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Abstract

It is known that many different types of finite random subgraph models undergo quantitatively
similar phase transitions around their percolation thresholds, and the proofs of these results rely
on isoperimetric properties of the underlying host graph. Recently, the authors showed that such
a phase transition occurs in a large class of regular high-dimensional product graphs, generalising
a classic result for the hypercube.

In this paper we give new isoperimetric inequalities for such regular high-dimensional product
graphs, which generalise the well-known isoperimetric inequality of Harper for the hypercube, and
are asymptotically sharp for a wide range of set sizes. We then use these isoperimetric properties
to investigate the structure of the giant component L1 in supercritical percolation on these product
graphs, that is, when p = 1+ϵ

d , where d is the degree of the product graph and ϵ > 0 is a small
enough constant.

We show that typically L1 has edge-expansion Ω
(

1
d ln d

)
. Furthermore, we show that L1 likely

contains a linear-sized subgraph with vertex-expansion Ω
(

1
d ln d

)
. These results are best possible

up to the logarithmic factor in d.
Using these likely expansion properties, we determine, up to small polylogarithmic factors in

d, the likely diameter of L1 as well as the typical mixing time of a lazy random walk on L1.
Furthermore, we show the likely existence of a cycle of length Ω

(
n

d ln d

)
. These results not only

generalise, but also improve substantially upon the known bounds in the case of the hypercube,
where in particular the likely diameter and typical mixing time of L1 were previously only known
to be polynomial in d.

1 Introduction

1.1 Background and motivation

In this paper we investigate the typical structure of the largest component after supercritical perco-
lation in a certain class of high-dimensional graphs. Of particular interest, both in their own right,
but also as a tool to study other structural properties, are the isoperimetric properties of the largest
component, which have proven to be key to understanding the large-scale structure of the giant com-
ponent in many percolation models. Unsurprisingly, in order to understand the likely isoperimetric
properties of the giant component, it is first essential to study the isoperimetric properties of the host
graph.

Very generally, for any space which is endowed with a notion of volume and boundary, the isoperi-
metric problem is to determine which sets of fixed volume have the smallest boundary. In the case of
graphs, a natural notion of boundary to consider is the edge-boundary. Given a graph G = (V,E) and
a subset of the vertices S ⊆ V (G), we write ∂(S) for the edge-boundary of S, that is, the set of edges
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with one endpoint in S and one endpoint in V (G) \ S. The isoperimetric problem is then equivalent
to determining, for each k ∈ N, the parameter

ik(G) := min
S⊆V (G),|S|=k

{
|∂(S)|
|S|

}
,

and characterising the sets which achieve this minimum. Of particular interest is the edge-isoperimetric
constant of G, given by

i(G) := min
k≤|V (G)|/2

{ik(G)}.

This is also sometimes called the Cheeger constant, as it can be viewed as a discrete analogue of the
Cheeger isoperimetric constant of a compact Riemannian manifold [25]. It turns out that the Cheeger
constant is a fundamental graph parameter, and can be used to demonstrate deep links between the
combinatorial, geometric, spectral and stochastic properties of graphs. For this reason expander graphs,
roughly speaking graphs whose Cheeger constant is bounded from below by an absolute constant, have
turned out to be very important in diverse areas of discrete mathematics and computer science. We
refer the reader to [47] for a comprehensive survey on expander graphs and their application.

Whilst in general it is NP-hard to determine even the edge-isoperimetric constant of an arbitrary
graph [38], much is known about the isoperimetric properties of particularly well-structured graph
classes. In particular, a classical result of Harper solves the isoperimetric problem on the d-dimensional
(binary) hypercube Qd, whose vertex set is {0, 1}d, and in which two vertices are adjacent if and only
if their Hamming distance is one. Harper’s result implies the following isoperimetric inequality:

Theorem 1.1 ([40], see also [57, 11, 43]). Let d ∈ N. For every k ∈
[
2d
]

ik

(
Qd
)
≥ d− log2 k.

Furthermore, the only sets which achieve equality in the above estimate are subcubes.

The isoperimetric problem has also been solved, at least asymptotically, in many other classes of
lattice-like graphs, such as grids [19, 1], Cartesian powers of graphs [24, 15], and Abelian Cayley
graphs [55, 8, 9]. For further background, we refer the reader to the surveys [13, 14, 42] on discrete
isoperimetric problems.

On the other hand, the isoperimetric properties of particularly ‘unstructured’ graphs, that is, graphs
without any clear geometric structure, have also been well-studied. It is known that Erdős-Rényi
(binomial) random graphs [48, 36] and random d-regular graphs [16] have typically good isoperimetric
properties, and one can view the well-known Expander Mixing Lemma, due to Alon and Chung
[5], as a bound on the edge-isoperimetric constant of pseudo-random (n, d, λ)-graphs (see also [6]).
Furthermore, the isoperimetric properties of such graphs have been a key tool in the study of their
structural properties.

In this paper, we consider a mixture of these two paradigms. We study properties of random
subgraphs of graphs coming from a family of graphs which are quite structured — arising from high-
dimensional products of bounded graphs. As in other percolation models, it turns out that the isoperi-
metric properties of these random subgraphs are key to understanding their large-scale structure, and
that in order to understand the likely isoperimetric properties in the percolated subgraphs, it is useful
first to study the isoperimetric problem in the underlying product graphs.

Given a sequence of graphs G(1), . . . , G(t), the Cartesian product of G(1), . . . , G(t), denoted by G =
G(1)□ · · ·□G(t) or G = □t

j=1G
(j), is the graph with the vertex set

V (G) =
{
v = (v1, v2, . . . , vt) : vj ∈ V (G(j)) for all j ∈ [t]

}
,

and the edge set

E(G) =

{
uv :

there is some j ∈ [t] such that ujvj ∈ E
(
G(j)

)
and um = vm for all m ̸= j

}
.
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We call G(j) the base graphs of G. Note that if each G(j) is dj-regular, then G is d-regular with d :=∑t
j=1 dj . Many well-studied families of graphs arise in this manner. For example, the t-dimensional

hypercube Qt is the t-fold Cartesian product of a single edge. Other examples include tori, grids,
Hamming graphs, and many examples of Cayley graphs of groups arising from direct products.

We will be interested in properties of random subgraphs of high-dimensional product graphs, that is,
we consider bond percolation on these graphs. Percolation theory was initiated in 1957 by Broadbent
and Hammersley [23] in order to model the flow of fluid through a medium with randomly blocked
channels, and has become a major area of research. In (bond) percolation, given a host graph G and
a probability p ∈ [0, 1], we form the random subgraph Gp by including every edge of G independently
with probability p. Percolation has been studied extensively on various geometric ‘lattice-like’ classes
of graphs, and in particular on many of the families of graphs which arise naturally as high-dimensional
product graphs such as high-dimensional hypercubes [3, 18], tori [44, 45], or Hamming graphs [21, 22]
(see [46, Chapter 13] for a survey on many important results in these models). We refer the reader to
the monographs [49, 39, 20] for a more comprehensive background on percolation theory.

There is an intrinsic connection between the phase transition in percolated graphs, and the isoperi-
metric properties of the host graph. This connection can be seen, albeit implicitly, already in the
classical phase transition result of Erdős and Rényi [33]. In the case of percolated expander graphs,
this connection is explicit in the work of Alon, Benjamini and Stacey [4], and in the case of percolated
pseudo-random graphs in the work of Frieze, Krivelevich and Martin [37]. Ajtai, Komlós, and Sze-
merédi [3] proved that Qd

p undergoes a phase transition quantitatively similar to the one which occurs
in G(n, p), and their work was later extended by Bollobás, Kohayakawa, and  Luczak [18] — both of
which explicitly rely on the isoperimetric properties of the hypercube.

Furthermore, above the percolation threshold the connection between the isoperimetric properties
of the host graph G, the expansion properties of the percolated graph Gp, and the combinatorial
properties of the resulting giant component in Gp has been made explicit in several works. To mention a
few, Fountoulakis and Reed [34, 35], and, independently, Benjamini, Kozma and Wormald [10] study
the asymptotic mixing time of a random walk on the giant component of G(n, p) using the likely
expansion properties of connected sets (and, implicitly, the isoperimetric properties of the complete
graph); Riordan and Wormald [59] utilise likely expansion properties in the giant component of G(n, p)
in order to bound its typical diameter; and Erde, Kang and Krivelevich [32] use the isoperimetric
properties of Qd to show typical expansion properties of the giant component of Qd

p, and derive from
them the current best known bounds on its likely circumference (that is, the length of a longest cycle),
typical diameter and asymptotic mixing time.

Recently, generalising the results of [3, 18] on Qd, the authors showed that any high-dimensional
product graph, whose base graphs are bounded in order and regular, undergoes a phase transition in
terms of its component structure around p = 1

d , where d is the degree of the product graph, and that
this phase transition is quantitatively similar to that of G(n, p). Given a constant ϵ > 0, let us define
y := y(ϵ) to be the unique solution in (0, 1) of the equation

y = 1 − exp (−(1 + ϵ)y) . (1)

Theorem 1.2 (Theorem 2 in [29]). Let C > 1 be a constant and let ϵ > 0 be sufficiently small. For
all j ∈ [t], let G(j) be a connected regular graph of degree dj such that 1 <

∣∣V (G(j)
) ∣∣ ≤ C. Let

G = □t
j=1G

(j), let n := |V (G)| and let p = 1+ϵ
d , where d := d(G) =

∑t
j=1 dj is the degree of G. Then,

whp1, there exists a unique component of order (1 + o(1)) yn in Gp, where y = y(ϵ) is defined as in
(1). Furthermore, whp, all the remaining components of Gp are of order Oϵ,C(d).

