
107 (Figure 3d, Line 99) then
108 Linearize 〈enq(x) : CLOSED〉 at e j
109 elseif e j = 〈t := F&A(tail,1)〉 by 〈enq(x) : CLOSED〉 which
110 returns a closed value (Figure 3d, Line 84) then
111 Linearize 〈enq(x) : CLOSED〉 at e j
112 elseif e j = 〈t := F&A(tail,1)〉 is the last F&A in E by 〈enq(x) : OK〉
113 (Figure 3d, Line 84) then
114 Q[t] := x
115 tail(Q) := t+1
116 Linearize 〈enq(x) : OK〉 at e j
117 elseif e j = 〈t := tail〉, is a read returning t ≤ head by 〈deq : EMPTY〉
118 (Figure 3b, Line 53) then
119 Linearize 〈deq : EMPTY〉 at e j
120 endif
121 while head(Q)< tail(Q)
122 h := min{i : Q[i] 6=⊥}
123 if dequeue whose F&A (Line 34) returns h not active in e1, . . . ,e j then
124 goto Line 130
125 endif
126 x := Q[h]
127 Q[h] :=⊥
128 head(Q) := h+1
129 Linearize 〈deq : x〉 at e j
130 endwhile

Figure 4: CRQ linearization procedure P. Operations linearized at
the same event are ordered based on the order of P’s steps.

infinite array, Q, coupled with indices head(Q) and tail(Q) rep-
resenting Q’s head and tail. (Note that Q is not cyclic.) Initially,
tail(Q) = head(Q) = 0 and Q[i] =⊥ for all i.

We process the execution one event at a time, in order of exe-
cution, but using information about future events to decide when to
linearize an operation. When we linearize an operation we also ap-
ply it to the auxiliary queue. We linearize an 〈enq(x) : OK〉 on its fi-
nal F&A, the one returning index t such that the operation enqueues
x in node(t). At this point we also set tail(Q) to t +1. We linearize
the dequeue of item x = Q[h] as soon as the dequeue becomes ac-
tive and h is the lowest indexed non-⊥ cell in Q, and set head(Q) to
h+1 at this point. We linearize a 〈deq : EMPTY〉 on its read of tail
that returns a value ≥ head (we later show that head(Q) = tail(Q)
at this point). The full pseudocode of P in Figure 4 also includes
the straightforward cases of linearizing 〈enq(x) : CLOSED〉 opera-
tions.

By construction, the linearization point of an operation is within
its execution interval, and all completed enqueues and all dequeues
that return EMPTY are linearized. We now show that completed
dequeues which do not return EMPTY are also linearized. Here
we denote by enqi(x) the 〈enq(x) : OK〉 operation whose last F&A
on tail in E returns i, causing P to set Q[i] := x and linearize it.
Similarly, we denote a dequeue operation whose last F&A on head
in E returns i by deqi.

Lemma 1. Suppose P linearizes enqi(x). If there exists a dequeue
operation deq that performs a F&A on head in E which returns i,
then: (1) deq = deqi (i.e., deq performs no further F&As in E), (2)
deqi returns x if it completes, and (3) P linearizes 〈deqi : x〉.

Proof. Let (s, j,⊥) 7→ (1, i,x) be enqi(x)’s enqueue transition stor-
ing x into u = node(i) (Figure 3d, Line 93). Notice that j ≤ i. If
deq takes sufficiently many steps after obtaining i from its F&A on
head, it performs a transition on u using index i. To see this, notice
that deq moves on from u without performing a transition only if it
reads an index > i from u (Figure 3b, Line 39). Because enqi’s tran-
sition succeeds, deq is the only operation that can move u’s index
beyond i, so this is impossible.

