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Abstract. We present the CBTree, a new counting-based self-adjusting
binary search tree that, like splay trees, moves more frequently accessed
nodes closer to the root. After m operations on n items, c of which access

some item v, an operation on v traverses a path of length O(log
m

c
) while

performing few if any rotations. In contrast to the traditional self-adjusting
splay tree in which each accessed item is moved to the root through a se-
quence of tree rotations, the CBTree performs rotations infrequently (an
amortized subconstant o(1) per operation ifm � n), mostly at the bottom
of the tree. As a result, the CBTree scales with the amount of concurrency.
We adapt the CBTree to a multicore setting and show experimentally that
it improves performance compared to existing concurrent search trees on
non-uniform access sequences derived from real workloads.

1 Introduction

The shift towards multicore processors raises the importance of optimizing con-
current data structures for workloads that arise in practice. Such workloads are
often non-uniform, with some popular objects accessed more frequently than
others; this has been consistently observed in measurement studies [1,2,3,4].
Therefore, in this paper we develop a concurrent data structure that completes
operations on popular items faster than on ones accessed infrequently, leading
to increased overall performance in practice.

We focus on the binary search tree (BST), a fundamental data structure for
maintaining ordered sets. It supports successor and range queries in addition to
the standard insert, lookup and delete operations.

To the best of our knowledge, no existing concurrent BST is self-adjusting,
adapting its structure to the access pattern to provide faster accesses to popular
items. Most concurrent algorithms (e.g., [5,6]) are based on sequential BSTs that
restructure the tree to keep its height logarithmic in its size. The restructuring
rules of these search trees do not prioritize popular items and therefore do not
provide optimal performance for skewed and changing usage patterns.

Unlike these BSTs, sequential self-adjusting trees do not lend themselves to an
efficient concurrent implementation. A natural candidate would be Sleator and
Tarjan’s seminal splay tree [7], which moves each accessed node to the root us-
ing a sequence of rotations called splaying. The amortized access time of a splay
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tree for an item v which is accessed c(v) times in a sequence of m operations is

O(log
m

c(v)
), asymptotically matching the information-theoretic optimum [8].

Unfortunately, splaying creates a major scalability problem in a concurrent
setting. Every operation moves the accessed item to the root, turning the root
into a hot spot, making the algorithm non-scalable. We discuss the limitations
of some other sequential self-adjusting BSTs in Sect. 2. The bottom line is that
no existing algorithm adjusts the tree to the access pattern in practice while still
admitting a scalable concurrent implementation.

In this paper,we present a counting-based tree, CBTree for short, a self-adjusting
BST that scales with the amount of concurrency, and has performance guarantees
similar to the splay tree. The CBTree maintains a weight for each subtree S, equal
to the total number of accesses to items in S. The CBTree operations use rotations
in a way similar to splay trees, but rather than performing them at each node along
the access path, decisions of where to rotate are based on the weights. The CBTree
does rotations to guarantee that theweights along the access pathdecrease geomet-
rically, thus yielding a path of logarithmic length. Specifically, afterm operations,

c of which access item v, an operation on v takes time O(1 + log
m

c
).

The CBTree’s crucial performance property is that it performs only a sub-
constant o(1) amortized number of rotations per operation, so most CBTree
operations perform few if any rotations. This allows the CBTree to scale with
the amount of concurrency by avoiding the rotation-related synchronization bot-
tlenecks that the splay tree experiences. Thus the performance gain by eliminat-
ing rotations using the counters outweighs losing the splay tree’s feature of not
storing book-keeping data in the nodes.

The CBTree replaces most of the rotations splaying does with counter updates,
which are local and do not change the structure of the tree. To translate the
CBTree’s theoretical properties into good performance in practice, we minimize
the synchronization costs associated with the counters. First, we maintain the
counters using plain reads and writes, without locking, accepting an occasional
lost update due to a race condition. We show experimentally that the CBTree
is robust to inaccuracies due to data races on these counters.