This can perhaps be viewed as an example of the universality of the phase transition that G(n, p)
undergoes — in many percolation models various aspects of the phase transition close to the critical
point seem to behave in a quantitatively similar manner, under the right rescaling, independently of the
host graph (see, for example [46]). In this case, the proportion y of the host graph G which is covered
by the giant component is the same as arises in G(n, p) [33], but also in supercritical percolation in the

1With high probability, that is, with probability tending to 1 as t tends to infinity.
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hypercube [3, 18], pseudo-random graphs [37], and many other percolation models, see for example
[58, 17].

Whilst the internal structure of the giant component in G(n, p) is reasonably well understood, in
other percolation models, such as hypercube percolation, many basic questions about the structure of
the giant component remain unanswered, although in light of this universality phenomena there are
natural conjectures suggested by the structure in G(n, p). Since the expansion properties of the giant
component in G(n, p) have been key to understanding its likely structural properties, in order to better
understand the structure of the giant component in percolated high-dimensional product graphs it is
natural to ask about its expansion properties, and in order to answer this question it seems crucial to
understand first the isoperimetric properties of general high-dimensional product graphs.

A well-known result of Chung and Tetali [26] (see also Tillich [60]) shows that, at least on a broad
scale, the isoperimetric properties of a product graph are closely related to those of the base graphs.

Theorem 1.3 (Theorem 2 of [26]). Let G(1), . . . , G(t) be such that |V (G(j)| > 1 for all j ∈ [t]. Let
G = □t

j=1G
(j). Then

min
j

{
i
(
G(j)

)}
≥ i(G) ≥ 1

2
min
j

{
i
(
G(j)

)}
.

However, on a finer scale we might expect smaller sets in a product graph to expand by a larger factor
than is suggested by Theorem 1.3. Indeed, in the case of the hypercube, Theorem 1.3 gives a much
weaker bound on the expansion of small sets than is implied by Theorem 1.1, where the expansion
of small sets is asymptotically optimal, and this optimal expansion is critical to understanding the
distribution of small percolation clusters in Qd

p. It is thus natural to ask whether similar isoperimetric
results hold on a finer scale for arbitrary product graphs.

1.2 Main results

Our first main results are two edge-isoperimetric inequalities for high-dimensional product graphs,
under mild assumptions on the base graphs. The first concerns high-dimensional product graphs
whose base graphs are bounded and regular.

Theorem 1. Let C > 1 be an integer. For all j ∈ [t], let G(j) be a dj-regular graph with 1 <
|V (G(j))| ≤ C. Let G = □t

j=1G
(j), let n := |V (G)| and let d :=

∑t
j=1 dj. Then for any k ∈ [n],

ik(G) ≥ d− (C − 1) log2 k.

Observe that if log2 k ≪ d, then Theorem 1 implies that ik(G) ≥ (1 − o(1))d which, since G is
d-regular, is asymptotically optimal. Furthermore, in the particular case of Qd we have that C = 2,
and this result recovers the tight bound for the hypercube (Theorem 1.1). Note, however, that when
the base graphs are larger, there are k ∈ [n] with (C − 1) log2 k > d, for which Theorem 1 gives a
trivial bound for ik(G).

The second isoperimetric inequality holds for high-dimensional product graphs whose base graphs
are bounded and connected (and not necessarily regular), and gives an effective bound for larger values
of k.

Theorem 2. Let C > 1 be an integer. For all j ∈ [t], let G(j) be a connected graph with 1 <
|V (G(j))| ≤ C. Let G = □t

j=1G
(j) and let n := |V (G)|. Then for any k ∈ [n],

ik(G) ≥ 1

C − 1
logC

(n
k

)
.

Note that, taking C = 2, Theorem 2 also implies the classical edge-isoperimetric bound for the
hypercube. Furthermore, in general Theorem 2 implies that ik(G) = Ω

(
ln
(
n
k

))
for all k ∈ [n], which

recovers the asymptotic result of Tillich [60] on high-dimensional Cartesian powers of graphs, which
was proved using analytic methods inspired by isoperimetric problems in Riemannian geometry. Let us
also mention a related result of Lev [55] which shows that ik(G) has the same asymptotic growth rate
in any Abelian Cayley graph, where the implicit constant depends on the exponent of the underlying
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group. Moreover, for many different types of product graphs where the isoperimetric problem has
been studied, among them Hamming graphs [14] and the d-dimensional torus graphs [24], the bound
given by Theorem 2 is known to be asymptotically tight up to a multiplicative constant. In fact, as
we will discuss in more detail in Section 7, it can be shown that Theorem 2 is asymptotically tight for
any high-dimensional product graph all of whose base graphs are isomorphic.

Using these new isoperimetric inequalities, we are able to derive several likely expansion properties
of the giant component after percolation in a high-dimensional product graph whose base graphs are
regular and of bounded order. These typical expansion properties which we will present, and their
consequences, not only generalise but also improve substantially upon the known typical bounds in
Qd

p given in [32]. We note that while we present the results in the supercritical regime, that is when

ϵ > 0 is a small constant and p = 1+ϵ
d , the results naturally extend (with slight adaptations in the

statements) to the sparse regime, that is, when p = c
d for constant c > 1.

Given a graph G, a subset S ⊆ V (G) and r ∈ N, we denote by N r
G(S) the r-th external neighbourhood

of S in G, that is, the set of vertices in V (G) \ S which are at distance at most r from S in G. When
r = 1, we omit the superscript.

Theorem 3. Let C > 1 be an integer. For all j ∈ [t], let G(j) be a dj-regular connected graph with
1 < |V (G(j))| ≤ C. Let G = □t

j=1G
(j), let n := |V (G)| and let d :=

∑t
j=1 dj. Let ϵ > 0 be a small

enough constant and let p = 1+ϵ
d . Let L1 be the largest component in Gp. Then, there exists a positive

constant c = c(ϵ) such that whp,

(a) for all k ≤ 3ϵn
2 and all subsets S ⊆ V (L1) with |S| = k,

|∂Gp(S)| ≥ c|S|
d ln d

;

(b) for all ϵ2n ≤ k ≤ 3ϵn
2 and all subsets S ⊆ V (L1) with |S| = k,

|NGp(S)| ≥ c|S|
d ln d

.

We note that, since G is d-regular, Theorem 3(a) implies a lower bound of Ω
(

1
d2 ln d

)
on the vertex-

expansion of arbitrary subsets of L1. Theorem 3(b) then improves this by a factor of d for linear-sized
sets.

If we make the additional assumption that our subset S ⊆ V (L1) is connected, that is, Gp[S] is
connected, then we are able to give stronger bounds on the expansion.

Theorem 4. Let C > 1 be an integer. For all j ∈ [t], let G(j) be a dj-regular connected graph with
1 < |V (G(j))| ≤ C. Let G = □t

j=1G
(j), let n := |V (G)| and let d :=

∑t
j=1 dj. Let ϵ > 0 be a small

enough constant and let p = 1+ϵ
d . Let L1 be the largest component in Gp. Then, there exists a positive

constant c = c(ϵ) such that whp for all subsets S ⊆ V (L1) with |S| = k and Gp[S] connected,

(a) for all 9 ln c·d
ϵ2

≤ k ≤ nϵ5,

|NGp(S)| ≥ c|S|;

(b) for all nϵ5 ≤ k ≤ 3ϵn
2 ,

|∂Gp(S)| ≥
c|S| ln

(
n
|S|

)
d ln d

.

One interesting interpretation of Theorem 4, noting that the bound in Theorem 4(a) implies the
bound in Theorem 4(b) for the same range of k, is as a sparsification of Theorem 2, and so in the
particular case of the hypercube a sparsification of Harper’s theorem. In other words, recalling that we
are interested in percolation with probability p = Θ

(
1
d

)
, broadly Theorem 4 tells us that, if we restrict

5



ourselves to connected subsets which are not too small, then the naive isoperimetric inequality that
holds in expectation in Gp by Theorem 2 for a given set, actually holds whp up to a logarithmic factor
for all sets simultaneously. We note that the restriction to large connected sets here is necessary, due to
the likely existence of bare paths of length Θ(d) in Gp, which can be shown by elementary arguments,
which are connected but exhibit poor expansion, and in fact the likely existence of a disjoint family
of such paths of large total volume.

Let us make a few clarifying remarks about Theorems 3 and 4. We note first that Theorem 4 implies
Theorem 3(a). Indeed, given such a (not necessarily connected) set S, each component K of Gp[S]

either has order at least 9d lnC
ϵ2

, and hence by Theorem 4 whp has edge-boundary at least c |K|
d ln d , or

has size at most 9d lnC
ϵ2

and at least one edge in its boundary, since L1 is connected, and hence has

edge-boundary of order Ω
(
|K|
d

)
. Since the edge-boundaries for different components are disjoint, the

claim follows.
We note further that the results in Theorems 3 and 4 are (almost-)optimal for a wide range of

choices of k. Indeed, since |NG(S)| ≤ |S|d for all subsets S, a simple first-moment calculation shows
that Theorem 4(a) is optimal up to the constant factor. Moreover, Theorem 4(b) (and hence also
Theorem 3(b)) are optimal up to the logarithmic factor in d. Indeed, consider the particular example
of Qd

p and let Q′ be the subcube of Qd obtained by fixing the first log2 x coordinates to be 0, noting
that |V (Q′)| = n

x
:= k, and that every vertex in Q′ is adjacent to at most log2 x = log2

(
n
k

)
vertices

in Qd \ Q′. Therefore, by a Chernoff-type bound, whp the edge-boundary of V (Q′) (and hence its

vertex-boundary) in Qd
p has order O

(
k ln(n

k )
d

)
. In particular, if log2 x ≪ ϵd, then Q′

p is supercritical

and contains a connected subset S of order Θ(k), whose edge-boundary (and hence vertex-boundary)

has size at most that of V (Q′), and hence is of order O
(
k ln(n

k )
d

)
= O

( |S| ln
(

n
|S|

)
d

)
.