Now, consider deq’s transition. It cannot be (·,k,⊥) 7→ (·, i+
R,⊥) (Line 48) since that implies enqi’s transition fails. deq’s tran-
sition also cannot be of the form (·,k,v) 7→ (0,k,v) (Line 45) be-
cause then, enqi’s transition succeeding implies that some enqueue
(possibly enqi) subsequently obtains index t ≤ i and then observes
head≤ t, which is impossible since head > i. Thus, deq’s transition
can only be a dequeue of x. Hence (1) and (2) hold.

We prove (3) using induction on k, the number of linearized
enqueue operations. For k = 0 the claim is vacuously true. Suppose
now that the k-th enqueue operation linearized is enqi(x). If deqi
exists in E, then it does not complete before enqi(x)’s F&A which
returns i, since otherwise deqi does not return x, contradicting
(2). Therefore, there exists a first event e in which Q[i] = x and
deqi is active. Thus at some event e′, at or after e, Q[i] = x and
deqi has performed the F&A on head which returns i. Let idx =
{ j : j < i,Q[j] 6=⊥ at e′}. For all j ∈ idx, deq j starts by e′ (because
deqi’s F&A has returned i) and does not complete before e′ (as
that implies it is not linearized before completing, contradicting
the induction hypothesis). Therefore, at e′ P linearizes deq j for all
j ∈ idx and subsequently linearizes deqi.

To complete the linearizability proof, we must show that our
linearization order meets the tantrum queue specification. Because
we enqueue to Q’s tail, dequeue from Q’s head, and following the
first enqueue to return CLOSED all enqueues do so, this amounts
to showing that the auxiliary queue is empty when we linearize a
〈deq : EMPTY〉 operation. Lemma 2 below implies this, because
we linearize a 〈deq : EMPTY〉 when it reads a value t from tail

131 // shared variables on distinct cache lines :
132 tail : pointer to CRQ
133 head : pointer to CRQ
134 // initially :
135 tail = head = empty CRQ

(a) Globals

136 dequeue() {
137 // local variables
138 crq : pointer to CRQ
139 v : 64 bit value
140

141 while (true) {
142 crq := head
143 v := dequeue(crq)
144 if (v 6= EMPTY) return v
145 if (crq .next = null) return EMPTY
146 v := dequeue(crq)
147 if (v 6= EMPTY) return v
148 CAS(&head, crq, crq.next)
149 } }

(b) Dequeue

150 enqueue(x : Object) {
151 // local variables
152 crq , newcrq : pointer to CRQ
153

154 while (true) {
155 crq := tail
156 if (crq .next 6= null) {
157 CAS(&tail, crq , crq .next)
158 continue // next iteration at Line 155
159 }
160 if (enqueue(crq , x) 6= CLOSED)
161 return OK
162 newcrq := a new CRQ initialized to contain x
163 if (CAS(&crq.next, null , newcrq)) {
164 CAS(&tail, crq , newcrq)
165 return OK
166 } } }

(c) Enqueue

Figure 5: Pseudocode of the LCRQ algorithm, using a linearizable
CRQ black box.

(Figure 3b, Line 53) such that t ≤ h+ 1, where h < head is the
value that the deq’s prior F&A returns (Line 34).

Lemma 2. If at event e, head ≥ tail, then head(Q) = tail(Q).

Proof. Suppose towards a contradiction that head(Q) < tail(Q) at
e. Then there exists a minimal i such that Q[i] 6=⊥ at e. Because we
update tail(Q) following the order of F&As on tail, i < tail(Q) ≤
tail ≤ head at e. Thus, deqi is active before e and should have been
linearized by P, a contradiction.

In conclusion, we have shown the following.

Theorem 1. CRQ is a linearizable implementation of a tantrum
queue.

4.2 The LCRQ algorithm
We now present LCRQ using the CRQ as a black box. The LCRQ is
simply a linked list of CRQs in which dequeuing threads access the
head CRQ and enqueuing threads access the tail CRQ (Figure 5a).
An enqueue(x) operation that receives a CLOSED response from
the tail CRQ creates a new CRQ, initialized to contain x, and links
it after the current tail, thereby making it the new tail (Figure 5c). If
the head CRQ becomes EMPTY and there is a node linked after it,
dequeues move to the next node, after installing it as the new head
(Figure 5b).