Yet even plain counter updates are overhead compared to the read-only traver-
sals of traditional balancedBSTs.Moreover,we observe that updates of concurrent
counters can limit scalability on a multicore architecture where writes occur in a
core’s private cache (as in Intel’s Xeon E7) instead of in a shared lower-level cache
(as in Sun’s UltraSPARC T2). We thus develop a single adjuster optimization in
which an adjuster thread performs the self-adjusting as dictated by its ownaccesses
andother threadsdonotupdate counters.Whenall the threads’ accesses come from
the same workload (same distribution), the adjuster’s operations are representa-
tive of all threads, so the tree structure is good and performance improves, as most
threadsperformread-only traversalswithout causing serializationoncounter cache
lines. If the threads have different access patterns, the resulting structurewill prob-
ably be poor no matter what, since different threads have different popular items.
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In addition, we describe how to exponentially decay the CBTree’s counters
over time so that it responds faster to a change in the access pattern.

One can implement the CBTree easily on top of any concurrent code for
doing rotations atomically, because the CBTree restructures itself by rotations
as does any other BST. Our implementation uses Bronson et al.’s optimistic BST
concurrency control technique [5]. We compare our CBTree implementation with
other sequential and concurrent BSTs using real workloads, and show that the
CBTree provides short access paths and excellent throughput.

2 Related Work

Treaps. A treap [9] is a BST satisfying the heap property: each node v also
has a priority which is maximal in its subtree. An access to node v generates a
random number r which replaces v’s priority if it is greater than it, after which
v is rotated up the treap until the heap property is restored. Treaps provide
probabilistic bounds similar to those of the CBTree: node v is at expected depth

O(log
m

c(v)
) and accessing it incurs an expected O(1) rotations [9]. Since the

treap’s rotations are driven by local decisions it is suitable for a concurrent
implementation. However, we find that in practice nodes’ depths in the treap
vary from the expected bound. Consequentially, CBTrees (and splay trees) have
better path length than treaps (Sect. 5).

Binary Search Trees of Bounded Balance. Nievergelt and Reingold [10] described
how to keep a search tree balanced by doing rotations based on subtree sizes.
Their goal was to maintain O(log n) height; they did not consider making more
popular items faster to access.

Biased Search Trees. Several works in the sequential domain consider biased
search trees where an item is a priori associated with a weight representing its
access frequency. Bent, Sleator and Tarjan discuss these variants extensively [11].
Biased trees allow the item weight to be changed using a reweight operation,
and can therefore be adapted to our dynamic setting by following each access
with a reweight to increment the accessed item’s weight. However, most biased
tree algorithms do not easily admit an efficient implementation. In the biased
trees of [11,12], for example, every operation is implemented using global tree
splits and joins, and items are only stored in the leaves. The CBTree’s rotations
are the same as those in Baer’s weight-balanced trees [13], but the CBTree uses
different rules to decide when to apply rotations. Our analysis of CBTrees is
based on the analysis of splaying whereas Baer did not provide a theoretical
analysis. Baer also did not consider concurrency.

Concurrent Ordered Map Algorithms. Most existing concurrent BSTs are bal-
anced and rely on locking, e.g. [5,6]. Ellen et al. proposed a nonblocking concurrent
BST [14]. Their tree is not balanced, and their focus was obtaining a lock-free BST.
Crain et al.’s recent transaction-friendly BST [15] is a balanced tree in which a
dedicated thread continuously scans the tree looking for balancing rule violations
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that it then corrects. Unlike the CBTree’s adjuster, this thread does not perform
other BST operations. Ordered sets and maps can also be implemented using skip
lists [16], which are also not self-adjusting.

3 The CBTree and Its Analysis

3.1 Splaying Analysis Background
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Fig. 1. Semi-splaying restructuring: cur-
rent node is x, and the next two nodes on
the path to the root are y and z. The case
when y is a right child is symmetric.

The CBTree’s design draws from the
analysis of semi-splaying, a variant
of splaying [7]. To (bottom-up) semi-
splay an item v known to be in the
tree, an operation first locates v in the
tree in the usual way. It then ascends
from v towards the root, restructuring
the tree using rotations as it goes. At
each step, the operation examines the
next two nodes along the path to the
root and decides which rotation(s) to
perform according to the structure of
the path, as depicted in Fig. 1. Follow-
ing the rotation(s) it continues from
the node which replaces the current
node’s grandparent in the tree (in Fig.
1, this is node y after a single rotation
and node x after a double rotation). If only one node remains on the path to the
root then the final edge on the path is rotated.