Finally, it is worth comparing Theorem 3 with the expansion properties of the giant component of

Qd
p, as given in [32]. There, it was shown that for any set S ⊆ V (L1), whp |NGp(S)| = Ω

(
|S|
d5

)
, and

for linear-sized subsets S whp |NGp(S)| = Ω
(

|S|
d2 ln d

)
. In comparison, as mentioned above, it follows

from Theorem 3 that whp for any set S ⊆ V (L1), |∂Gp(S)| = Ω
(

|S|
d ln d

)
and |NGp(S)| = Ω

(
|S|

d2 ln d

)
,

and for linear-sized subsets, whp |NGp(S)| = Ω
(

|S|
d ln d

)
.

A particularly interesting consequence that we can derive from Theorem 3(b) is that typically L1

contains a linear-sized subgraph which is a good expander at all scales.

Theorem 5. Let C > 1 be an integer. For all j ∈ [t], let G(j) be a dj-regular connected graph with
1 < |V (G(j))| ≤ C. Let G = □t

j=1G
(j), let n := |V (G)| and let d :=

∑t
j=1 dj. Let ϵ > 0 be a small

enough constant and let p = 1+ϵ
d . Let L1 be the largest component in Gp. Then, there exists a positive

constant c = c(ϵ) such that whp the following holds. There exists a subgraph H ⊆ L1 such that

|V (H)| ≥ 3ϵn
2 , and for every S ⊆ V (H) with |S| ≤ |V (H)|

2 ,

|NH(S)| ≥ c|S|
d ln d

.

Remark 1.4. The fraction 3
2 in Theorem 5 can be replaced by any constant strictly smaller than 2.

In particular, since whp |V (L1)| =
(
2ϵ−O(ϵ2)

)
n, we can choose an H which covers almost all of the

vertices of L1.

We note that, in the case of the hypercube, as shown in [32, Claim 5.2], whp every linear-sized
subgraph of the giant component in a supercritical Qd

p has edge-expansion O
(
1
d

)
, and thus Theorem

5 is optimal up to the logarithmic factor in d. In the case of G(n, p), Benjamini, Kozma and Wormald
[10], and Krivelevich [50] showed that in the supercritical regime there is typically a linear-sized
subgraph H of the giant component with a constant edge- and vertex-expansion (see also [28]). This
result and the accompanying structural description of the giant component in terms of this expanding
subgraph given by Benjamini, Kozma and Wormald [10], can be used to determine the asymptotic
order of many important structural parameters of the giant component in G(n, p). An analogous
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description of the structure of the giant component in a percolated high-dimensional product graph is
likely to be useful for determining its finer structure.

Using Theorems 4 and 3(b), we can obtain several interesting consequences on the typical structure
of L1.

Theorem 6. Let C > 1 be an integer. For all j ∈ [t], let G(j) be a dj-regular connected graph with
1 < |V (G(j))| ≤ C. Let G = □t

j=1G
(j), let n := |V (G)| and let d :=

∑t
j=1 dj. Let ϵ > 0 be a small

enough constant, let p = 1+ϵ
d , and let L1 be the largest component of Gp. Then whp,

(a) the diameter of L1 is O(d ln2 d);

(b) the mixing time of a lazy random walk on L1 is O(d2 ln2 d);

(c) the circumference of L1 is Ω
(

n
d ln d

)
.

The bounds given in Theorem 6(a), (b), and (c) are close to optimal, up to a multiplicative factor of
ln2 d in the first two cases and of d ln d in the latter case. In the case of Theorem 6(c) this is immediate,
and in the other two cases, this follows from the likely existence in Gp of a bare path of length Ω(d).
Furthermore, note that these typical bounds not only generalise but also improve substantially upon
the typical bounds in Qd

p given in [32].
The structure of the paper is as follows. In Section 2, we provide an outline of the proofs of our

main results, stressing also the main challenges one needs to overcome, our approach towards them
and the key novelties of this paper. In Section 3, we present and establish several lemmas that will
be useful for us throughout the paper. In Section 4, we prove Theorems 1 and 2 (the reader who is
interested in the implications of our results for the hypercube can recall Harper’s inequality, think of
our base graphs as K2, and skip Section 4). In Section 5 we prove Theorems 3, 4 and 5. In Section
6 we prove Theorems 6(c), (a) and (b). Finally, in Section 7 we mention some questions and open
problems.

2 Outline of the proofs

For the proof of Theorem 1, since we assume that the graph is regular, it suffices to bound from above
the density of any set of a given size. To that end, we can use the product structure of G to decompose
it into disjoint projections of lower dimension. Then, given a subset S ⊆ V (G), this decomposition of
G induces a partition of S, and we can express the density of S as a function of the density inside each
partition class and the density between the partition classes. Since each partition class lives in a lower
dimensional projection, we can bound its density inductively. However, whilst our desired bound is
subadditive, we require a stronger inequality (Corollary 4.2) to account for the cross-partition density,
which we prove using a novel entropic argument (Lemma 4.1).

The proof of Theorem 2 also utilises the entropy function. More explicitly, given a subset S ⊆ V (G),
we consider a uniformly chosen random vertex in S, which we can consider as a random vector in the
product space V (G). It can be shown that the entropy of suitable projections of this random vector
can be bounded in terms of the edge boundary of S in a fixed direction. We can then combine these
individual bounds into a bound for ∂(S) in terms of |S| using Shearer’s inequality.

Moving to our results on typical expansion properties of the giant component L1, for small enough
sets, we can combine our almost tight isoperimetric inequality (Theorem 1) with good bounds on
the number of connected subsets of G (Lemma 3.3) to argue via a first-moment calculation that it
is unlikely that any small connected subset of L1 does not expand well. This allows one to derive
Theorem 4(a). In the proof of Theorem 4(a) there is a trade-off, in (9), between the enumerative
bound of the number of connected sets of size k, and the probability bound that these sets have small
expansion, which is related to the isoperimetric inequality. For larger sets, the strategy of Theorem 4(a)
is ineffective because of the limitations of the isoperimetric inequality, leading to a weaker probability
bound, and for disconnected sets the strategy is ineffective due to a weaker enumerative bound, as
there are many more disconnected sets than connected sets.

7



Thus, our key improvements come in the proof of Theorem 4(b) and Theorem 3, and therein lie
several novel techniques, embedded in two key lemmas: Lemma 5.3 and Lemma 5.7. We argue via a
two-round exposure. Setting δ = δ(ϵ) ≪ ϵ we define p2 = δ

d and let p1 be such that (1 − p1)(1 − p2) =

1 − p, so that Gp has the same distribution as Gp1 ∪ Gp2 , noting that p1 ≥ 1+ϵ−δ
d . By Theorem

1.2, we know that whp Gp1 already contains a giant component of linear order, which we denote by
L′
1. Furthermore, note that whp, L′

1 will be a subgraph of L1, the giant component of Gp (in fact,
typically it will cover most of the vertices of L1). We thus informally refer to L′

1 as the early giant.
Key ideas of [32], which we generalise to the setting of high-dimensional product graphs, use an

isoperimetric inequality (Theorem 2) to give a strong probability bound for the event that a given
subset of L′

1 does not expand well after sprinkling (see Lemma 5.2 and [32, Lemma 3.4]). However,
a naive enumerative bound on the number of subsets of L′

1 is too weak to conclude that whp every
subset of L′

1 expands well, using a union bound.
An essential contribution here is then a novel double counting argument to improve this enumerative

bound. Indeed, we only need to demonstrate an expansion property for the subsets of L′
1 which do

not already expand inside L′
1, where the required expansion factor is od(1). In particular, for each

such set S the size of its boundary B in L′
1 is significantly smaller than the size of S, and so naively,

enumerating over the set of possible boundaries should be more effective than enumerating over the
sets themselves. Of course, there may be many sets S with the same boundary, but we will see that
again the assumption that S does not expand well will allow us to give an effective bound on the
number of relevant S with boundary B (see Lemma 5.3).

Naturally, the subsets we consider can contain many vertices from the residue L1 − L′
1, and thus

showing good expansion of subsets of the early giant L′
1 in L1 does not immediately imply good

expansion in L1. Our second key contribution then lies in the analysis of the typical structure of
subsets in the residue, and in particular their likely expansion into the early giant (see Lemmas 5.4
and 5.7). Having all these tools at hand, we prove Theorems 3 and 4.

The proof of Theorem 5 uses ideas from [51] to move from expansion at a fixed scale to expansion
at all scales, together with our expansion result on large sets (Theorem 3(b)). Having found a large
expander subgraph, one can then derive the existence of a long cycle (Theorem 6(c)) using techniques
from [52]. For Theorem 6(a), we analyse the growth rate of a ball of given radius. To obtain tight
results, we use the edge-expansion of connected sets given in Theorem 4, together with the fact that,
typically, connected subsets of the random subgraph Gp are not dense, and thus edge-expansion is
tightly connected to vertex expansion (see [54] for similar ideas). Finally, Theorem 6(b) follows from
a careful analysis of the method of Fountoulakis and Reed together with our results on the expansion
of connected sets (see [35, 54, 31] for somewhat similar implementations).

3 Preliminary lemmas

We will use the following standard Chernoff type bound on the tail probabilities of the binomial
distribution (see, for example, Appendix A in [7]):

Lemma 3.1. Let N ∈ N, let p ∈ [0, 1], and let X ∼ Bin(N, p). Then for any b > 0,

P (X ≥ bNp) ≤
(e
b

)bNp
.