Memory reclamation A dequeue that successfully changes the
head pointer cannot reclaim the memory used by the old CRQ
because there may be concurrent operations about to access it (i.e.,
stalled just before Line 143 or Line 160). We address this problem
by using hazard pointers [18] to protect an operation’s reference
to the CRQ it is about to access. We omit the details, which are
standard.

Linearizability Assuming that the CRQ is a linearizable tantrum
queue, proving that LCRQ is a linearizable queue implementation
is straightforward:

Theorem 2. If CRQ is a linearizable tantrum queue implementa-
tion, then LCRQ is a linearizable queue implementation.

Proof. (Sketch) We linearize an enqueue that completes after ap-
pending a new CRQ to the list at the CAS which links the new
CRQ (Figure 5c, Line 163). We linearize any other completed op-
eration at the point in which its final CRQ operation takes place.
The next pointer of a CRQ q changes from null only after q be-
comes CLOSED, and conversely, after a CRQ q becomes CLOSED
no new enqueue completes until a new CRQ is linked after q. Thus,
if q0 precedes q1 in the list, any q1 enqueue is linearized after any
q0 enqueue. Similarly, any q0 dequeue is linearized before any q1
dequeue. Linearizability follows.

4.2.1 LCRQ nonblocking proof
In this section, we sketch the proof of the following theorem:

Theorem 3. LCRQ is op-wise nonblocking.

An enqueuer that does not complete within a finite number of
steps in the tail CRQ closes it. Once the CRQ is closed, every
enqueuer taking enough steps tries to append a new CRQ to the
LCRQ. The first one to CAS the CRQ’s next pointer (Figure 5c,
Line 163) succeeds and completes. Thus, an enqueue operation
completes within a finite number of steps by enqueuing threads.

Now, consider a dequeuer deq taking an infinite number of steps
without completing. Suppose first that deq remains in one LCRQ
node, q. If enqueuers take infinitely many steps in q, then q does
not close and so, because q’s size is finite, dequeuers remove items
from q. If enqueuers take only finitely many steps in q, then from
some point only dequeuers take steps in q and so eventually q’s
head exceeds its tail. Then deq finds that q is empty (Lines 53-54),
enters fixState() but never leaves. Thus, new dequeuers con-
tinue to enter q and increment head. Since the number of dequeuers
is finite, this implies some dequeuer completes.

The other possibility is that deq returns EMPTY in each CRQ
node qi it enters but never reaches the LCRQ’s tail. Each node qi
contains at least one item, and so there is a dequeuer di that holds
the index to this item. After traversing through T nodes, where T
is the number of threads in the system, it must be that di = d j for
some j > i. This means di completes and returns. Overall, we have
shown that a dequeue must complete within a finite number of steps
by dequeuing threads.

5. Evaluation
Evaluated algorithms We compare LCRQ to the best performing
queues reported in the recent literature, all of which are based
on the combining principle: Hendler et al.’s FC queue [11] and
Fatourou and Kallimanis’ CC-Queue and H-Queue [7]. We also
test Michael and Scott’s classic nonblocking MS queue [19].

The FC queue is based on flat combining, in which a thread
becomes a combiner by acquiring a global lock, and then applies
the operations of the non-combining threads. The queue we test is
a linked list of cyclic arrays, with a new tail array allocated when
the old tail fills.

The CC-Queue replaces each of the two locks in Michael and
Scott’s two-lock queue [19], which serialize accesses to the queue’s
head and tail, with an instance of the CC-Synch universal construc-
tion [7]. The CC-Synch universal construction maintains a linked
list to which threads add themselves using SWAP. The thread at the
head of the list traverses the list and performs the requests of wait-
ing threads. Since the enqueue and dequeue CC-Synch instances
work in parallel, the CC-Queue outperforms the FC queue [7].

