1. Show that if
\[3 \binom{n}{k} 3^{-\binom{k}{2}} < 1 \]
then there is a coloring of the edges of the complete graph on \(n \) vertices by 3 colors with no monochromatic clique of size \(k \).

2. Let \(A \) be a set of \(3m \) points in the Euclidean plane, and suppose that the distance between any two of these points is smaller than \(\sqrt{2} \). Prove that the number of pairs \(P, Q \) of points of \(A \) so that the distance between \(P \) and \(Q \) is at least 1 does not exceed \(3m^2 \).

3. Show that if the edges of a graph \(G \) can be covered by two trees then its chromatic number is at most 4.

4. Let \(G \) be a simple graph with maximum degree 7 containing no clique of size 4. Prove that the chromatic number of \(G \) is at most 6.
Hint: Show first that one can delete from \(G \) a bipartite graph leaving each degree in what’s left at most 3.

5. Let \(G \) be a graph with chromatic number \(\chi(G) = 11 \) and with no cycle of length at most 20. Show that the number of vertices of \(G \) exceeds the world population (which is close to 7,000,000,000).

6. Let \(G \) be a 2-connected, simple 5-regular planar graph drawn in the plane so that every face contains the same number of edges. What is the number of vertices of \(G \)? Prove your claim.