We will also use the well-known Azuma-Hoeffding inequality (see, for example, Chapter 7 in [7]),

Lemma 3.2. Let X = (X1, X2, . . . , Xm) be a random vector with range Λ =
∏

i∈[m] Λi and let f :

Λ → R be such that there exists D ∈ R+ such that for every x, x′ ∈ Λ which differ only in the j-th
coordinate,

|f(x) − f(x′)| ≤ D.

Then, for every b ≥ 0,

P
[∣∣f(X) − E [f(X)]

∣∣ ≥ b
]
≤ 2 exp

(
− b2

2mD2

)
.
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We require the following bound on the number of k-vertex trees in a d-regular graph G, which
follows immediately from Lemma 2 in [12].

Lemma 3.3. Let k ∈ N and let tk(G) be the number of trees on k vertices which are subgraphs of an
n-vertex d-regular graph G. Then

tk(G) ≤ n(ed)k−1.

In certain situations it will be useful to decompose a tree into connected parts of roughly equal size.
In [32, Lemma 2.2] and [53, Proposition 4.5], such a result is given where the tree is decomposed into
vertex-disjoint subsets, but where the gap between the sizes of the subsets grows with the maximum
degree of the tree. For our purposes, we will require a similar result with tighter control over the size
of the parts. To do so, we instead decompose into edge-disjoint subsets, which allows us to bound the
difference in the sizes of the subsets independently of the tree.

Lemma 3.4. Let ℓ > 0 be an integer. Let T be a tree with |V (T )| ≥ ℓ. Then, there exist vertex sets
A1, . . . As such that:

(a) V (T ) =
⋃

1≤i≤sAi;

(b) T [Ai] is connected for all i ∈ [s];

(c) |Ai ∩
(⋃

j∈([s]\{i})Aj

)
| ≤ 1; and

(d) ℓ ≤ |Ai| ≤ 3ℓ for all i ∈ [s].

Proof. We prove the result by induction on m = |V (T )|. If ℓ ≤ m ≤ 3ℓ, the trivial partition A1 = V (T )
satisfies the conclusion of the lemma. Suppose then that m > 3ℓ, and that the statement holds for all
trees T ′ where ℓ ≤ |V (T ′)| < m. Let us choose an arbitrary root w ∈ V (T ) for T . For each v ∈ V (T ),
we write Tv for the subtree of T rooted at v.

Let v be a vertex of maximal distance from w such that |V (Tv)| ≥ ℓ. Note that by our choice of v,
|V (Tx)| < ℓ for every child x of v. Then, there exists a subset of the children of v, X0 ⊆ V (T ), such
that ℓ− 1 ≤

∑
x∈X0

|V (Tx)| ≤ 2ℓ− 2. Set A1 = {v} ∪
⋃

x∈X0
V (Tx), and note that ℓ ≤ |A1| ≤ 2ℓ− 1

and that T [A1] is connected. Set T ′ = T \
⋃

x∈X0
V (Tx), and note that T ′ is connected with |T | >

|T ′| ≥ |T | − (2ℓ − 2) ≥ ℓ. We may thus apply the induction hypothesis to T ′, producing A2, . . . , As

satisfying properties (a) through (d) with respect to T ′.
Consider the sets A1, A2, . . . , As with respect to T . Properties (a), (b) and (d) are clear from the

above construction. Since V (T )∩V (T ′) = {v}, v is the only vertex that can be shared by A1 and any
Aj with j > 1, and so property (c) is satisfied as well.

The following theorem will allow us to deduce the existence of a long cycle in a graph with good
vertex-expansion.

Theorem 3.5. [52, Theorem 1] Let a ≥ 1, b ≥ 2 be integers. Let G be a graph on more than a vertices
satisfying

|N(S)| ≥ b, for every W ⊆ V (G) with
a

2
≤ |S| ≤ a.

Then G contains a cycle of length at least b + 1.

Given a discrete random variable X taking values in some range X , the entropy of X is given by

H(X) :=
∑
x∈X

−p(x) log2 p(x),

where p(x) := P(X = x) and we follow the convention that x log2 x = 0 for x = 0. Given discrete
random variables X1, X2, . . . , Xt, the joint entropy H(X1, X2, . . . , Xt) is defined to be the entropy of
the random vector (X1, X2, . . . , Xt). We denote by

H (X1, X2, . . . , Xt|Xt+1) := H (X1, X2, . . . , Xt+1) −H (Xt+1)

the conditional entropy of (X1, . . . , Xt) given Xt+1.
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Remark 3.6. Observe that if X1 determines X2, then by definition

H(X1|X2) = H(X1, X2) −H(X2) = H(X1) −H(X2). (2)

Furthermore, if X3 determines X2, then

H(X1, X2|X3) = H(X1, X2, X3) −H(X3) = H(X1, X3) −H(X3) = H(X1|X3). (3)

Finally, given a random vector X = (X1, . . . , Xt) and I ⊆ [t], we denote by XI the random vector
(Xi)i∈I .

We will require the following property of the entropy function due to Shearer (see, for example, [7,
Chapter 7]):

Lemma 3.7 (Shearer’s inequality). Let X1, . . . , Xt be discrete random variables and let A be a col-
lection of (not necessarily distinct) subsets of [t], such that each i ∈ [t] is in at least m members of A.
Then

H(X1, . . . , Xt) ≤
1

m

∑
A∈A

H(XA).

Throughout the rest of the paper, unless explicitly mentioned otherwise, we assume that C > 1
and G = □t

j=1G
(j) is a high-dimensional product graph, whose base graphs G(j) are connected and

dj-regular with 1 < |V (G(j)| ≤ C. Without loss of generality we can assume that C := C (G) =
maxj∈[t]{|V (G(j))|}.

We follow the notation regarding product graphs as in [30]. Given a product graph G = □t
j=1G

(j),

we call the G(j) the base graphs of G. Given a vertex u = (u1, u2, . . . , ut) in V (G) and j ∈ [t] we
call the vertex uj ∈ V (G(j)) the j-th coordinate of G. As is standard, we may still enumerate the
vertices of a given set M , such as M = {v1, . . . , vm} with vj ∈ V (G). Whenever confusion may arise,
we will clarify whether the subscript stands for the enumeration of the vertices of the set, or for their
coordinates. When G(j) is a graph on a single vertex, that is, G(j) = ({u},∅), we call it trivial (and
non-trivial, otherwise). We define the dimension of G = □t

j=1G
(j) to be the number of base graphs

G(j) of G which are non-trivial (we note that the dimension of G is not an invariant of G, and in fact
depends on the choice of the base graphs). We note that G is also regular, and we write d :=

∑t
j=1 dj ,

which can be seen to be the degree of G, and let n := |V (G)|. Furthermore, we assume in what follows
that ϵ > 0 is a small enough constant, and let p = 1+ϵ

d . We denote by Gp the graph obtained by
retaining every edge of G independently with probability p.

Given a subgraph H ⊆ G, we denote by d(H) the average degree of the subgraph H. Given two
subsets A,B ⊆ V (G), we denote by e(A,B) the number of edges between A and B. Finally, given a
vertex v ∈ V (G) and a subset A ⊆ V (G), we denote by dA(v) the number of neighbours of v in A.

We close this section with two lemmas about the structure of percolated product graphs. The first
one is about large matchings in a random edge-subset, and is a fairly straightforward generalisation
of Lemma 2.9 in [32].

Lemma 3.8. Let c1 > 0 and 0 < δ < 1 be constants. Let s ≥ c1d. Let F ⊆ E(G) be such that |F | ≥ s
and let q = δ

d . Then, there exists a constant c2 = c2(c1, δ) such that Fq, a random subset of F obtained
by retaining each edge independently with probability q, contains a matching of size at least c2s

d with
probability at least 1 − exp

(
− c2s

d

)
.

Proof. We may assume |F | = s. If the matching number of Fq is less than c2s
d , then Fq contains

a maximal (by inclusion) matching of size ℓ < c2s
d . Let us then consider the number of maximal

matchings in Fq of size ℓ < c2s
d .

There are at most
(|F |

ℓ

)
=
(
s
ℓ

)
maximal matchings of size ℓ in F . Given a fixed matching M of size ℓ

in F , in order for it to be a maximal matching in Fq its edges have to be retained, which happens with
probability qℓ, and there are no other edges in Fq which are disjoint from M . Since G is d-regular,
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there are at most 2ℓd edges which share a vertex with edges in M . Hence, there is a set of at least
|F | − 2ℓd edges which do not appear in Fq, which happens with probability at most

(1 − q)|F |−2ℓd ≤ exp

(
−δs(1 − 2c2)

d

)
.

Therefore, by the union bound, the probability that Fq contains a maximal matching of size ℓ < c2s
d

is at most

c2s
d∑

ℓ=0

(
s

ℓ

)(
δ

d

)ℓ

exp

(
−δs(1 − 2c2)

d

)
≤ exp

(
−δs(1 − 2c2)

d

)1 +

c2s
d∑

ℓ=1

(
eδs

dℓ

)ℓ
 .

Since s ≥ c1d and for c2 = c2(c1, δ) small enough in terms of c1 and δ, the ratio of consecutive terms(
eδs
dℓ

)ℓ
is at least 2, and hence the sum is dominated by the final term. Therefore,

exp

(
−δs(1 − 2c2)

d

)1 +

c2s
d∑

ℓ=1

(
eδs

dℓ

)ℓ
 ≤ 3 exp

(
−δs(1 − 2c2)

d

)(
eδ

c2

) c2s
d

≤ exp
(
−c2s

d

)
,

for small enough c2.

The second result bounds the typical number of high-degree vertices in Gp.

Lemma 3.9. Whp, there are at most n
d4

vertices of degree at least ln d in Gp.

Proof. Fix a vertex v ∈ V (G). The degree of v in Gp is distributed according to Bin(d, p). Thus, by
Lemma 3.1,

P
(
dGp(v) ≥ ln d

)
≤
(
e(1 + ϵ)

ln d

)ln d

≤ d−
ln ln d

2 .