To analyze the amortized performance of splaying and semi-splaying Sleator
and Tarjan use the potential method [17]. The potential of a splay tree is defined
based on an arbitrary but fixed positive weight which is assigned to each item.1

The splay tree algorithm does not maintain these weights; they are defined for
the analysis only.

Let c(v) be the weight assigned to node v, and let W (v) be the total weight of
the nodes currently in the subtree rooted at v. Let r(v) = lgW (v) be the rank
of v.2 The potential of a splay tree is Φ =

∑
r(v) over all nodes v in the tree.

Sleator and Tarjan’s analysis of semi-splaying relies on the following bound for
the potential change caused by a rotation [7]:

Lemma 1. Let Φ and Φ′ be the potentials of a splay tree before and after a
semi-splay step at node x, respectively. Let z be the grandparent of x before the
semi-splay step (as in Fig. 1), and let ΔΦ = Φ′ − Φ. Then

2 + ΔΦ ≤ 2(r(z)− r(x))

where r(x) and r(z) are the ranks of x and z in the tree before the step, respectively.

1 The splay algorithm never changes the node containing an item, so we can also think
of this as the weight of the node containing the item.

2 We use lg to denote log2.
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The analysis uses this lemma to show that the amortized time of semi-splaying
node v in a tree rooted at root is O(r(root) − r(v)) = O(lg(W (root)/W (v)) + 1).
This holds for any assignment of node weights; different selections of weights yield
different bounds, such as bounds that depend on access frequencies of the items or
bounds that capture other patterns in the access sequence. Here we focus on using
a node’s access frequency as its weight, i.e., given a sequence ofm tree operations
let c(v) be the number of operations on v in the sequence. Using Lemma 1 with this
weight assignment Sleator and Tarjan proved the following [7]:

Theorem 1 (Static Optimality of Semi-Splaying). The total time for a
sequence of m semi-splay operations on a tree with n items v1, . . . , vn, where
every item is accessed at least once, is

O
(

m+
n∑

i=1

c(vi) lg
m

c(vi)

)

,

where c(v) is the number of times v is accessed in the sequence.

Hereafter we say that O(lg(m/c(v)) + 1) is the ideal access time of v.

3.2 The Sequential CBTree

A CBTree is a binary search tree where each node contains an item; we use the
terms item and node interchangeably. We maintain in any node v a weight W (v)
which counts the total number of operations on v and its descendants. We can
compute C(v), the number of operations performed on v until now, from the
weight of v and its children by C(v) = W (v)− (W (v.left) +W (v.right)), using
a weight of 0 for null children.

A CBTree operation performs steps similar to semi-splaying, however it does
them in a top-down manner and it decides whether to perform rotations based
on the weights of the relevant nodes.

Lookup: To lookup an item v we descend from the root to v, possibly making
rotations on the way down. We maintain a current node z along the path to v
and look two nodes ahead along the path to decide whether to perform a single
or a double rotation. Assume that the next node y along the path is the left child
of z (the case when it is a right child is symmetric). If the child of y along the
path is also a left child we may decide to perform a single rotation as in the top
part of Fig. 1. If the child of y along the path is a right child we may perform
a double rotation as in the bottom part of Fig. 1. From here on, unless we need
to distinguish between the cases, we refer to a single or a double rotation simply
as a rotation.

We perform a rotation only if it would decrease the potential of the tree by at
least a positive constant ε ∈ (0, 2), i.e., if ΔΦ < −ε. After performing a rotation
at z, the CBTree operation changes the current node to be the node that replaces
z in the tree, i.e., node y after a single rotation or node x after a double rotation.
If we do not perform a rotation, the current node skips ahead from z to x without
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restructuring the tree. (Naturally, if the search cannot continue past y the search
moves to y instead.) A search whose traversal ends finding the desired item v
increments W (v) and then proceeds in a bottom-up manner to increment the
weights of all the nodes on the path from v to the root.