The H-Queue is a hierarchical version of the CC-Queue. It uses
an instance of the H-Synch universal construction [7] to replace the
two-lock queue’s locks. The H-Synch construction consists of one
instance of CC-Synch per cluster and a lock that synchronizes the
CC-Synch instances. Each CC-Synch combiner acquires the lock
and performs the operations of the threads on its cluster.

To obtain the most meaningful results, we use the queue im-
plementations from Fatourou and Kallimanis’ benchmark frame-
work [7, 8], all of which are in C 5. We incorporate the FC queue
implementation into this framework.

LCRQ implementation We use CRQs whose ring size, R, is 217.
(We include a sensitivity study of LCRQ to the ring size below.) In
addition to baseline LCRQ, we also evaluate LCRQ+H, in which
we enable our hierarchical optimization (with a timeout of 100 µs).
To explore the impact of CAS failures, we test LCRQ-CAS, a
version of LCRQ in which we implement the F&As using a CAS
loop. All LCRQ variants include the overhead of pointing a hazard
pointer at the CRQ before accessing it 6.

Methodology We follow the testing methodology of prior work [7,
19]. We measure the time it takes for every thread to execute 107

pairs of enqueue and dequeue operations, averaged over 10 runs.
As in prior work, in every test we avoid artificial long run sce-

narios [19], in which a thread zooms through many consecutive
operations, by having each thread wait for a random number of
nanoseconds (up to 100) between operations. Each thread is pinned
to a specific hardware thread, to avoid interference from the oper-
ating system scheduler. Our tests use the jemalloc [6] memory
allocator to prevent memory allocation from being a bottleneck.
Results’ variance is negligible (we use a dedicated test machine).

Platform We use a Fujitsu PRIMERGY RX600 S6 server with
four Intel Xeon E7-4870 (Westmere EX) processors, which were
launched by Intel in early 2011. Each processor has 10 2.40 GHz
cores, each of which multiplexes 2 hardware threads, so in total our
system supports 80 hardware threads. Each core has private write-
back L1 and L2 caches; an inclusive L3 cache is shared by all cores.

Single processor executions (Figure 6a) Here we restrict threads
to run on one of the server’s processors. This evaluates the queues
in a modern multicore environment in which all synchronization is
handled on-chip and thus has low cost. We omit results of LCRQ+H
and H-Queue, since they are relevant only for multi-processor exe-
cutions.

LCRQ outperforms all other queues beyond 2 threads. From
10 threads onwards, LCRQ outperforms CC-Queue by 1.5×, the
FC queue by > 2.5×, and the MS queue by > 3×. LCRQ-CAS
matches LCRQ’s performance up to 4 threads, but at that point
its performance levels off. Subsequently, LCRQ-CAS exhibits
the throughput “meltdown” associated with highly contended hot
spots. Its throughput at maximum concurrency is 33% lower than
its peak performance at 8 threads. Similarly, MS queue’s perfor-
mance peaks at 2 threads and degrades as concurrency increases.

Table 2 explains the above results. LCRQ, LCRQ-CAS and the
MS queue all complete in a few instructions, but some of these

5We fixed a memory leak bug in the CC and H-Queue implementations,
thereby improving their performance.

6This consists of a writing the CRQ’s address to a thread-private loca-
tion, issuing a memory fence, and rereading the LCRQ’s head/tail.

Figure 6: Enqueue/dequeue throughput on a single processor. The right plot shows throughput with more threads than available hardware
threads; the first point, showing the throughput at maximal hardware concurrency, is included for reference.

