
A Heap-Based Concurrent Priority Queue with
Mutable Priorities for Faster Parallel Algorithms
Orr Tamir1, Adam Morrison2, and Noam Rinetzky3

1 ortamir@post.tau.ac.il Blavatnik School of Computer Science, Tel Aviv
University

2 mad@cs.technion.ac.il Computer Science Department, Technion—Israel
Institute of Technology

3 maon@cs.tau.ac.il Blavatnik School of Computer Science, Tel Aviv University

Abstract
Existing concurrent priority queues do not allow to update the priority of an element after its
insertion. As a result, algorithms that need this functionality, such as Dijkstra’s single source
shortest path algorithm, resort to cumbersome and inefficient workarounds. We report on a
heap-based concurrent priority queue which allows to change the priority of an element after
its insertion. We show that the enriched interface allows to express Dijkstra’s algorithm in a
more natural way, and that its implementation, using our concurrent priority queue, outperform
existing algorithms.
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1 Introduction

A priority queue data structure maintains a collection (multiset) of items which are ordered
according to a priority associated with each item. Priority queues are amongst the most
useful data structures in practice, and can be found in a variety of applications ranging from
graph algorithms [21, 6] to discrete event simulation [8] and modern SAT solvers [5]. The
importance of priority queues has motivated many concurrent implementations [2, 3, 11,
15, 16, 17, 23, 24, 25, 26]. These works all focus on the performance of two basic priority
queue operations, which consequently are the only operations provided by concurrent priority
queues: insert(d, p), which adds a data item d with priority p, and extractMin(), which
removes and returns the highest-priority data item.1

It turns out, however, that important applications of priority queues, such as Dijkstra’s
single-source shortest path (SSSP) algorithm [6, 4], need to update the priority of an item
after its insertion, i.e., mutable priorities. Parallelizing these algorithms requires working
around the lack of mutable priorities in today’s concurrent priority queues by inserting new
items instead of updating existing ones, and then identifying and ignoring extracted items
with outdated priorities [2]—all of which impose overhead. Sequential heap-based priority
queues support mutable priorities [4], but concurrent heaps have been abandoned in favor of
skiplist-based designs [17] whose extractMin() and insert() are more efficient and scalable.

1 In this paper, we consider lower p values to mean higher priorities.
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Thus, the pursuit of performance for the basic priority queue operations can, ironically, end
up leading to worse overall performance for the parallel client application.

The principle driving this work is that we should design concurrent data structures with
the overall performance of the client as the goal, even if this entails compromising on the
performance of the individual data structure operations. We apply this principle to priority
queues by implementing Champ, a Concurrent Heap with Mutable Priorities, which provides
a changeKey() operation to update priorities of existing items. We use Champ to implement
a parallel version of Dijkstra’s SSSP algorithm, and our experimental evaluation shows that,
as parallelism increases, Champ’s efficient changeKey() operation improves the client overall
performance by saving it from doing wasted work—the overhead that arises when working
around the lack of changeKey() support in prior designs. This occurs despite the fact that
Champ’s extractMin() and insert() operations do not scale as well as in prior designs.
Contributions: To summarize, we make the following technical contributions:
1. We present Champ, a linearizable lock-based concurrent priority queue that supports

mutable priorities. Champ is an adaptation of the concurrent heap-based priority queue
of [11] to support the changeKey() operation.

2. We convert an existing parallel SSSP algorithm to utilize the changeKey() operation.
3. We implement and evaluate our algorithms.

Arguably, the more important contribution of this paper is the conceptual one: A call to
pay more attention in the design of data structures and interfaces to the overall performance
and programmatic needs of the client applications than to the standalone scalability of the
supported operations, as at the end, the client is always right.

2 Priority Queues with Mutable Priorities

A priority queue with mutable priorities (PQMP) is a data structure for maintaining a multiset
A of elements, where each element is a pair comprised of a data item d and a value k called
priority.2 A PQMP supports the following operations:

extractMin(): Removes and returns the element which has the highest priority in
the queue.1 In case multiple elements have the highest priority, one of them is chosen
arbitrarily. If the queue is empty, a special value is returned.
peek(): Acts similarly to extractMin(), except that the chosen element is not removed.
insert(d, k): Inserts into the queue an element comprised of a given data item d and
priority k, and returns a unique tag e identifying the element. If the queue has reached
its full capacity, the element is not inserted, and a special value is returned.
changeKey(e, k): Sets the priority of element e to k. If e is not in the queue, the operation
has no effect. (The latter behavior was chosen for the sake of simplicity. An alternative,
could have been, e.g., to return a special value or to raise an exception.)

The use of tags to identify elements in the queue, instead of their data items, as done,
e.g., in [4, Ch. 6.5], allows to store in queue multiple elements with the same data item.