To summarize, during a search the parent of the current node stays the same
and we keep reducing the potential by at least ε using rotations until it is no
longer possible. We then advance the current node two steps ahead to its grand-
child.

Insert: An insert of v searches for v while restructuring the tree, as in a lookup.
If v is not found, we replace the null pointer where the search terminates with a
pointer to a new node containing v with W (v) = 1, then increment the weights
along the path from v to the root. If v is found we increment W (v) and the
weights along the path and consider the insert failed.3

Delete:We delete an item v by first searching for it while restructuring the tree
as in a lookup. If v is a leaf we unlink it from the tree. If v has a single child we
remove v from the tree by linking v’s parent to v’s child. If v has two children we
only mark it as deleted. We adapt all operations so that any restructuring which
makes a deleted node a leaf or a single child unlinks it from the tree. With these
changes, CBTree’s space consumption remains linear in n, the number of non-
deleted nodes in the tree. If we are willing to count failed lookups as accesses,
we can update the counters top-down instead of bottom-up.

Computing Potential Differences: To decide whether to perform a rotation,
an operation needs to compute ΔΦ, the potential difference resulting from the
rotation. It can do this using only the counters of the nodes involved in the rota-
tion, as follows. Consider first the single rotation case of Fig. 1 (the other cases
are symmetric). Only nodes whose subtrees change contribute to the potential
change, so ΔΦ = r′(z) + r′(y) − r(z) − r(y), where r′(v) denotes the rank of v
after the rotation. Because the overall weight of the subtree rooted at z does not
change, r′(y) = r(z), and thereby ΔΦ = r′(z)− r(y). We can express r′(z) using
the nodes and their weights in the tree before the rotation to obtain

ΔΦ = lg(C(z) +W (y.right) +W (z.right))− lgW (y). (1)

For a double rotation, an analogous derivation yields

ΔΦ = lg (C(z) +W (x.right) +W (z.right))+

lg (C(y) +W (y.left) +W (x.left))−
lgW (y)− lgW (x). (2)

When we do a rotation, we also update the weights of the nodes involved in the
rotation.

Note that our implementation works with the weights directly by computing
2ΔΦ using logarithmic identities and comparing it to 2−ε.

3 A failed insert() can change auxiliary information associated with v.
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An alternative rule for deciding when to do a rotation is to rotate when
W (z)/W (x) < α, where α is a constant less than two. This rule is simpler to
apply, simpler to analyze, and more intuitive than rotating when the potential
drops by at least ε, but we have not yet had time to try it in experiments.

3.3 Analysis

In this section we consider only successful lookups, that is, lookups of items that
are in the tree. For simplicity, we do not consider deleting an item v and then
later inserting it again, although the results can be extended by considering such
an item to be a new item. We prove that Theorem 1 holds for the CBTree.

Theorem 2. Consider a sequence of m operations on n distinct items, v1, . . . ,
vn, starting with an initially empty CBTree. Then the total time it takes to
perform the sequence is

O
(

m+

n∑

i=1

c(vi) lg
m

c(vi)

)

,

where c(v) is the number of times v is accessed in the sequence.

An operation on item v does two kinds of steps: (1) rotations, and (2) traversals of
edges in between rotations. The edges traversed in between rotations are exactly
the ones on the path to v at the end of the operation. Our proof of Theorem 2
accounts separately for the total time spent traversing edges in between rotations
and the total time spent doing rotations.

We first prove that an operation on node v, applied to a CBTree with weights
W (u) for each node u, traversesO(lg(W/C(v)) edges in between rotations, where
W = W (root) is the weight of the entire tree and C(v) is the individual weight
of v at the time the operation is performed (Lemma 2). From this we obtain

that the time spent traversing edges between rotations is O(c(v) + c(v) lg
m

c(v)
)

(Lemma 3). Having established this, the amortized bound in Theorem 2 follows
by showing that the total number of rotations in all m operations in the sequence
is O(n+ n ln m

n ) = O(m).