Hence, the expected number of vertices in Gp with degree at least ln d is at most nd−
ln ln d

2 . Therefore,
by Markov’s inequality, whp there are at most n

d4
vertices of degree at least ln d in Gp.

4 Isoperimetric inequalities

The proofs of Theorems 1 and 2 will both use the idea of discrete entropy as a tool, but in quite
different ways. For the proof of Theorem 1, we require the following lemma bounding the entropy of
a random variable from below.

Lemma 4.1. Let C ≥ 2 be an integer and let X be a random variable supported on [C]. For each
i ∈ [C], let p(i) := P(X = i). Assume without loss of generality that p(1) ≤ p(2) ≤ . . . ≤ p(C). Then

C

C − 1
(1 − p(C)) ≤ H(X).

Proof. We prove the result by induction on C. For C = 2 we note that 0 ≤ p(1) ≤ p(2) and
p(1) + p(2) = 1, and so in particular p(1)p(2) ≤ 1

4 . It follows that

H(X) = p(1) log2
1

p(1)
+ p(2) log2

1

p(2)
≥ p(1)

(
log2

1

p(1)
+ log2

1

p(2)

)
= p(1)

(
log2

1

p(1)p(2)

)
≥ p(1) log2 4 ≥ 2p(1) = 2 (1 − p(2)) .
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Suppose that C > 2. Let Y be the indicator random variable of the event that X = C. Note that
because X determines Y , by Remark 3.6,

H(X) = H(X,Y ) = H(Y ) + H(X|Y ).

Let q(1) := P(Y = 1) = p(C) and q(0) := P(Y = 0) =
∑C−1

i=1 p(i).
If q(1) ≥ q(0), then by the induction hypothesis applied to Y we can conclude that

H(X) ≥ H(Y ) ≥ C

C − 1
(1 − q(1)) =

C

C − 1
(1 − p(C)) ,

as claimed.
Otherwise, again by the induction hypothesis applied to Y , we have that

H(Y ) ≥ C

C − 1
(1 − q(0)) .

Thus, we obtain that

H(X) = H(Y ) + H(X|Y )

≥ C

C − 1
(1 − q(0)) + P(Y = 1)H(X|Y = 1) + P(Y = 0)H(X|Y = 0).

However, (X|Y = 1) is deterministically C, and so the second term is 0, and by the induction
hypothesis applied to (X|Y = 0), which is supported on [C − 1], we can conclude that

H(X|Y = 0) ≥ C − 1

C − 2

(
1 − p(C − 1)

q(0)

)
.

It follows that

H(X) ≥ C

C − 1
(1 − q(0)) +

C − 1

C − 2
q(0)

(
1 − p(C − 1)

q(0)

)
=

C

C − 1
− C

C − 1
q(0) +

C − 1

C − 2
q(0) − C − 1

C − 2
p(C − 1)

≥ C

C − 1
(1 − p(C)) .

An immediate corollary of Lemma 4.1 is the following inequality which is key to the proof of Theorem
1.

Corollary 4.2. Let C ≥ 2 be an integer and let 0 ≤ k1 ≤ · · · ≤ kC and k =
∑C

i=1 ki. Then

C

C − 1
(k − kC) +

C∑
i=1

ki log2 ki ≤ k log2 k.

Proof. Let X be a random variable supported on [C] with p(i) = P(X = i) = ki
k for each i ∈ [C].

Then, by the previous lemma,

C

C − 1

(
1 − kC

k

)
≤ H(X) =

C∑
i=1

ki
k

log2
k

ki

=
C∑
i=1

ki
k

log2 k −
C∑
i=1

ki
k

log2 ki

= log2 k −
C∑
i=1

ki
k

log2 ki,

which rearranges to give the claimed inequality.
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As will be seen in the proof of Theorem 1, the inequality proven in Corollary 4.2 allows us to
inductively bound the density of certain sets by considering an appropriate collection of projections.
Using the regularity of the graph we can relate this density bound to an isoperimetric inequality.

Proof of Theorem 1. Let k := |S|, and we may assume that k ≥ 2. We claim that∑
v∈S

dG[S](v) ≤ (C − 1)k log2 k. (4)

Then, assuming that (4) holds, since G is d-regular we obtain that

|∂S| = |S| (d− d(G[S])) ≥ k(d− (C − 1) log2 k),

as required.
We prove (4) by induction on the dimension t of the product graph G. For t = 1, since 2 ≤ k ≤ C,

we indeed have that ∑
v∈S

dG[S](v) ≤ k(k − 1)

2
≤ (C − 1)k log2 k.

Assume that (4) holds for all graphs of dimension t′ < t. We may assume that, without loss of
generality, V (G(1)) = {v1, . . . , vC}. Let H1, . . . ,HC be pairwise disjoint projections of G, such that
Hi is obtained by fixing the first coordinate of G to be vi ∈ V (G(1)). Let Si = S ∩ V (Hi) and
set ki := |Si|. Note that we have

∑C
i=1 ki = k, and we may assume without loss of generality that

k1 ≤ k2 ≤ . . . ≤ kC . Since each Hi has dimension t−1, by the induction hypothesis, for all 1 ≤ i ≤ C,∑
v∈Si

dG[Si](v) =
∑
v∈Si

dHi[Si](v) ≤ (C − 1)ki log2 ki.

Furthermore, observe that each vertex in Hi has at most one neighbour in each Hj for j ̸= i. In
particular, since k1 ≤ k2 ≤ . . . ≤ kC , it follows that e(Si, Sj) ≤ ki whenever i ≤ j. Thus,

∑
v∈S

dG[S](v) =

C∑
i=1

∑
v∈Si

dG[Si](v) +
∑
j ̸=i

e(Si, Sj)


≤

C∑
i=1

(C − 1)ki log2 ki + (C − i)ki +
∑
j<i

kj


≤

C∑
i=1

(C − 1)ki log2 ki + (C − i)ki + (i− 1)ki−1

≤ C (k − kC) + (C − 1)
C∑
i=1

ki log2 ki.

Therefore, we have by the above and by Corollary 4.2 that

∑
v∈S

dG[S](v) ≤ (C − 1)

(
C

C − 1
(k − kC) +

C∑
i=1

ki log2 ki

)
≤ (C − 1)k log2 k,

as claimed.

The proof of Theorem 2 will also utilise the entropy function, specifically Shearer’s Lemma (Lemma
3.7) in a key way.
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Proof of Theorem 2. Given S ⊆ V (G), let X be a uniformly distributed random variable on S, so
that H(X) = log2 |S|. Observe that we may consider X as a random vector X = (X1, . . . , Xt), where
the random variables Xi are given by the coordinates of the vertex X ∈ V (G(1)) × · · · × V (G(t)). For
each i ∈ [t] let A−i := [t] \ {i} and let us set

X−i := XA−i = (X1, . . . , Xi−1, Xi+1, . . . , Xt).

Note that each i ∈ [t] appears in exactly t− 1 members of the family A = {A−i : i ∈ [t]}.
Thus, by Lemma 3.7,

H(X) ≤ 1

t− 1

t∑
i=1

H(X−i). (5)

Therefore, observing that X determines X−i and Xi, we have by the above and by Remark 3.6 that

H(X)
(5)

≥
t∑

i=1

(H(X) −H(X−i))
(2)
=

t∑
i=1

H(X|X−i) ≥
t∑

i=1

H(Xi, X−i|X−i)
(3)
=

t∑
i=1

H(Xi|X−i). (6)

By definition,

H(Xi|X−i) =
∑
x−i

P(X−i = x−i)H(Xi|X−i = x−i) =:
∑
x−i

w(x−i), (7)

where the sum ranges over the vectors x−i in the range of X−i.
Given such a point x−i, there are 1 ≤ r(x−i) ≤ Ci := |V (G(i))| vertices in S whose projection is

x−i, where P(X−i = x−i) = r(x−i)
|S| . Then, since X is uniformly distributed on S,

H(Xi|X−i = x−i) = log2 r(x−i).

It follows that for each x−i,

w(x−i) =
r(x−i) log2 r(x−i)

|S|
≤ r(x−i) log2Ci

|S|
=: w′(x−i),

with equality if and only if r(x−i) = Ci.
However, since each G(i) is connected, for each x−i in the range of X−i where r(x−i) < Ci there is at

least one edge in the edge-boundary of S in direction i. In particular, there are at most |∂i(S)| many
vectors x−i such that r(x−i) < Ci, where ∂i(S) denotes the edges in the edge-boundary of S in the
i-th direction, that is, that are obtained by changing the i-th coordinate of some v ∈ S. Furthermore,
for each x−i with r(x−i) < Ci,

w′(x−i) − w(x−i) ≤ w′(x−i) ≤
(C − 1) log2C

|S|
.

Thus, by (7)

H(Xi|X−i) =
∑
x−i

w(x−i)

=
∑
x−i

w′(x−i) +
∑
x−i

r(x−i)<Ci

(
w(x−i) − w′(x−i)

)

≥ log2Ci − |∂i(S)|(C − 1) log2C

|S|
. (8)
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Therefore, by (6) and (8),

log2 |S| = H(X) ≥
t∑

i=1

H(Xi|X−i)

≥
t∑

i=1

(
log2Ci − |∂i(S)|(C − 1) log2C

|S|

)
≥ log2 |V (G)| − |∂(S)|(C − 1) log2C

|S|
.

Rearranging, we obtain

|∂(S)|
|S|

≥ log2 |V (G)| − log2 |S|
(C − 1) log2C

=
1

C − 1
logC

(
|V (G)|
|S|

)
,

as claimed.

5 Expansion and Expanders

We begin with the proof of the first part of Theorem 4. We note that the proof includes several
elements similar to the proof of Lemma 3.8.