3 A Sequential Heap with Mutable Priorities

PQMPs can be implemented with a binary heap data structure. A binary heap is an almost
complete binary tree that satisfies the heap property: for any node, the key of the node is less

2 The term key is sometimes used instead of priority.
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188 A Heap-Based Concurrent Priority Queue with Mutable Priorities

Element[0..Length] A
int Last

Lock[0..Length] L
class Element

Priority key
Data data
int pos

bool up

Figure 1 The data representation of the heap.

swap(i,j)
temp = A[i]
A[i] = A[j]
A[j] = temp
A[i]. pos = i
A[j]. pos = j

leftChild(i)
return 2*i

rightChild(i)
return 2*i+1

parent(i)
return bi/2c

Figure 2 Auxiliary procedures.

than or equal to the keys of its children, if they exist [4]. Binary heaps are often represented
as arrays: the root is located at position 1, and the left and right children of the node at
location i are located at positions 2i and 2i + 1, respectively. Position 0 is not used. Heaps
support extractMin(), peek(), insert(), and changeKey() operations that map naturally
to respective priority queue operations, if we use elements’ priorities as keys.

In the following, we describe a sequential implementation of an array-based heap. The
sequential implementation is fairly standard. Thus, our description mainly focuses on certain
design choices that we made in the concurrent algorithm which can be explained in the
simpler sequential settings.

Fig. 1 defines the type Element, and shows the data representation of a heap using two
global variables: An array A and an integer Last. (Array L and the up field in elements are
used only by the concurrent algorithm.) A heap with maximal capacity Length is comprised
of an array A of pointers to Elements with Length+1 entries and a counter Last which
records the number of elements in the heap. We say that an element is in the heap if some
entry in A points to it. We refer to the element pointed to by A[1] as the root element.

An element is comprised of three fields: key keeps the element’s priority, data stores
an application-specific data item, and pos records the position of the element in the heap:
Given an element e, the position of an element e is the index of an entry in A which points
to e, or −1 if e is not in the heap, i.e., if e.pos 6= −1 then A[e.pos] = e.

Figure 3 shows the pseudocode of a sequential heap. The operations use the auxiliary
functions defined in Fig. 2. Each heap operation consists of two parts. First, it inspects,
adds, removes, or changes an element. Then, because this change may violate the heap
property, it heapifies the heap in order to restore the heap property. In the following, we
describe how heap operations are implemented and then how heapifying is done. We use the
·seq subscript to distinguish between the sequential operations and the concurrent ones.

peekseq(): Returns the root element or null if the heap is empty.
insertseq(d, k): Returns null if the heap is full. Otherwise, it allocates and inserts a new
element into the heap.3 The element is placed at the Last + 1 entry of A, which is at
the lowest level of the heap, right after the last occupied position in the array. After the
operation completes its second phase (heapify), it returns a pointer to the new element
as its tag.

3 In this paper, we sidestep the difficult problem of concurrent safe memory reclamation [19, 18, 9], and
assume that memory is recycled either by the client or by an underlying garbage collector [12].
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peekseq()
return A[1]

extractMinseq()
min = A[1]
ls = Last
if (ls = 0)

return null
min.pos = -1
if (ls = 1)

A[1] = null
else

A[1] = A[ls]
A[1]. pos = 1
A[ls] = null
if (ls = 2)

Last = 1
else

Last = ls - 1
bubbleDownseq(A[1])

return min

insertseq(key, data)
if (Last = Length )

return null
e = new Element (

key , data , Last +1)
if(Last = 0)

A[1] = e
Last = 1
unlock (L[1])

else
lock(L[Last + 1])
e.up = true
A[Last + 1] = elm
Last = Last + 1
unlock (L[1])
bubbleUp (e)

return e

changeKeyseq(e, k)
if (e.key 6∈{1.. Last })

return false
if (k < e.key)

e.key = k
bubbleDownseq(e)

else if (k > e.key)
e.key = k
bubbleUpseq(e)

return true

bubbleDownseq(e)
min = e.pos
do

i = min
l = leftChild(i)
r = rightChild(i)
if (l ≤ Last)

if (A[l]. key < A[i]. key)
min = l

if (A[r] 6= null and
A[r]. key < A[min ]. key)

min = r
if (i 6= min)

swap(i, min)
while(i 6= min)

bubbleUpseq(e)
i = e.pos
do

par = parent(i)
if(A[i]. key < A[par ]. key)

swap(i, par)
i = par

while (i = par)

Figure 3 Pseudo code of a sequential heap with mutable priorities. Length-1 is the capacity of
the heap. We assume that changeKeyseq(e, k) is invoked with e6=null.

extractMinseq(): Returns null if the heap is empty. Otherwise, it replaces the root
element with the rightmost element in the tree, which is the last occupied position in the
array. After the second part (heapify), the operation returns the previous root element.
changeKeyseq(): Changes the key of the specified element e to k, if e is in the heap. Note
that position field of an element is used to locate the entry in A pointing to it.

The second part of the operation restores the heap property by heapifying: In
extractMinseq(), we use bubbleDownseq(), which shifts the root element whose key might
become larger than its children down in the heap until the heap property is restored. In
insertseq(), we use bubbleUpseq(), which carries an element up in the heap until its key is
larger than that of its parent. Finally, changeKeyseq() uses bubbleDownseq() or bubbleUpseq()
as appropriate. Note that when an element is being swapped, its position field is updated
too and that when an element is removed from the heap, its position is set to −1.