Lemma 2 (Ideal access path). Consider a CBTree with weights W (u) for
each node u. The length of the path traversed by an operation on item v is
O(lg(W/C(v)) + 1), where W = W (root) and C(v) is the individual weight of
v, at the time the operation is performed.

Proof. The path to v at the end of the operation (i.e., just before v is unlinked if
the operation is a delete) consists of d pairs of edges (z, y) and (y, x) that the
operation skipped between rotations, and possibly a single final edge if the op-
eration could look ahead only one node at its final step. For each such pair (z, y)
and (y, x), let ΔΦ be the potential decrease we would have got by performing a
rotation at z. Since we have not performed a rotation, ΔΦ > −ε. By Lemma 1
we obtain that

2(r(z)− r(x)) ≥ 2 + ΔΦ > 2− ε. (3)
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Define δ = 1 − ε/2. Then Equation (3) says that r(z) − r(x) > δ for each such
pair of edges (z, y) and (y, x) on the final path. Summing over the d pairs on the
path we get that r(root) − r(v) > dδ and so

d <
r(root) − r(v)

δ
= O

(

lg
W (root)

W (v)

)

= O
(

lg
W

C(v)

)

.

Since the length of path to v is at most 2d+ 1, the lemma follows. ��
We now show that Lemma 2’s bound matches that of the splay tree.

Lemma 3. The total time spent traversing edges between rotations in all the

operations that access v is O(c(v) + c(v) lg
m

c(v)
).

Proof. The time spent traversing edges between rotations is 1 plus the number
of edges traversed. Because the CBTree’s weight is at most m throughout the
sequence, and v’s individual weight after the k-th time it is accessed is k, Lemma
2 implies that the time spent traversing edges between rotations over all the

operations accessing v is c(v) +O
(
∑c(v)

j=1 lg
m

j

)

. By considering separately the

cost of the final half of the operations, the quarter before it, and so on, we bound
this as follows:

c(v) +O
(
c(v)

2
lg

m

c(v)/2
+

c(v)

4
lg

m

c(v)/4
+ . . .

)

=c(v) +O
(

c(v) lg
m

c(v)
+ c(v)(

lg 2

2
+

lg 4

4
+ . . . )

)

,

which is O
(

c(v) + c(v) lg
m

c(v)

)

because
∑∞

k=1

k

2k
= 2. ��

The following lemma, proved in the extended version of the paper [18], bounds
the number of rotations.

Lemma 4. In a sequence of m operations starting with an empty CBTree, we

perform O(n+ n ln
m

n
) = O(m) rotations, where n is the number of insertions.

4 The Concurrent CBTree

We demonstrate the CBTree using Bronson et al.’s optimistic BST concurrency
control technique [5] to handle synchronization of generic BST operations, such
as rotations and node link/unlinks. To be self contained, we summarize this
technique in Sect. 4.1. Section 4.2 then describes how we incorporate the CBTree
into it; due to space limitations, pseudo-code is presented in the extended version
of the paper [18]. Section 4.3 describes our single-adjuster optimization. Section
4.4 describes the Lazy CBTree, a variant of the CBTree meant to reduce the
overhead caused by calculating potential differences during the traversal.
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4.1 Optimistic Concurrent BSTs

Bronson et al. implement traversal through the tree without relying on read-write
locks, using hand-over-hand optimistic validation. This is similar to hand-over-
hand locking [19] except that instead of overlapping lock-protected sections, we
overlap atomic blocks which traverse node links. Atomicity within a block is
established using versioning. Each node holds a version number with reserved
changing bits to indicate that the node is being modified. A navigating reader
(1) reads the version number and waits for the changing bits to clear, (2) reads
the desired fields from the node, (3) rereads the version. If the version has not
changed, the reads are atomic.

4.2 Concurrent CBTree Walk-Through

We represent a node v’s weight W (v), equal to the total number of accesses to
v and its descendants, with three counters: selfCnt, counting the total number
of accesses to v, rightCnt for the total number of accesses to items in v’s right
subtree, and leftCnt, an analogous counter for the left subtree.