Proof of Theorem 4(a). We will assume without loss of generality that c ≤ ϵ4. Given 7Cd
ϵ2

≤ k ≤ nϵ5 ,
let Ak be the event there exists a set S ⊆ V (L1) of order k such that S is connected in Gp and
|NGp(S)| < c|S|. Since S is connected in Gp it contains a spanning tree. Therefore, if Ak occurs, then
there is some tree T whose vertex set is S, all of whose edges are in Gp. By Lemma 3.3, there are at
most n(ed)k−1 ways to choose the tree T , and the edges of T are present in Gp with probability pk−1.

Now, consider the auxiliary random bipartite graph Γ(S, p), whose one side is S, the other side is
NG(S), and we retain every edge of G between S and NG(S) in Γ(S, p) independently with probability
p. We then have that |NGp(S)| ≥ ν (Γ(S, p)), where ν(H) is the matching number of H. Thus, it
suffices to bound the probability that a maximum matching in Γ(S, p) is smaller than ϵ4k, that is,

P (Ak) ≤
∑

S⊆V (G),|S|=k
T a tree,V (T )=S

P
(
(E(T ) ⊆ E(Gp)) ∧

(
ν (Γ(S, p)) ≤ ϵ4k

))
≤ n(edp)k−1P

(
ν (Γ(S, p)) ≤ ϵ4k

)
. (9)

Let us first bound the probability that ν (Γ(S, p)) = i. This is, at most, the probability that Γ(S, p)
has an inclusion-maximal matching of size i. We have at most

(
kd
i

)
ways to choose a matching M

of size i, and we then need to include the edges of the matching, which happens with probability pi.
Due to the maximality of M , every edge of G between S and NG(S) disjoint from M is not in Γ(S, p).
Thus, we have at least |∂(S)| − 2id edges that do not fall into Γ(S, p). Since n ≤ Cd, by Theorem 1

|∂(S)| ≥ k (d− (C − 1) log2 k) ≥ k
(
d− (C − 1) · log2C · ϵ5d

)
≥ (1 − ϵ4)kd.

Hence, by the union bound,

P (ν (Γ(S, p)) = i) ≤
(
kd

i

)
pi(1 − p)(1−ϵ4)kd−2id.
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All in all, we obtain that

P (Ak) ≤ n(ed)k−1pk−1
ϵ4k∑
i=0

(
kd

i

)
pi(1 − p)(1−ϵ4)kd−2id

= n(edp)k−1(1 − p)(1−ϵ4)kd
ϵ4k∑
i=0

(
kd

i

)
pi(1 − p)−2id

≤ n
(
(1 + ϵ) exp

(
1 − (1 + ϵ)(1 − ϵ4)

))k1 +
ϵ4k∑
i=1

(
k(1 + ϵ)e

i

)i

exp (2(1 + ϵ)i)


≤ n

(
(1 + ϵ) exp

(
−ϵ + 2ϵ4

))k1 +
ϵ4k∑
i=1

(
e4k

i

)i
 .

Observe that the ratio of consecutive terms of
(
e4k
i

)i
is at least 2, and hence the sum is dominated

by the last term. That is,

P (Ak) ≤ 2n
(
(1 + ϵ) exp

(
−ϵ + 2ϵ4

))k (e4

ϵ4

)ϵ4k

≤ 2n
(
(1 + ϵ) exp

(
−ϵ + ϵ3

))k
.

Using 1 + x ≤ exp
(
x− x2

3

)
for small enough x > 0, together with lnn ≤ ln c · d (since n ≤ Ct ≤ Cd)

and our assumption that k ≥ 9 ln c·d
ϵ2

, we obtain that

P (Ak) ≤ 3n exp

(
−ϵ2k

4

)
= o(1/n).

Taking a union bound over the less than n different values of k completes the proof.

Throughout the rest of the section, we assume that ϵ > 0 is a small enough constant and let
δ = δ(ϵ) ≤ ϵ3 be a positive constant. We define p2 = δ

d and let p1 be such that (1−p1)(1−p2) = 1−p.
We form Gpi , i ∈ {1, 2}, by including every edge of G independently and with probability pi. We set
G1 = Gp1 and G2 = Gp2 ∪G1, so that G2 has the same distribution as Gp. We note that by Theorem
1.2, whp Gp1 has a unique giant component, which we denote by L′

1, and that whp Gp has a unique
giant component which we denote by L1, where L′

1 ⊆ L1.

5.1 Expansion of subsets of the early giant

We begin by showing likely expansion properties of subsets of the early giant. We will require the
following density result.

Lemma 5.1 (Lemma 4.7 in [29], rephrased). There exists a constant c = c(ϵ) > 0 such that whp
every v ∈ V (G) is at distance (in G) at most two from at least cd2 vertices in L′

1.

The following lemma, which uses Lemma 5.1 together with an edge-isoperimetric inequality for G
(Theorem 2) and a result on large matchings in a random edge-subset of G (Lemma 3.8), gives a good
bound on the probability that subsets of the early giant expand well after sprinkling.

Lemma 5.2. There exists a constant c = c(δ) > 0 such that the following holds. Let A ∪B = V (L′
1)

be a partition of V (L1)
′ with min {|A|, |B|} = k. Then, with probability at least

1 − exp

(
−
ck ln

(
n
k

)
d

)
,

there exists a family of
ck ln(n

k )
d vertex-disjoint A−B paths of length at most five in Gp2.
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Proof. By Lemma 5.1, there exists a constant c′ > 0 such that whp every v ∈ V (G) is at distance (in
G) at most two from at least c′d2 vertices in L′

1. We continue assuming this holds deterministically.
Throughout the proof, we will introduce constants c1 up to c8, under the assumption that each ci

is sufficiently small in terms of δ and all cj with j < i.
By assumption, every v ∈ V is at distance at most two from at least c′d2 vertices in L′

1. Let us now
define four sets inductively:

A1 :=

{
v ∈ V \ (B ∪A) : dA(v) ≥ c′d

10

}
,

B1 :=

{
v ∈ V \ (B ∪A ∪A1) : dB(v) ≥ c′d

10

}
,

A2 :=

{
v ∈ V \ (B ∪A ∪A1 ∪B1) : dA1(v) ≥ c′d

10

}
,

B2 :=

{
v ∈ V \ (B ∪A ∪A1 ∪B1 ∪A2) : dB1(v) ≥ c′d

10

}
.

Figure 1: An illustration of the sets and matchings in Lemma 5.2. The matchings M1 through M5,
in purple, are ordered according to the order they are constructed in the proof. In dark
blue, one can see the properties of vertices in A2, B2, A1 and B1, with respect to their set
of neighbours in A1, B1, A and B, respectively. Observe that if the first matching M1 had
many endpoints in A′ \ A2 (or B′ \ B2), we could continue in the same manner with fewer
matchings required.

Let us set A′ = A∪A1∪A2, and B′ = B∪B1∪B2. Observe that V = A′⊔B′. Indeed, it is clear by
the definition of the sets that A′∩B′ = ∅. Suppose towards contradiction that v /∈ A′∪B′, and let us
consider the number of vertices in L′

1 that are the endpoints of paths of length at most two starting
from v. There are at most d vertices in L′

1 that are neighbours of v. As for paths of length exactly
two, they are of the form vux. If u ∈ A1, then since v /∈ A′, and in particular v /∈ A2, we have at most
c′d2

10 possible choices of x. Similarly, if u ∈ B1, then since v /∈ B′, and in particular v /∈ B2, we have

at most c′d2

10 possible choices of x. Finally, if u /∈ A1 ∪ B1, since v /∈ A1 ∪ B1, we have at most c′d2

5

possible choices of x. Altogether, we have at most 2c′d2

5 + d < c′d2 vertices in L′
1 that are at distance

at most two from v — a contradiction.
Since A′ ⊔B′ = V , by Theorem 2,

e(A′, B′) ≥ k

C − 1
logC

(n
k

)
≥ c1k ln

(n
k

)
=: s.
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By Lemma 3.8, with probability at least 1 − exp
(
− c2s

d

)
, there exists a matching of size at least c2s

d
between A′ and B′ in Gp2 . We continue under the assumption that at least c2s

3d of the edges in the
matching have endpoints in both A2 and B2, as the other cases follow more easily, with fewer matchings
required (see Figure 1 for an illustration). Let us denote these endpoints of the matching by Ã2 and
B̃2, respectively.

Now, every v ∈ A2, and in particular in Ã2, has at least c′d
10 neighbours in A1. Hence, with probability

at least 1 − exp
(
− c2s

d

)
we have a set of at least c2s

3d · c′d
10 = c3s edges between Ã2 and A1. Thus, by

Lemma 3.8, with probability at least 1−exp
(
− c4s

d

)
there exists a matching of size at least c4s

d between

Ã2 and A1. Denote by Ã2 and Ã1 the corresponding vertices in Ã2 and A1 of this matching. Since
every v ∈ A1, and in particular in Ã1, has at least c′d

10 neighbours in A, with probability at least

1 − exp
(
− c4s

d

)
there are at least c4s

d · c′d
10 = c5s edges between Ã1 and A. Once again, by Lemma 3.8,

with probability at least 1 − exp
(
− c6s

d

)
, there exists a matching of size at least c6s

d between Ã1 and

A. Denote the endpoints of this matching in A by Ã. Altogether, we obtain with probability at least
1 − exp

(
− c7s

d

)
a family of at least c7s

d vertex-disjoint paths of length three between B̃2 ⊆ B2 and

Ã ⊆ A.
Working similarly in B′, we define B̃1 ⊆ B1 and B̃ ⊆ B, and find with probability at least 1 −

exp
(
− c8s

d

)
a family of at least c8s

d vertex-disjoint paths of length at most five, starting from Ã ⊆ A,

going through Ã1 ⊆ A1, Ã2 ⊆ A2, B̃2 ⊆ B2, and B̃1 ⊆ B1 to B̃ ⊆ B (see Figure 1 for an illustration).
Choosing c ≤ c8 completes the proof.