4 Champ: A Concurrent Heap with Mutable Priorities

In this section, we present a concurrent PQMP data structure based on Champ, a concurrent
heap with mutable priorities. At its core, Champ is an array-based binary heap, very much
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extractMin()
Lock(A[1])
min = A[1]
ls = Last
if (ls = 0)

unlock (L[1])
return null

A[1]. pos = -1
if (ls = 1)

Last = 0
A[1] = null
unlock (L[1])

else
lock(L[ls])
A[1] = A[ls]
A[1]. pos = 1
A[ls] = null
Last = ls - 1
unlock (L[ls])
if (ls = 2)

unlock (L[1])
else

bubbleDown (A[1])
return min

insert(key, data)
lock(L[1])
if (Last = Length )

unlock (L[1])
return null

e = new Element (
key , data , Last +1)

if(Last = 0)
e.up = false
A[1] = e
Last = 1
unlock (L[1])

else
lock(L[Last + 1])
e.up = true
A[Last + 1] = e
Last = Last + 1
unlock (L[1])
bubbleUp (e)

return e

changeKey(e, k)
while ( lockElement (e))

if (e.up)
unlock (L[e.pos ])

else
if (k < e.key)

e.up = true
e.key = k
bubbleUp (e)

else if (k > e.key)
e.key = k
bubbleDown (e)

else
unlock (L[e.pos ])

return

peek()
lock(L[1])
ret = A[1]
unlock (L[1])
return ret

Figure 4 The pseudo code of Champ, a concurrent priority queue with updatable key based on
a binary heap. The concurrent heapifying procedures are presented in Fig. 5. Auxiliary procedures,
e.g., swap(), are defined in Fig. 2.

like the sequential algorithm described in the previous section. Synchronization is achieved
using a fine-grained locking protocol, derived from the one used in [11] (see Sec. 4.3.)

Champ is implemented using the global variables shown in Fig. 1. Variables A and Last
play the same role as in the sequential setting (see Sec. 3.) Variable L is an array of locks
which contains one lock for every entry in A. Intuitively, lock L[i] is used to synchronize
accesses to the i-th entry of A and to the element A[i] points to. Lock L[1], which we refer
to as the root lock, is also used to protect the Last variable. A thread is allowed to modify a
shared memory location only under the protection of the appropriate lock. Read accesses to
the entries of array A and to variable Last should also be protected by a lock. In contrast,
fields of elements can be read without a lock.3

Figures 4 and 5 show the pseudocode of our concurrent heap. Champ implements the
interface of a PQMP. As expected, the concurrent operations provide the same functionality
as the corresponding sequential counterparts, and, like them, also consist of two stages: First,
every operation grabs the locks it requires and inspects, adds, removes, or changes the shared
state. Then, it invokes bubbleUp(e) or bubbleDown(e) to locally restore the heap property.

The more interesting aspects of the first part of the operations are summarized below:
peek(): Although peek() only reads a single memory location, it starts by taking the
root lock. This is required because another thread might perform an insert() operation
concurrently, which could lead to a state where the key of the root is not lower than that
of its children. Returning such a root element would violate linearizability (see Sec. 4.1).
insert(), extractMin(), and changeKey(): The first part of these operations is the same
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bubbleDown(e)
min = e.pos
do

i = min
l = LeftChild (i)
r = RightChild (i)
if (l ≤ Last)

lock(L[l])
lock(L[r])
if (A[l] 6= null)

if (A[l]. key < A[i]. key)
min = l

if (A[r] != null and
A[r]. key < A[min ]. key)

min = r
if (i 6= min)

if(i == l)
unlock (L[r])

else
unlock (L[l])

swap(i, min)
unlock (L(i))

while(i 6= min)
unlock (L[i])

lockElement(e)
while(true)

i = e.pos
if (i == -1)

return false
if ( trylock (L[i]))

if (i == e.pos)
return true

unlock (L[i])

bubbleUp(e)
i = e.pos
iLocked = true
parLocked = false
while (1 < i)

par = Parent (i)
parLocked = tryLock (L[par ])
if ( parLocked )

if (!A[par ].up)
if(A[i]. key < A[par ]. key)

swap(i, par)
else

A[i].up = false
unlock (L[i])
unlock (L[par ])
return

else
unlock (L[par ])
parLocked = false

unlock (L[i])
iLocked = false
if ( parLocked )

i = par
iLocked = true

else
iLocked = lockElement (e)
i = e.pos

e.up = false
if ( iLocked )

unlock (L[e.pos ])

Figure 5 Concurrent heapifying procedures.

as that of their sequential counterparts, but with two exceptions:
Element locking. The operations begin by taking locks. changeKey(e, k) takes the lock

of the array entry pointing to e. (We explain the reason for using a loop later on.) All
other operations grab the root lock. Also, the operations avoid calling the heapifying
procedures in cases where the global heap property is guaranteed to hold after the
change, e.g., when an element is inserted into an empty heap or when the last element
in the heap is extracted.

Signaling upward propagation. insert(e) and changeKey(e) set the up flag of e before
invoking bubbleUp(e). This indicates that e is being propagated up the heap, which
help synchronize concurrent bubbleUp() operations, as we shortly explain.

The second part of every operation locally restores the heap property using bubbleUp()
and bubbleDown(). The two shift elements up, respectively, down the heap until the heap
property is locally restored: bubbleUp(e) stops when the key of e is bigger than that of its
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192 A Heap-Based Concurrent Priority Queue with Mutable Priorities

parent. bubbleDown(e) stops when the key of e is smaller than the keys of its children. Both
operations stop if they detect that e was extracted from the heap.