Traversal: Hand-over-hand validation works by chaining short atomic sections
using recursive calls. Each section traverses through a single node u after vali-
dating that both the inbound link, from u’s parent to u, and the outbound link,
from u to the next node on the path, were valid together at the same point
in time. If the validation fails, the recursive call returns so that the previous
node can revalidate itself before trying again. Eventually the recursion unfolds
bottom-up back to a consistent state from which the traversal continues.

When traversing through a node (i.e., at each recursive call) the traversal may
perform a rotation. We describe the implementation of rotations and of the rota-
tiondecision rule below.Fornow,notice thatperforming a rotation invalidatesboth
the inbound and outbound links of the current node. Therefore, after performing
a rotation the traversal returns to the previous recursion step so that the caller
revalidates itself. Using Fig. 1’s notation, after performing a rotation at z the re-
cursion returns to z’s parent (previous block in the recursion chain) and therefore
continues from the node that replaces z in the tree. In doing this, we establish that
a traversed link is always verified by the hand-over-hand validation, as in the origi-
nal optimistic validation protocol. The linearizability [20] of the CBTree therefore
follows from the linearizability of Bronson et al.’s algorithm.

Rotations: To do a rotation, the CBTree first acquires locks on the nodes
whose links are about to change in parent-to-child order: z’s parent, z, y, and
for a double rotation also x (using Fig. 1’s notation). It then validates that the
relationship between the nodes did not change and performs the rotation which
is done exactly as in Bronson et al.’s algorithm, changing node version numbers
as required and so on. After the rotation the appropriate counters are updated
to reflect the number of accesses to the new subtrees.

Counter Maintenance: Maintaining consistent counters requires synchroniz-
ing with concurrent traversals and rotations. While traversals can synchronize
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by atomically incrementing the counters using compare-and-swap, this does not
solve the coordination problem between rotations and traversals, and any addi-
tional mechanism to synchronize them would be pure overhead because rotations
are rare. We therefore choose to access counters using plain reads and writes,
observing that wrong counter values will not violate the algorithm’s correctness,
only possibly its performance.

A traversal increments the appropriate counters as the recursion unfolds at the
end of the operation (i.e., not during the intermediate retries that may occur). In
the extended version [18] we discuss the races that can occur with this approach
and show that such races – if they occur – do not keep the CBTree from obtaining
short access paths for frequent items.

Operation Implementation: A lookup is a traversal. Insertion is a traversal
that terminates by adding a new item or updating the current item’s value. Our
delete implementation follows Bronson et al.’s approach [5], marking a node as
deleted and unlinking it when it has one or no children.

Speeding Up Adaptation to Access Pattern Change: After a change in
the access pattern, i.e., when a popular item becomes unpopular, frequent nodes
from the new distribution may take a lot of time until their counters are high
enough to beat nodes that lost their popularity. To avoid this problem we add
an exponential decay function to the counters, based on an external clock that
is updated by an auxiliary thread or by the hardware. We detail this technique
in the extended version [18]. We note here that the decaying is an infrequent
event performed by threads as they traverse the tree. Therefore decaying updates
can also be lost due to races, which we again accept since the decaying is an
optimization that has no impact on correctness.

4.3 Single Adjuster

Even relaxed counter maintenance can still degrade scalability on multicore ar-
chitectures such as Intel’s Xeon E7, where a memory update occurs in a core’s
private cache, after the core acquires exclusive ownership of the cache line. In
this case, when all cores frequently update the same counters (as happens at
the top of the tree) each core invalidates a counter’s cache line from its previous
owner, who in turn had to take it from another core, and so on. On average,
a core waits for all other cores to acquire the cache line before its write can
complete. In contrast, on Sun’s UltraSPARC T2 Plus architecture all writes oc-
cur in a shared L2 cache, allowing the cores to proceed quickly: the L2 cache
invalidates all L1 caches in parallel and completes the write.