The following lemma is then key to the proof of Theorem 3. We effectively enumerate the number
of subsets of L′

1 which do not expand well using a novel double-counting argument to enumerate them
in terms of their boundaries, which by assumption are significantly smaller than the sets themselves.
This allows us to apply the probability bound from Lemma 5.2 to conclude that whp all subsets of
L′
1 expand relatively well after sprinkling.

Lemma 5.3. There exists a constant c = c(δ) > 0 such that whp for any S ⊆ V (L′
1) the following

hold.

(a) If n
d ≤ |S| ≤ 3ϵn

2 , then either

|NL′
1
(S)| ≥ c|S|

d ln d
,

or there exists a family of at least c|S|
d vertex disjoint paths of length at most five between S and

V (L′
1) \ S in Gp2;

(b) If |S| = ω(d) and |S| ≤ 3ϵn
2 , then either

|∂L′
1
(S)| ≥

c|S| ln
(

n
|S|

)
d ln d

,

or there exists a family of at least c|S|
d vertex disjoint paths of length at most five between S and

V (L′
1) \ S in Gp2.

We note that the assumption that |S| = ω(d) in 5.3(b) can be strengthened, however it suffices for
our usage and allows for a simpler proof.

Proof. We argue via two-round exposure, beginning by exposing Gp1 . By Lemma 5.1, whp every
v ∈ V (G) is at distance at most two from at least c1d

2 vertices in L′
1, for some c1 = c1(ϵ, δ) > 0.

Finally, by Lemma 3.9, whp there are at most n
d4

vertices with degree larger than ln d. We continue
assuming that these properties hold deterministically.

We begin with part (a). Given n
d ≤ |S| ≤ 3ϵn

2 , let k := |S| and let b1 := |NL′
1
(S)|. As we aim to

bound the expansion of the set S, we may assume that b1 ≤ ck
d ln d , as otherwise the claim holds. In

order to facilitate a union bound argument, let us estimate the number of subsets S of size k in L′
1
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such that |NL′
1
(S)| = b1. Let e1 = ∂L′

1
(N(S)). Since there are at most n

d4
vertices with degree larger

than ln d, we have that e1 ≤ n
d3

+ b1 ln d. Since L′
1 is connected, there are at most e1 + 1 components

in L′
1 \ NL′

1
(S). Furthermore, since S has no neighbours outside NL′

1
(S), it must be the union of

components in L′
1 \ NL′

1
(S). Hence, the number of ways to choose such an S is at most

(
n
b1

)
· 2e1+1.

Thus, there are at most

ck
d ln d∑
b1=1

(
n

b1

)
2

n
d3

+b1 ln d+1 ≤

(
en
ck

d ln d

) ck
d ln d

2
2ck
d

≤ exp

(
ck

d ln d

(
ln

(
end ln d

ck

)
+ 2 ln d

))
≤ exp

(
2ck

d ln d

(
ln
(n
k

)
+ 2 ln d

))
≤ exp

(
6ck

d

)
sets S ⊆ V (L′

1) with |NL′
1
(S)| < ck

d ln d , where we used the fact that k ≥ n
d in the first and last

inequalities.
We now turn to facilitate a union bound argument for part (b). Given S ⊆ (L′

1) with |S| = k ≤ 3ϵn
2 ,

we may assume that |∂L′
1
(S)| < ck ln(n

k )
d ln d , as otherwise the claim holds. Let us then estimate the number

of sets S such that |∂L′
1
(S)| < ck ln(n

k )
d ln d .

Let e2 := |∂L′
1
(S)| < ck ln(n

k )
d ln d and let b1 := |NL′

1
(S)| as before. If we write m for the number of

components in Gp1 [S], then, since L′
1 is connected, m ≤ e2 + 1. Moreover, since S has no neighbours

outside NL′
1
(S), it must be the union of precisely m components of L′

1 \NL′
1
(S).

Hence, since L′
1 \NL′

1
(S) has at most n components, the number of ways to choose such an S is at

most
(
n
b1

)(
n
m

)
. Thus, since b1 ≤ e2, there are at most

e2∑
b1=1

e2+1∑
m=1

(
n

b1

)(
n

m

)
≤

 en
ck ln(n

k )
d ln d

2
ck ln(n

k )
d ln d

≤ exp

(
2ck ln

(
n
k

)
d ln d

ln

(
end ln d

ck ln
(
n
k

)))

≤ exp

(
2ck

d
·

ln
(
n
k

)
ln d

·

(
ln
(n
k

)
+ 2 ln

(
d ln d

ln
(
n
k

))))

≤ exp

(
3ck

d

)
sets S ⊆ V (L′

1) with |∂L′
1
(S)| < ck ln(n

k )
d ln d .

Fix S ⊆ V (L′
1) with |S| = k. By Lemma 5.2, with probability at least 1 − exp

(
− c1k ln(n

k )
d

)
, there

exists a family of at least
c1k ln(n

k )
d vertex disjoint paths of length at most five between S and V (L′

1)\S
in Gp2 , where c1 is the constant from Lemma 5.2. We note that we used our assumption that every
v ∈ V (G) is at distance at most two from at least c′d2 vertices in L′

1 in order to invoke Lemma 5.2.
Recalling that k ≤ 3ϵn

2 , the probability there is a set S violating the statement of part (a) is then
at most

exp

(
6ck

d
−

c1k ln
(
n
k

)
d

)
≤ exp

(
k

d
(6c− c1)

)
.

Once again, the probability that there is a set S violating the statement of part (b) is at most

exp

(
3ck

d
− c1k

d

)
= exp

(
k

d
(3c− c1)

)
.

Under our assumption that k := |S| = ω(d) and for c small enough with respect to c1, by the union
bound the probability having a set S violating the statement of part (a) or (b) is o(1).
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5.2 Structure of subsets in the residue

As we mentioned, we also require some control over the typical structure of subsets in the residue
L1−L′

1 and their likely expansion into the early giant after sprinkling. Let us begin with the following
lemma, showing how the vertices in L′

1 are embedded in L1, which generalises Lemma 3.2 in [32].
Given a vertex v ∈ V (L′

1), let Cv be the set of vertices which are contained in components of L1−L′
1,

adjacent to v in G2. Also, given a subset S ⊆ L′
1, we denote by CS = ∪v∈SCv.

Lemma 5.4. There exists a constant K2 := K2(C, ϵ) > 0 such that whp |Cv| ≤ K2d for every
v ∈ V (L′

1).

Proof. Note that G2 has the same distribution as Gp, and that p1 = 1+ϵ−δ+o(1)
d . Furthermore, observe

that by Theorem 1.2, there exists a constant K1 := K1(C, ϵ) such that whp every component of Gp1 ,
besides L′

1, is of order at most K1d (although technically the K1 given by Theorem 1.2 might depend
on δ, it is easy to check from the proof that, since δ ≪ ϵ, we may choose K1 only as a function of ϵ
and C).

Suppose that there is some v ∈ V (L′
1) such that |Cv| ≥ K2d. Note that Cv ∪ {v} is connected

in G2, and that Cv is the disjoint union of some sets {C1, . . . , Cr} where Ci is the vertex set of
some component of G1, each of which has order at most K1d. It follows there must be some subset
Ĉ ⊆ Cv such that Ĉ ∪ {v} is connected in G2, Ĉ is the union of some subset of {C1, . . . , Cr} and
K2d ≤ |Ĉ| ≤ (K2 + K1)d.

In particular, there is some spanning tree T of Ĉ ∪ {v}, all of whose edges are in G2, and no edge
in the edge-boundary of V (T ) \ {v} is present in G1.

Let us bound the probability that such a tree of order k exists in G2 for each K2d + 1 ≤ k ≤
(K2 + K1)d + 1. By Lemma 3.3, there are at most n(ed)k−1 such trees. A spanning tree T has k − 1
edges in G2, which happens with probability at most pk−1. Furthermore, since |V (T )\{v}| = k−1, by
Theorem 1 there are at least (k−1) (d− (C − 1) log2(k − 1)) edges in the edge-boundary of V (T )\{v},
none of which are in G1, which happens with probability at most (1 − p1)

(k−1)(d−(C−1) log2(k−1)). Whilst
these two events are not necessarily independent, they are negatively correlated. Thus, by the union
bound, the probability that such a tree of order k exists in G2 is at most

n(ed)k−1pk−1(1 − p1)
(k−1)(d−(C−1) log2(k−1)).

Therefore, the probability that such a tree exists for k ∈ I := [K2d + 1, (K2 + K1)d + 1] is at most

n
∑
k∈I

exp
(
(k − 1)

(
1 + ln(1 + ϵ) − (1 + ϵ− 2ϵ3)

))
≤ n

∑
k∈I

exp
(
−ϵ3(k − 1)

)
= o(1),

where we used the fact that ln(1+ϵ) ≤ ϵ−3ϵ3 for small enough ϵ > 0, and we assume that K2 ≥ 2 lnC
ϵ3

,
recalling that n ≤ Ct ≤ Cd and hence lnn ≤ ln c · d.

In order to obtain our results, we will require further information about the likely expansion of
subsets in the residue into the early giant. We will require the following density lemma.

Lemma 5.5 (Lemma 4.6 of [29], rephrased). There exists a constant c2 > 0 such that for any fixed
constants K, c1 > 0, whp every subset M ⊆ V (G), with |M | = Kd and G[M ] connected, contains at
most c1d vertices v ∈ M such that |NG(v) ∩ V (L′

1)| < c2d.