Both bubbleDown() and bubbleUp() employ the hand-over-hand locking protocol [13]
(also known as the tree-locking protocols), but they acquire the locks in different orders:
bubbleDown() takes the lock of the children of a node e only after it holds the lock of e while
bubbleUp() takes the lock of the parent of e only when it has e’s lock. The hand-over-hand
protocol ensures deadlock freedom when all the operations take their locks in the same
order. However, if different orders are used, deadlock might occur. To prevent deadlocks,
bubbleDown() takes locks using tryLock() instead of lock(), and in case the needed lock is
not available it releases all its locks and then tries to grab them again.

An interesting case may happen when bubbleUp(e) attempts to get a hold of e’s lock
after its release: It is possible that the up-going element e have been pulled upwards by
a concurrent down-going bubbleDown() operation. In fact, the element might have been
removed from the heap all together. The auxiliary procedure lockElement(e) is thus used
to locate a possibly relocated element. It repeatedly finds e’s position in A using its position
field and tries to lock the corresponding entry. lockElement(e) loops until it either obtained
the lock protecting e’s position, or until it finds that e has been extracted from the heap,
indicated by having value −1 in its position field.

There is a tricky synchronization scenario that might occur when a bubbleUp(e) operation
t1 manages to lock an entry i pointing to an up-going element e′. (This might occur if the
operation t2 bubbling-up e′ has not managed to bring e′ to a position where its value is
bigger than that of its parent, but had to release its locks to prevent a possible deadlock.) If
e’s key is bigger than that of e′, t1 might come to the wrong conclusion that it has managed
to restore the heap-property and terminate. However, the property was restored with respect
to an element, e, which is not in its “right” place. To ensure that such a scenario does not
happen, bubbleUp(e) releases its lock when it detects that the parent of the element it is
propagating is also being bubbled-up, indicated by its up flag.
Note. Our algorithm supports concurrent priority changes of a given element e. These
operations synchronize using the loop at the entry to changeKey(): A thread can enter the
loop only if it manages to lock the position of element e. In case it detects an ongoing
bubbleUp(e) operation, it releases the lock and retries. (Note that the lock cannot be
obtained if there is an ongoing bubbleDown(e) operation). This ensures that there is only one
thread that changes the key of an element. We note that in certain clients, e.g., Dijkstra’s
SSSP algorithm, the client threads prevent concurrent priority changes of a given element.
In this cases, e.up is always false when we enter the loop.

4.1 Linearizability
Champ is a linearizable [10] priority queue with mutable keys. Intuitively, linearizability
means that every operation seems to take effect instantaneously at some point between its
invocation and response. In our case, these linearization points are as follows:
1. peek(), extractMin(), and insert() when invoked on a heap containing two or less

elements: The point in time when the operation obtained the root lock.
2. insert() and changeKey(e) which decreased the priority of e: The linearization point

happens during the call to bubbleUp(e). It is placed at the last configuration in which
an entry in A pointed to e before its up field was set to false.

3. changeKey(e) which did not not find e in the heap, increased its priority or did not
change it: The point in time in which the call to lockElement(e) returned.
Technically, the proof of linearization rests upon the following invariants:
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(i) No element is stored in position 0.
(ii) The entries A[1]..A[Last] contain non-null values.
(iii) The value of every entry A[Last+1]· · · A[Length] is null, except perhaps during the

first part of insert() when A[Last + 1] might have the same non-null value as A[1].
(iv) The position field pos of an element agrees with its position in the heap, i.e., if

e.pos = i ∧ 0 < i then A[e].pos = i, except perhaps during a swap() involving A[i].
(v) If the i-th entry in the heap and its parent j = bi/2c are not locked and, in addition,

A[i].up = false and A[j].up = false then A[j].key ≤ A[i].
Most of the invariants are quite simple and rather easy to verify, in particular, when

we recall that the global variables and the elements can be modified only when the thread
holds the lock which protects both the entry and the element it points to. Note that if an
element is pointed to by two entries then the same operation holds the two locks protecting
these entries. The only time a thread may modify a field of an object without holding the
respective lock is when it sets off the up field of an element which was removed from the
heap. The key invariant is (v). It provides a local analogue of the heap property. Intuitively,
it says that if an element violates the heap property then there exists an ongoing operation
which is “responsible” for rectifying the violation. Furthermore, any apparent inconsistency
that might occur due to the violation can be mitigated by the placement of the linearization
point of the responsible operation in the global linearization order. For example, we can
justify an extractMin() operation which returns an element e although the heap contains a
non-root element e′ which has a lower key than e by placing its linearization point before
that of the operation responsible for inserting e′ or reducing its key. Invariant (v) ensures
that such an operation is still active when extractMin() takes possession of the root lock.

4.2 DeadLock-Freedom

Champ is deadlock-free. All the operations except bubbleUp() capture their locks according
to a predetermined order, thus preventing deadlock by construction. bubbleUp() uses
tryLock(), and releases its locks if the latter fails, thus avoiding deadlocks all together.

4.3 Comparison with Hunt’s Algorithm [11]

Our priority queue is based on concurrent heap of Hunt et al. [11], as both use fine-
grained locking to synchronize bottom-up insert()s and top-down extractMin()s. The
main difference is the addition of the changeKey() operation. There are also some subtle
differences in certain key aspects of the implementation.