To bypass this Intel architectural limitation, we propose an optimization in
which only a single adjuster thread performs counter updates during its lookups.
The remaining threads perform read-only lookups. Thus, only the adjuster
thread requires exclusive ownership of counter cache lines; other lookups re-
quest shared ownership, allowing their cache misses to be handled in parallel.
Similarly, when the adjuster writes to a counter, the hardware sends the invalida-
tion requests in parallel. Synchronization can be further reduced by periodically
switching the adjuster to read-only mode, as we did in our evaluation.
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4.4 The Lazy CBTree

Calculating potential differences during the CBTree traversal, which involves
multiplication and division instructions, has significant cost on an in-order pro-
cessor such as Sun’s UltraSPARC T2. When no rotation is performed – as is
usually the case – the calculations are pure overhead. We have therefore de-
veloped the Lazy CBTree, a variant of the CBTree that greatly reduces this
overhead by not making rotation decisions during a lookup traversal.

A Lazy CBTree traversal makes no rotation decisions along the way. When
reaching the destination node, the operation makes a single rotation decision
which is based only on counter comparisons, and then proceeds to update the
counters along the path back to the root. If the operation is an insert() of a
new item, it may make more (cheap) rotation decisions as it unfolds the path
back to the root. We refer the reader to the extended version for details [18].
While the CBTree analysis does not apply to the Lazy CBTree, in practice the
Lazy CBTree obtains comparable path lengths to CBTree but with much lower
cost per node traversal, and so obtains better overall throughput.

5 Experimental Evaluation

In this section we compare the CBTree’s performance to that of the splay tree,
treap [9] and AVL algorithms. All implementations are based on Bronson et al.’s
published source code. Benchmarks are run on a Sun UltraSPARC T2+ processor
and on an Intel Xeon E7-4870 processor. The UltraSPARC T2+ (Niagara II)
is a multithreading (CMT) processor, with 8 1.165 HZ in-order cores with 8
hardware strands per core, for a total of 64 hardware strands per chip. Each
core has a private L1 write-through cache and the L2 cache is shared. The Intel
Xeon E7-4870 (Westmere EX) processor has 10 2.40GHz cores, each multiplexing
2 hardware threads. Each core has private write-back L1 and L2 caches and a
shared L3 cache.

Overall, we consider the following implementations: (1) CB, CBTree with de-
caying of node counters disabled, (2) LCB, the lazy CBTree variant (Sect. 4.4),
(3) Splay, Daniel Sleator’s sequential top-down splay tree implementation [21]
with a single lock to serialize all operations, (4) Treap, and (5) AVL, Bronson
et al.’s relaxed balance AVL tree [5]. Because our single adjuster technique ap-
plies to any self-adjusting BST, we include single adjuster versions of the splay
tree and treap in our evaluation, which we refer to as [Alg]OneAdjuster for
Alg ∈ {Splay,Treap,CB,LCB}. In these implementations one dedicated thread
alternates between doing lookups as in Alg for 1 millisecond and lookups with-
out restructuring for t milliseconds (t = 1 on the UltraSPARC and t = 10 on the
Intel; these values produced the best results overall). All other threads always
run lookups without any restructuring. Insertions and deletions are done as in
Alg for all threads. Note that SplayOneAdjuster is implemented using Bronson
et al.’s code to allow lookups to run concurrently with the adjuster’s rotations.
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5.1 Realistic Workloads

Here the algorithms are tested on access patterns derived from real workloads: (1)
books, a sequence of 1, 800, 825 words (with 31, 779 unique words) generated
by concatenating ten books from Project Gutenberg [22], (2) isp, a sequence
of 27, 318, 568 IP addresses (449, 707 unique) from packets captured on a 10
gigabit/second backbone link of a Tier1 ISP between Chicago, IL and Seattle,
WA in March, 2011 [23], and (3) youtube, a sequence of 1, 467, 700 IP addresses
(39, 852 unique) from YouTube user request data collected in a campus network
measurement [24]. As the traces we obtained are of item sequences without
accompanying operations, in this test we use only lookup operations on the
items in the trace, with no inserts or deletes. To avoid initialization effects
each algorithm starts with a maximum balanced tree over the domain, i.e., where
the median item is the root, the first quartile is the root’s left child, and so on.
Each thread then repeatedly acquires a 1000-operation chunk of the sequence
and invokes the operations in that subsequence in order, wrapping back to the
beginning of the sequence after the going through entire sequence.