Single processor execution (queue initially empty)
1 thread 20 threads

LCRQ LCRQ- CC- FC MS LCRQ LCRQ- CC- FC MS
CAS Queue queue queue CAS Queue queue queue

Latency 0.13 µs 0.96 × 0.95 × 0.91 × 0.88 × 0.44 µs 2.70 × 1.45 × 3.51 × 5.95 ×
Instructions 278.46 284.96 294.96 284.96 228.77 280.27 302.08 867.27 3846.29 321.05
Atomic 2 2 1 1 1.5 2 3.04 1 0.21 4.3operations
L1 misses 0.51 0.51 0 0.03 0 3.85 7.64 9.62 5.46 13.19
L2 misses 0.05 0.06 0 0 0 3.86 7.23 6.91 3.81 13.15

Table 2: Single processor average per-operation statistics. Latency numbers are relative to LCRQ. There are no L3 misses because the
workload fits into the shared L3 cache.

are expensive atomic operations on contended locations. LCRQ-
CAS and the MS queue suffer from CAS failures, which also lead
to more cache misses as the algorithm wastes work. In the com-
bining algorithms, communication between combiners and waiting
threads causes more cache misses compared to LCRQ.

Oversubscribed workloads (Figure 6b) Problems related to block-
ing usually occur in oversubscribed scenarios, in which the num-
ber of software threads exceeds the hardware supported level and
forces the operating system to context switch between threads. If a
thread holding a lock is scheduled out, the algorithm cannot make
progress until it runs again. We show this by increasing the number
of threads in a single processor execution beyond 20. The through-
put of the lock-based combining algorithms plummets, with FC
queue dropping by 40× and CC-Queue by 15×, whereas both
LCRQ and the MS queue maintain their peak throughput. As a
result, LCRQ outperforms the CC-Queue by 20×.

Four processor executions (Figure 7) To measure the effect of
the increased synchronization cost between processors, we pin the
threads across the processors in a round-robin manner, so that the
cross-processor cache coherency cost always exists. One can see
how, in contrast to the single processor experiment, when going
from 1 to 2 threads the throughput of all algorithms drops due to
cross-processor synchronization, except for LCRQ and LCRQ+H.

Figure 7a shows the results when the queue is initially filled
with 216 elements, thus keeping the queue’s head and tail apart 7.
This causes the throughput of CC-Queue to degrade by ≈ 10%

7On a single processor this test yields similar results to an initially
empty queue and so we did not discuss it earlier.

compared to the initially empty case (Figure 7b), due to reduced
locality: in an initially empty queue, the queue’s state keeps hov-
ering around empty and so there is a 1 in 4 chance that dequeued
items will have just been enqueued on the same processor by the en-
queuing combiner. In contrast, switching to an initially filled queue
improves LCRQ’s throughput by ≈ 5%. The reason is that when
the queue is not empty an LCRQ dequeuer does not wait for an
enqueuer to arrive at its ring node. (Table 3 shows that LCRQ op-
erations take less instructions to complete.) The reduced locality
does not hurt LCRQ because dequeued items are fetched in par-
allel by all operations, and not sequentially by a single combiner.
Overall, using an initially filled queue increases LCRQ’s advantage
over CC-Queue from ≈ 1.5× to ≈ 1.8×.

Heavy synchronization cost due to lack of locality also explains
why only the hierarchical LCRQ+H and H-Queue scale past 16
threads. These algorithms amortize the synchronization cost by
running batches of operations on a single processor while opera-
tions on other processors wait. However, H-Queue suffers much
more from the reduced locality caused when switching to an ini-
tially filled queue: it triples the number of L3 misses (Table 3),
which must be satisfied from off-chip resources and so its through-
put drops by ≈ 40%. In contrast, LCRQ+H maintains its perfor-
mance, increasing its advantage over H-Queue from 1.5× to 2.5×.

Latency of operations (Figure 8) Examining the latency distribu-
tion of queue operations at maximum concurrency provides more
refined insight on the performance of the algorithms. For instance,
while the average latency of an LCRQ+H operation is 2.19 µs (Ta-
ble 3), 80% of the operations complete in ≤ 0.5 µs and 97% in
≤ 2 µs. The remaining operations are those that complete only

Figure 7: Enqueue/dequeue throughput on four processors (threads run on all processors from the start).