We use a different technique to prevent deadlocks between concurrent up-going
bubbleUp()s and down-going bubbleDown()s: In [11], insert()s and extractMin()s
takes locks in the same order. Specifically, they lock the parent before its child. Deadlock
is prevented by having insert()s release their locks before they climb up the heap. In
our algorithm, insert() and changeKey() take their locks in reverse order, thus possibly
saving some redundant unlock() and relock() operations. Deadlock is prevented using
tryLock()s operations as explained in Sec. 4.2.
In both techniques, an element e bubbled up the heap might change its position due
to a down-going operation. In [11], the up-going operation propagating e finds it by
climbing up the heap. In our case, we embed a position index inside the node which
allows to locate it in a more direct fashion. The position index is particularly beneficial
for changeKey(e) as it allows to efficiently check whether e is in the heap.
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194 A Heap-Based Concurrent Priority Queue with Mutable Priorities

Hunt reduces contention between insert() operations using a bit-reversal scheme to
determine the index into which a new element is added. We use the standard scheme for
insertions which maintains all the elements in a single contiguous part. We note that we
can easily import their method into our algorithm.
Finally, Hunt’s priority queue is not linearizable, while ours is. The culprit is the
extractMin() procedure which first removes the Last element from the heap and only
then places it at the root. This allows for certain non-linearizable behaviors to occur.
It is important to note, however, that there is no claim of linearizability in [11], and
once the reason for the non-linearizable behavior is known, changing the algorithm to be
linearizable is rather easy.

5 Case Study: Parallelizing Dijkstra’s SSSP Algorithm

Important applications of priority queues, such as Dijkstra’s single-source shortest path
(SSSP) algorithm [6, 4] and Prim’s minimal spanning tree (MST) algorithm [21, 4] need to
update the priority of an item after its insertion. i.e., mutable priorities. In this work, we
close the interface gap between sequential and concurrent priority queues by importing the
changeKey() operation from the sequential setting to the concurrent one. To evaluate the
benefits clients may gain by using the extended interface, we adapted a parallel version of
Dijkstra’s SSSP algorithm to use changeKey().

The SSSP problem is to find, given a (possibly weighted) directed graph and a designated
source node s, the weight of the shortest path from s to every other node in the graph. For
every node v, we refer to the weight of a shortest s u path as v’s distance from s. The
asymptotically fastest known sequential SSSP algorithm for arbitrary directed graphs with
unbounded non-negative weights is Dijsktra’s algorithm [6, 7].

Dijkstra’s algorithm partitions the graph into explored nodes, whose distance from s is
known, and unexplored nodes, whose distance may be unknown. Each node v is associated
with its distance, dist(v), which is represented as a field in the node. The algorithm
computes the distances by iteratively exploring the edges in the frontier between explored
and unexplored nodes. The initial distances are dist(s) = 0 and dist(v) = ∞ for every
v 6= s. In each iteration, the algorithm picks the unexplored node v with the smallest
associated distance, marks it as explored, and then relaxes every edge (v, u) by checking
whether d = dist(v) + w(v, u) < dist(u), and if so, updating dist(u) to d. Notice that once
dist(v) 6= ∞, it always holds the length of some path from s to u, and hence dist(v) is an
upper bound on the weight of the shortest s v path.

Dijkstra’s algorithm can be implemented efficiently using a priority queue with a
changeKey() operation [7]. The idea is to maintain a queue of offers, where an offer
〈v, d〉 indicates that there is an s  v path of weight d. An offer 〈v, d〉 is enqueued by
inserting an element into the queue with key d and data v. In every iteration, the algorithm
extracts a minimal offer 〈v, d〉 from the queue using extractMin(), and for each edge (v, u)
it either insert()s a new offer (if dist(u) =∞) or uses changeKey() to decrease the key of
the existing offer 〈u, d′〉 if dist(v) + w(v, u) < dist(u) = d′.
Using changeKey() to parallelize Dijkstra’s algorithm: Dijkstra’s algorithm can be
parallelized by using a concurrent priority queue from which multiple threads dequeue offers
and process them in parallel. However, the existing parallel algorithm must work around the
lack of changeKey() support in prior concurrent priority queues, with adverse performance
consequences. Sec. 5.1 details this problem and describes the way existing parallel SSSP
algorithms work. Sec. 5.2 describes the way our adaptation of the parallel algorithm addresses
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Graph (E,V,w)
done [1.. TNum] = [false ,.., false]
D[1..|V|] = [∞,..,∞]
Element [1..|V|] Offer =

[null ,.., null]
Lock [1.. |V|] DLock
Lock [1.. |V|] OfferLock

relax(v,vd)
lock( OfferLock [v])

if (vd < D[v])
vo = Offer[v]
if (vo = null)

Offer[v] = insert (v,vd)
else

if (vd < vo.key)
publishOfferMP (v,vd ,vo)

unlock ( OfferLock [v])

publishOfferMP(v,vd,vo)
updated = changeKey (vo , vd)
if (! updated and vd < D[v])

Offer[v] = insert (v,vd)

publishOfferNoMP(v,vd)
Offer[v] = insert (v,vd)

parallelDijkstra()
while (! done[tid ])

o = extractMin ()
if (o 6= null)

u = o.data
d = o.key
lock(DLock[u])
if(dist < D[u])