Table 1 shows the average number of nodes traversed and rotations done by
each operation on the Sun UltraSPARCmachine. As these are algorithmic rather
than implementation metrics, results on the Intel are similar and thus omitted.
Figure 2 shows the throughput, the number of operations completed by all the
threads during the duration of the test.

CBTree obtains the best path length, but this does not translate to the best
performance: on the UltraSPARC, while CBTree scales well, its throughput is

Table 1. Average path length and number of rotations for a single thread and 64
threads. When the single thread result, r1, significantly differs from the 64 threads
result, r64, we report both as r1, r64. To reduce overhead, data is collected by one
representative thread, who is the adjuster in the single adjuster variants.

AVL Splay Treap CBTree Lazy Splay Treap CBTree Lazy
CBTree CBTree

Single adjuster

Average path length

books 17.64 10.63, 11.19 9.54, 9.71, 11.71 11.43 10.13, 10.30,
12.06 8.64 9.11 11.71 11.43 11.06 10.68

isp 17.86 9.09, 14.64 11.13 11.95, 13.39 14.46, 12.33, 12.41,
12.89 11.38 15.1 13.25 13.49

youtube 14.35 8.52, 15.75 11.81 12.06, 13.47 15.84 12.27 12.24
13.31 11.87

Rotations per operation

books 0 9.16 < 0.01 < 0.01 0.02 2.95 0.09 0.02 0.02
isp 0 8.09, 0.03 0.01 0.03 2.65, 0.25 0.01 0.03

10.45 3.10
youtube 0 7.52, < 0.01 < 0.01 < 0.01 3.17 0.11 0.03 0.02

10.73
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Fig. 2. Test sequence results. Left: Sun UltraSPARC T2+ (up to 64 hardware threads).
Right: Intel Westmere EX (up to 20 hardware threads).

lower than some of the other algorithms due to the cost of calculating potential
differences, and on the Intel Xeon E7 CBTree scales poorly because the counter
updates serialize the threads (Sect. 4.3). Lazy CBTree, which avoids computing
potential differences, outperforms all algorithms except single adjuster variants
on the UltraSPARC, but also scales poorly on the Intel.

The single adjuster solves the above problems, making CBOneAdjuster and
LCBOneAdjuster the best performers on both architectures. For example, on
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the isp sequence, CBOneAdjuster and LCBOneAdjuster outperform treap, the
next best algorithm, respectively by 15% and 30% on the Intel and by 20% and
50% on the UltraSPARC at maximum concurrency. Because Lazy CBTree on
the UltraSPARC incurs little overhead, if LCBOneAdjuster obtains significantly
worse path length (e.g., on the books sequence), it performs worse than Lazy
CBTree. The treap high performance is because an operation usually updates
only its target node. However, this results in suboptimal path lengths, and also
prevents the treap from seeing much benefit due to the single adjuster technique.
While the AVL tree scales well, its lack of self-adjusting leads to suboptimal path
lengths and performance. On books, for example, CBOneAdjuster outperforms
AVL by 1.6× at 64 threads on the UltraSPARC machine.

The splay’s tree coarse lock prevents it from translating its short path length
into actual performance. Applying our single adjuster optimization allows
readers to run concurrently and benefit from the adjuster’s splaying, yielding a
scalable algorithm with significantly higher throughput. Despite obtaining com-
parable path lengths to CBOneAdjuster, the SplayOneAdjuster does > 100×
more rotations than CBOneAdjuster, which force the concurrent traversals to
retry. As a result, CBOneAdjuster outperforms SplayOneAdjuster.

Additional Experiments: The extended version [18] describes additional experi-
ments: (1) evaluating the algorithms on synthetic skewed workloads following a
Zipf distribution, (2) examining how the algorithms adjust to changes in the
usage pattern, (3) measuring performance under different ratios of insert/
delete/lookup, and (4) showing that CBTree is robust to lost counter updates.

Future work. We intend to experiment with other CBTree variants, including
the one mentioned at the end of Sect. 3.2, as well as with a top-down version of
semi-splaying.
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