Four processor execution (80 threads)
Queue initially empty Queue initially full

LCRQ+H LCRQ LCRQ- H- CC- LCRQ+H LCRQ LCRQ- H- CC-
CAS Queue Queue CAS Queue Queue

Latency 2.19 µs 6.20 µs 13.50 µs 3.28 µs 9.70 µs 2.05 µs 5.81 µs 13.45 µs 5.19 µs 10.55 µs
Instructions 1456.65 307.15 338.98 5670.17 16249.94 1515.60 278.62 293.86 9173.94 18224.62
Atomic 2 2 2.88 1.05 1 2 2 2.95 1.05 1operations
L1 misses 4.12 2.91 4.15 9.99 10.70 3.43 3.01 4.31 10.60 11.33
L2 misses 4.15 2.83 4.01 7.10 8.65 3.54 2.90 4.17 7.74 9.07
L3 misses 0.51 1.47 2.23 0.34 5.90 0.81 1.43 2.22 0.95 6.19

Table 3: Four processor average per-operation statistics.

after the timeout expires. The spinning these operations do while
waiting accounts for the increased average instruction count of
LCRQ+H compared to LCRQ shown in Table 3. In general, LCRQ
operations have better latency than combining-based operations,
which spend time either servicing other threads or waiting for the
combiner. On a single processor, 42% of LCRQ operations finish
in ≤ 0.24 µs while none of the combining operations do. On four
processors, 80% of LCRQ operations finish in ≤ 9.6 µs compared
to 50% of CC-Queue operations. Similarly, 80% of LCRQ+H oper-
ation finish in ≤ 0.5 µs compared to 30% of H-Queue operations.

Ring size sensitivity study (Figure 9) The ring size plays an
important role in the performance of LCRQ. Intuitively, as the
ring size decreases an LCRQ operation needs more tries before it
succeeds in performing an enqueue/dequeue transition.

To quantify this effect, we test LCRQ on an initially empty
queue at maximum concurrency with various ring sizes. On a single
processor, taking R ≥ 32 is enough for LCRQ to outperform the
CC-Queue by 1.33×. As R increases LCRQ’s throughput increases
up to ≈ 1.5× that of the CC-Queue. In other words, as long as an
individual CRQ has room for all running threads, LCRQ obtains
excellent performance.

On the four processor benchmark the results are similar, but
due to the higher concurrency level, LCRQ outperforms CC-Queue
starting with R = 128 and the advantage becomes ≈ 1.5× starting
with R = 1024. LCRQ+H requires R = 512 to match H-Queue and
R = 4096 to outperform H-Queue by 1.5×.

6. Conclusion
We have presented LCRQ, a concurrent nonblocking linearizable
FIFO queue that outperforms prior combining-based queue imple-

mentations by 1.5× to more than 2× in all concurrency levels on an
x86 server with four multicore processors. LCRQ uses contended
F&A objects to spread threads around items in the queue, allow-
ing them to complete in parallel. Because the hardware guarantees
that every F&A succeeds, we avoid the costly failures that plague
CAS-based algorithms.

Our results show a couple of ways in which modern x86 multi-
core architecture requires reevaluating conventional wisdom about
concurrent programming. First, LCRQ shows that on modern hard-
ware an algorithm with a contended hot spot can scale quite well.
Instead, it is CAS retries that are often the cause for notorious “con-
tention meltdowns.” Second, the conventional wisdom in the liter-
ature, of avoiding F&A or CAS2 since they are not widely sup-
ported, is outdated. We believe these principles can guide the de-
sign of future concurrent algorithms.

More practically, the LCRQ algorithm is simple to implement
and offers excellent and robust performance on one of today’s
dominant multicore architecture. We therefore hope it gets adopted
and used in practice.

Acknowledgments
Mike Dodds, Andreas Haas, and Christoph Kirsch, and Joe Israele-
vitz and Michael Scott discovered that the proceedings version of
this paper – which did not include Lines 146- 147 in Figure 5 –
could lose enqueued items. Vlad Roubtsov pointed out misprints in
Figure 3.