D[u] = d
explore = true

else
explore = false

unlock (DLock[u])
if ( explore )

foreach ((u,v) ∈ E)
vd = d + w(u,v)
relax(v,vd)

else
done[tid] = true
i = 0
while (done[i] and i<TNum)

i = i + 1
if(i == TNUM)

return
done[tid] = false

Figure 6 Parallel versions of Dijkstra’s SSSP algorithm: parallelDijkstra() is a pseudocode
implementation of ParDijk-MP. The pseudocode of ParDijk can be obtained by replacing the
call to publishOfferMP() in relax() with a call to publishOfferNoMP().

this problem by using changeKey().
Concurrent dist updates: Both parallel algorithms described next must guarantee that
when relaxing an edge (v, u), reading dist(v) and the subsequent decreasing of dist(v) happen
atomically. Otherwise, an update to d might get interleaved between another thread’s read of
dist(v) and subsequent update to d′ > d, and thus be lost. This atomicity is typically realized
by performing the update with a compare-and-swap operation [2, 14]. Our implementations,
however, use per-node locking: if a thread decides to update dist(v), it acquires v’s lock,
verifies that dist(v) should still be updated, and then performs the update. This approach
allows us to atomically update an additional P (v) field, which holds the predecessor node on
the shortest path to v [7], and thus computes the shortest paths in addition to the distances.
We omit the details of this, which are standard.

5.1 ParDijk: A Parallel version of Dijkstra’s SSSP Algorithm based on
a Concurrent Priority Queue

A natural idea for parallelizing Dijkstra’s algorithm is to use a concurrent priority queue and
thereby allow multiple threads to dequeue and process offers in parallel. Because existing
concurrent priority queues do not support changeKey(), doing this requires adapting the
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algorithm to use inserts instead of changeKey() when relaxing edges [2, 14].
Specifically, the changeKey() operation, which is required to update an existing offer

〈u, d〉 to have distance d′ < d, is replaced by an insert() of a new offer 〈u, d′〉. As a result,
in contrast to the original algorithm, multiple offers for the same node can exist in the queue.
Consequently, the parallel algorithm might perform two types of wasted work: (1) Empty
work occurs when a thread dequeues an offer 〈v, d〉 but then finds that dist(v) < d, i.e., that
a better offer has already been processed. (2) Bad work occurs when a thread updates dist(v)
to d, but dist(v) is later updated to some d′ < d.

In both cases of wasted work, a thread performs an extractMin() that would not need
to be performed had changeKey() been used to update offers in-place, as in the original
algorithm. This is particularly detrimental to performance because extractMin() operations
typically contend for the head of the queue, and the wasted work increases this contention
and makes every extractMin()—wasted or not—more expensive.

Procedure parallelDijkstra() shown in Fig. 6 provides the pseudo code of the two paral-
lel versions of Dijkstra’s SSSP algorithm that we discuss. The ParDijk algorithm is obtained
by replacing the call to publishOfferMP() in relax() with a call to publishOfferNoMP().

The algorithm records its state in several global variables: A boolean array done maintains
for every thread t a flag done[i] which records whether the thread found work in the priority
queue; an array D which records the current estimation of the distance to every node; and an
array Offer of pointers to offers (elements). Intuitively, Offer[u] points to the best offer
ever made to estimate the distance to node u. The two lock arrays DLock and OfferLock are
use to protect write accesses to arrays D and Offers, respectively. The locks in OfferLock
are also used to prevent multiple threads from concurrently changing the priority (distance
estimation) to the same node.

When a thread removes an offer o = (u, d) from the queue, it first determines whether it
can use it to improve the current distance to u. If this is the case, it updates D and turns
to exploring u’s neighbors, hoping to improve the estimation of their distances too. If the
distance to u cannot be shorten, the thread goes back to the queue trying to get more work to
do. If the thread managed to improve the distance to u, it explores each of its neighbors v by
invoking relax(v,vd). The latter locks v’s entry in the Offer array, and check whether the
new estimation vd, is better than the current estimation D[v] and from the one suggested
the best offer so far Offer[v]. If this is the case, it adds a new offer to the queue. Note that
this might lead to node v having multiple offers in the queue.

If the thread does not find work in the queue, i.e., o turns out to be null, the thread
checks if all the other threads have not found work, and if so, terminates.

5.2 ParDijk-MP: A Parallel version of Dijkstra’s SSSP Algorithm
based on a Concurrent Priority Queue with Mutable Priorities

Having a concurrent priority queue which supports a changeKey() operation enables updating
an existing offer’s distance in place, and thus allows parallelizing Dijkstra’s algorithm without
suffering from wasted work. The change is rather minor: The ParDijk-MP algorithm is
obtained from procedure parallelDijkstra() by keeping the call to publishOfferMP() in
relax(). Note that publishOfferMP() checks whether it can update an existing offer in
the queue before it tries to insert a new one. This ensures that the queue never contains
more than one offer for every node, although a new offer to the same node might be added
after the previous offer has been removed.
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6 Experimental Evaluation

Our evaluation of Champ focuses on the overall performance of the client application rather
than on the performance of individual core operations. To this end, we used the parallel
Dijkstra’s algorithms (Section 5) as benchmarks: (1) ParDijk, the existing parallel algorithm
that may create redundant offers, and (2) ParDijk-MP, the version that exploits mutable
priorities to update offers in-place. Of these algorithms, only ParDijk can be run with prior
priority queues without mutable priorities. We compare Champ to skiplist, a linearizable
concurrent priority queue based on a nonblocking skip list, as in the algorithm of Sundell
and Tsigas [25].4 As a performance yardstick, we additionally compare to the parallel SSSP
implementation of the Galois [20] graph analytics system. Galois relaxes Dijkstra’s algorithm
by allowing for both empty work and bad work (see Sec. 5.1). It compensates for the incurred
overheads by using a highly-tuned non-linearizable priority queue, which sacrifices exact
priority order in exchange for reduced synchronization overhead. We thus use Galois as a
representative of the family of relaxed non-linearizable priority queues, such as Lotan and
Shavit’s quiescently consistent algorithm [17] or the SprayList [2].
Experimental setup: We use a Fujitsu PRIMERGY RX600 S6 server with four Intel Xeon
E7-4870 (Westmere EX) processors. Each processor has 10 2.40 GHz cores, each of which
multiplexes 2 hardware threads, for a total of 80 hardware threads. Each core has private
write-back L1 and L2 caches; the L3 cache is inclusive and shared by all cores on a processor.
The parallel Dijkstra algorithms and priority queues are implemented in Java and run with
the HotSpot Server JVM, version 1.8.0-25. Galois is implemented in C++; we use the latest
version, 2.2.1. All results are averages of 10 runs on an idle machine.
SSSP run time: We measure the running time of each tested algorithm on several input
graphs, as we increase the number of threads. Each input is a random graph over 8000
vertices, in which each edge occurs independently with some probability p and a random
weight between 1 and 100.5 Figures 7(a)– 7(e) depict the results. We observe an overall trend
in which all algorithms obtain speedups up to at most 20 threads, but their run time plateaus
or increases with more than 20 threads. This is consistent with prior SSSP experiments on
identical hardware [2]. We therefore focus our attention on the concurrency levels in which
speedups are obtained.

We find that while ParDijk-MP, which leverages Champ’s changeKey() operation, per-
forms worse than ParDijk/skiplist with few threads, its run time improves as the number
of threads increases and it eventually outperforms ParDijk/skiplist. On the p = 1% and
p = 5% graphs, the best run time of ParDijk/skiplist is at 10 threads, and ParDijk-MPis
20% faster than it. Furthermore, the run time of ParDijk-MP plateaus up to 20 threads,
whereas ParDijk/skiplist starts deteriorating after 10 threads, making ParDijk-MP ≈ 2×
faster than ParDijk/skiplist at 20 threads. On the p = 10% and p = 20% graphs, the
best run time is at 20 threads, and ParDijk-MPis 60%–80% better than ParDijk/skiplist.
On the p = 80% graph ParDijk-MPoutperforms ParDijk/skiplist only after 20 threads,
obtaining a 20% better run time. Similarly, ParDijk-MP outperforms Galois given sufficient
parallelism: On the p = 1% graph ParDijk-MP is consistently about 2× faster, while on the
other graphs it is 1.25×–2× slower up to 4 threads, but as more threads are added, its run
time becomes 2× better than Galois.

4 Following the methodology of Lindén and Jonsson [15], we implement a singly-linked instead of doubly-
linked skip list.

5 We use the same random weight assignment as Alistarh et al. [2, 14].
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Figure 7 SSSP algorithms with different priority queues: Run time (lower is better) and work
distribution.

Figure 7(f) demonstrates the reason for these results, using the 10-thread runs as an
example. For each algorithm and input, we classify the work done in each iteration—i.e., for
each extractMin()—into good work and useless empty work, in which a thread dequeues an
outdated offer whose distance is greater than the current distance. (Bad work, in which a
thread updated a distance not to its final value, is negligible in all experiments and therefore
omitted.) For ParDijk-MP we additionally show the number of changeKey() operations
performed. As Figure 7(f) shows, 75%–90% of the work in ParDijk and 90% of the work
in Galois is useless. For ParDijk, this corresponds exactly to extraction of outdated offers
that in ParDijk-MP are updated in-place using changeKey(). In eliminating this useless
work, ParDijk-MP with Champ significantly reduces the amount of extractMin() operations,
which—as we shortly discuss—are the least scalable operations. Note, however, that the
gains ParDijk-MP obtains from eliminating the useless work are offset somewhat by Champ’s
inefficient core operations. We note that we got a similar work distribution when we ran the
algorithm with a single thread. This indicates that the wasted work is due to the superfluous
insertions and is not an artifact of concurrency.
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Figure 8 Basic priority queue operations performance: throughput (higher is better) of insert()
and extractMin().