This work was supported by the Israel Science Foundation
(grant 1386/11), by the Israeli Centers of Research Excellence (I-
CORE) program (Center 4/11), and by Intel’s lab support program.

10 20 50 100 200 500 1000 2500
Operation latency (nanoseconds)

0

20

40

60

80

100
%

of
O

pe
ra

tio
ns

(C
D

F)

(a) 20 threads on a single processor
Queue initially empty

LCRQ
CC-Queue
FC queue
MS queue

0.1 0.2 0.5 1 2 5 10 25
Operation latency (microseconds)

0

20

40

60

80

100

%
of

O
pe

ra
tio

ns
(C

D
F)

(b) 80 threads on four processors
Queue initially empty

LCRQ+H
LCRQ
H-Queue
CC-Queue

Figure 8: Cumulative distribution of queue operation latency at maximum concurrency.

Figure 9: Impact of ring size on LCRQ throughput (CC-Queue and H-Queue results are shown for reference).

References
[1] Power ISA Version 2.06. http://www.power.org/resources/

downloads/PowerISA_V2.06B_V2_PUBLIC.pdf, January 2009.

[2] G. E. Blelloch, P. B. Gibbons, and S. H. Vardhan. Combinable
memory-block transactions. In SPAA 2008.

[3] G. E. Blelloch, P. Cheng, and P. B. Gibbons. Scalable room synchro-
nizations. Theory of Computing Systems, 36, 2003.

[4] R. Colvin and L. Groves. Formal verification of an array-based
nonblocking queue. In ICECCS 2005.

[5] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting: a general
technique for designing NUMA locks. In PPoPP 2012.

[6] J. Evans. Scalable memory allocation using jemalloc. http://www.
facebook.com/notes/facebook-engineering/scalable-
memory-allocation-using-jemalloc/480222803919, 2011.

[7] P. Fatourou and N. D. Kallimanis. Revisiting the combining synchro-
nization technique. In PPoPP 2012.

[8] P. Fatourou and N. D. Kallimanis. A highly-efficient wait-free univer-
sal construction. In SPAA 2011.

[9] E. Freudenthal and A. Gottlieb. Process coordination with fetch-and-
increment. In ASPLOS 1991.

[10] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic techniques
for the efficient coordination of very large numbers of cooperating
sequential processors. TOPLAS, 5(2), Apr. 1983.

[11] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In SPAA 2010.

[12] M. Herlihy. Wait-free synchronization. TOPLAS, 13:124–149, Jan-
uary 1991.

[13] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[14] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. TOPLAS, 12:463–492, July 1990.

[15] M. Hoffman, O. Shalev, and N. Shavit. The baskets queue. In OPODIS
2007.

[16] A. Kogan and E. Petrank. Wait-free queues with multiple enqueuers
and dequeuers. In PPoPP 2011.

[17] E. Ladan-Mozes and N. Shavit. An optimistic approach to lock-free
FIFO queues. In DISC 2004.

[18] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE TPDS, 15(6):491–504, June 2004.

[19] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC 1996.

[20] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination
to implement scalable and lock-free FIFO queues. In SPAA 2005.

[21] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-TSO: a rigorous and usable programmer’s model for x86 multi-
processors. Communications of the ACM, 53(7):89–97, July 2010.

http://www.power.org/resources/downloads/PowerISA_V2.06B_V2_PUBLIC.pdf
http://www.power.org/resources/downloads/PowerISA_V2.06B_V2_PUBLIC.pdf
http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
http://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919

[22] N. Shafiei. Non-blocking array-based algorithms for stacks and
queues. In ICDCN 2009.

[23] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems.
In SPAA 2001.

	Introduction
	Related work
	Preliminaries
	The LCRQ algorithm
	The CRQ algorithm
	Optimizations
	CRQ linearizability proof

	The LCRQ algorithm
	LCRQ nonblocking proof

	Evaluation
	Conclusion