Turning to ParDijk itself, we find that skiplist outperforms Champ. This occurs because
skiplist’s insert() and extractMin() are, respectively, more scalable and more efficient
than Champ’s. (We discuss this in detail next.) The performance gap between skiplist and
Champ shrinks as p increases and the graphs become denser. (For example, at 10 threads,
ParDijk’s skiplist run time is 3× better than with Champ for p = 1%, 2.16× better for
p = 20% and 1.5× better for p = 80%.) The reason is that as the inputs become denser,
threads perform more work—i.e., iterate over more edges—for each offer. Consequently, the
priority queue’s performance becomes a less significant factor in overall performance: it is
accessed less frequently, and thus becomes less contended.
Core operations performance: We study the performance of the core queue operations
with microbenchmarks. For insert(), we measure the time it takes N threads to concurrently
insert() 106 items (106/N each) into the priority queue. For extractMin(), we measure the
time it takes N threads repeatedly calling extractMin() to empty a priority queue of size 106.
Figure 8 shows the results, reported in terms of the throughput obtained (operations/second).
We see that skiplist insert() scale well, because insertions to different positions in a
skiplist do not need to synchronize with each other. In contrast, every Champ insert()
acquires the heap root lock, to increase the heap size and initiate a bubbleDown. As a result,
Champ insertions suffer from a sequential bottleneck and do not scale. For extractMin(),
both algorithms do not scale, since both have sequential bottlenecks in extractions. For
Champ, it is the heap root lock again. For skiplist, it is the atomic (via CAS) update of
the pointer to the head of the skiplist.6 The characteristics of the core operations explain
the performance of ParDijk-MP vs. ParDijk: when updating an offer, ParDijk-MP performs
a changeKey() where ParDijk performs an insert(). Both of these are scalable operations,
although Champ’s changeKey() may be heavier than a skiplist insertion, as it performs
hand-over-hand locking. However, for an offer updated U times, ParDijk performs U − 1
extraneous extractMin()s that ParDijk-MP/Champ avoids. Because extractMin() is the
most expensive and non-scalable operation, overall ParDijk-MPcomes out ahead.
Sparse vs dense graphs: In our experiments we used relatively dense graphs. When using
sparse graphs like road networks, e.g., Rome99, USA-FLA, USA-NY, and USA-W [1], whose

6 Note that skiplist’s extractMin() removes the head (minimum) skip list by first marking it logically
deleted and then physically removing it from the list, and any thread that encounters a logically
deleted node tries to complete its physical removal before proceeding. This causes further extractMin()
serialization, on top of the memory contention causes by issuing CASes to the shared head pointer.
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average degree is less than three, we noticed that Champ suffers from a slowdown of 2x-15x.
We believe that the reason for this behavior is that in these scenarios there is much less
wasted work (less than 11% in our experiments). Because there is so little wasted work,
the competing algorithms outperform Champ due to their faster synchronization, which no
longer gets outweighed by the execution on extraneous wasted work.

7 Related Work

Existing concurrent priority queues [2, 3, 11, 15, 16, 17, 23, 24, 25, 26] support insert()
and extractMin() but not changeKey, and most of this prior work has focused on designing
priority queues with ever more insert()/extractMin() throughput on synthetic microbench-
marks of random priority queue operations. Researchers have only recently [2, 15, 26] started
evaluating new designs on priority queue client applications, such as Dijkstra’s algorithm.
We are, to the best of our knowledge, the first to step back and approach the question from
the client application side, by considering how the insert()/extractMin() interface restricts
the clients, and how to address this problem by extending the priority queue interface.

Our priority queue is based on concurrent heap of Hunt et al. [11], which we extend to
support the changeKey() operation. We have also changed some of the design choices in [11],
to better suit our applications. (See Sec. 4.3). Mound [16] also uses a heap-based structure.
It minimizes swapping of heap nodes by employing randomization and storing multiple items
in each heap node. It is thus not obvious how to implement changeKey() in Mound.

Several concurrent priority queues are based on skiplists [22]. Lotan and Shavit [17]
initially proposed such a lock-based priority queue, and Sundell et al. [25] designed a
nonblocking skiplist-based priority queue. In both algorithms, contention on the head of the
skiplist limits the scalability of extractMin(). There are two approaches for addressing this
bottleneck: One is to improve extractMin() synchronization, for example by batching node
removals [15] or using combining [3]. Currently this approach does not lead to algorithms
that scale beyond 20 threads [3, 15]. A second approach relaxes the priority queue correctness
guarantees by allowing extractMin() to not remove the minimum priority item [2, 23, 26].
Using such algorithms requires reasoning about—and possibly modifying—the application,
to make sure it can handle this relaxed behaviors. Note that all these algorithms—relaxed or
not—still provide the client with only the limited set of insert()/extractMin() operations.

8 Conclusions and Future Work

We present and evaluate Champ, the first concurrent algorithm for a priority queue with
mutable keys. Champ is implemented using an array-based binary heap, and consequently its
core priority queue operations, insert() and extractMin(), do not scale as well as in prior
designs. Despite this, we show that Champ’s extended interface improves the performance
of parallel versions of Dijkstra’s SSSP algorithm, because it saves the client algorithm from
wasting work when working around the lack of changeKey() support in other priority queues.
This raises an interesting question for future work: can we efficiently implement mutable
priorities in the more scalable skip list-based priority queues without compromising on the
scalability of the core operations?
Acknowledgments. This work was funded by EU FP7 project ADVENT (308830), ERC
grant agreement no. [321174-VSSC], by Broadcom Foundation and Tel Aviv University
Authentication Initiative, by Israel Science Foundation (grants 652/11, 1227/10 and 1749/14),
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