We will make use of the following probabilistic lemma, which utilises Lemma 3.4.

Lemma 5.6. There exist positive constants K,K ′ := K ′(K) and c := c(δ) such that the following
holds. Let S ⊆ V (L′

1) and B ⊆ V (G) \ V (L′
1) be such that |S ∪ B| ≥ Kd and G[S ∪ B] is connected

and |B| ≥ K ′|S|. Then, there exists a matching in Gp2 of size at least c|B| between B and V (L′
1) \ S

with probability at least 1 − exp (−c|B|).

Proof. By Lemma 5.5, there exists a constant c2 > 0 such that for any fixed constants K, c1 > 0, whp
every subset M ⊆ V (G), with |M | = Kd and G[M ] connected, contains at most c1d vertices v ∈ M
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such that |NG(v) ∩ V (L′
1)| < c2d. Let us fix some K ≫ c1 and continue assuming the above holds

deterministically for the corresponding c2.
Since G[S ∪ B] is connected, it has a spanning tree T . By Lemma 3.4, applied with ℓ = Kd, there

exist subsets A1, . . . , As ⊆ V (T ) satisfying properties (a)–(d) of that lemma. In particular, since for
all i ∈ [s] we have Kd ≤ |Ai| ≤ 3Kd, by Theorem 1 we have that e(Ai) ≤ (C − 1)3Kd log2(3Kd) ≤
6CKd log2 d. Thus, by our assumption, for all i ∈ [s] we have that

eG(Ai, L
′
1 \Ai) ≥ (Kd− c1d)c2d− 12CKd log2 d.

Thus, defining Âi := Ai \
(⋃

j∈([s]\{i})Aj

)
, we have that e(Âi, L

′
1 \ Âi) ≥ e(Ai, L

′
1 \ Ai) − d, and the

edge sets E(Â1, L
′
1 \ Â1), . . . , E(Âs, L

′
1 \ Âs) are disjoint. Hence, since K is sufficiently large with

respect to c1, we can choose c3 := c3(c1, c2) > 0 small enough such that

e(S ∪B,L′
1 \ (S ∪B) ≥ |S| + |B|

3Kd
((Kd− c1d)c2d− 12CKd log2 d) − |S| + |B|

Kd
· d ≥ (|S| + |B|) c3d.

Therefore, as long as K ′ := K ′(c1, c2) is large enough, there exists c4 := c4(c1, c2) > 0 such that

e(B,L′
1 \ S) ≥ |B|c3d− 2|S|d ≥

(
c3 −

2

K ′

)
|B|d ≥ c4|B|d.

Thus, by Lemma 3.8, there exists a constant c(δ) > 0 such that with probability at least 1−exp (−c|B|)
there exists a matching M in Gp2 of size at least c|B| between B and L′

1 \ S.

From Lemmas 5.6 and 5.5, we can derive the following statement, complementing Lemma 5.3.

Lemma 5.7. There exist constants K,K ′, c > 0 such that whp, for every S1 ⊆ V (L′
1), S1 ̸= ∅, and

for every S2 ⊆ CS1 such that |S2| ≥ K ′|S1|, |S1 ∪ S2| ≥ Kd and G[S1 ∪ S2] connected, the following
holds. Either

|NL′
1
(S1)| ≥

c|S2|
d

, or |NG2(S1 ∪ S2)| ≥
c|S2|
d

.

Proof. We begin by exposing Gp1 , and let us fix ∅ ̸= S1 ⊆ V (L′
1). Let us now expose all the edges

in Gp2 which are either inside V (G) \ V (L′
1) or lie between S1 and V (G) \ V (L′

1). Denote by G′
1 the

graph G1 together with these edges, noting that G1 ⊆ G′
1 ⊆ G2 and that G′

1 determines CS1 .
Let us choose c1 > 0 a small enough constant, and choose K a sufficiently large constant. Then

by Lemma 5.5 there exists c2 > 0 such that whp every connected subset M ⊆ V (G) of size Kd has
at most c1d vertices with less than c2d neighbours in L′

1. Furthermore, by Lemma 5.6 there exist
constants K ′, c′ > 0 (from Lemma 5.5) that the conclusion of the lemma holds for K, c1, c2 and S1,
noting that the event in the lemma depends only on edges in Gp2 between CS1 and V (L′

1) \ S1, which
we have not yet exposed. We further note that we may choose K ′ sufficiently large. We continue
assuming these properties hold deterministically.

Let us fix S2 ⊆ CS1 satisfying the conditions of the lemma and let k1 := |S1| and k2 := |S2|. By
Lemma 5.6 the probability that S2 has less than c′|S2| neighbours in V (L′

1) \ S1 in Gp2 is at most
exp (−c′|S2|). Furthermore, the event that S2 has at least c′|S2| neighbours in V (L1)\S1 in Gp2 clearly

implies that |NG2(S1 ∪ S2)| ≥ c|S2|
d , for any constant c > 0.

Let us now facilitate a union bound argument. Let us choose c := c(C, c′) sufficiently small and
suppose that b1 := |NL′

1
(S1)| < ck2

d , as otherwise the claim holds. We have at most n possible values
of k2. Let us write m for the number of components in G1 \NL′

1
(S1). Since L′

1 is connected and G is
d-regular, we have m ≤ d · b1 + 1.

Hence, since S1 has no neighbours in G1 outside NL′
1
(S1), it must be the union of some components

of G1 \NL′
1
(S1), and so the number of ways to choose such an S1 is at most

(
n
b1

)
2m. Thus, there are

at most

n

ck2
d∑

b1=1

ck2∑
m=1

(
n

b1

)
2m ≤ n

(
en
ck2
d

) ck2
d

· 2ck2+1 ≤ n exp

(
ck2
d

(
ln

(
end

ck2

)
+ 2d

))
≤ exp (5 lnC · ck2)
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sets S1 ⊆ V (L′
1) with |NL′

1
(S1)| < ck2

d , where we used the assumption that lnn ≤ lnC · d and that
k2 ≥ d, since we may choose K ≥ 2 and K ′ large enough.

Now, let us consider the number of ways to choose S2 ⊆ CS1 , noting that having determined S1,
choosing S1 ∪ S2 determines S2. We may assume that b2 := |NG′

1
(S1 ∪ S2)| ≤ ck2

d , since G′
1 ⊆ G2.

Since G′
1[S1∪S2] is connected, and has all its neighbours in NG′

1
(S1∪S2), exactly one of the at most n

components in G′
1 \NG′

1
(S1 ∪S2) is S1 ∪S2. Since S1 is fixed, we can identify this component. Hence,

the number of ways to choose S1 ∪ S2 with |NG′
1
(S1 ∪ S2)| ≤ ck2

d is at most the number of ways to

choose a set of size at most ck2
d in V (G′

1). That is at most

ck2
d∑

b2=1

(
n

b2

)
≤

(
en
ck2
d

) ck2
d

≤ exp (4 lnC · ck2) .

Therefore, the probability of an event violating the statement of the lemma is at most

exp (9 lnC · ck2) exp
(
−c′k2

)
= o(1),

for c small enough in terms of C and c′.

5.3 Proof of Theorems 4(b) and 3(b)

Proof of Theorem 4(b) and 3(b). Let S1 = S ∩ V (L′
1) and S2 = S ∩ (V (L1) \ V (L′

1)). Let c5.3 be the
constant whose existence is asserted in Lemma 5.3, and let K5.7,K

′
5.7 and c5.7 be the constants whose

existence is asserted in Lemma 5.7. Let c > 0 be sufficiently small in terms of c5.3, K
′
5.7 and c5.7.

4(b) Recall that we assume that K5.7d ≤ nϵ5 ≤ |S| ≤ 3ϵn
2 and Gp[S] is connected.

Suppose |S1| ≥ |S2|
K′

5.7
. Then, |S1| = Ω(d ln d) = ω(d) and so by Lemma 5.3(b) whp either

|∂L′
1
(S1)| ≥

c5.3|S1| ln
(

n
|S1|

)
d ln d

≥
c|S| ln

(
n
k

)
d ln d

,

or there is a family of at least c5.3|S1|
d ≥ c|S|

d vertex-disjoint paths from S1 to V (L′
1) \ S1 ⊆

V (L1) \ S. However, since each such path contributes a unique vertex to the neighbourhood of

S in V (L1) (the first vertex along the path which is not in S), in the latter case |NGp(S)| ≥ c|S|
d ,

and so the result follows.

Otherwise, |S2| ≥ K ′
5.7|S1| and so by Lemma 5.7 whp either |NL′

1
(S1)| ≥ c5.7|S2|

d , or |NL1(S)| ≥
c5.7|S2|

d . In the first case, |∂L1(S)| ≥ |NL′
1
(S1)| ≥ c|S|

d and, similarly to before, in the second case

|∂L1(S)| ≥ |NL1(S)| ≥ c|S|
d .

3(b) We now assume that K5.7d ≤ ϵ2n ≤ |S| ≤ 3ϵn
2 . Note that, since

∣∣|V (L1)| − |V (L′
1)|
∣∣ ≤ 4ϵ3n, it

follows that |S1| ≥ 2|S|
3 . Thus, by Lemma 5.3(a), whp either

|NL′
1
(S1)| ≥

c5.3|S1|
d ln d

≥ c|S|
d ln d

,

or there is a family of at least c5.3|S1|
d ≥ c|S|

d vertex-disjoint paths from S1 to V (L′
1) \ S1 ⊆

V (L1) \S, and each such path contributes a unique vertex to the neighbourhood of S in L1. As

before, in either case |NGp(S)| ≥ c|S|
d ln d .

The proof of Theorem 5 will follow from key ideas from [51] together with our expansion result on
large sets (Theorem 3(b)).

22



Proof of Theorem 5. Let c be the constant whose existence is asserted in Theorem 4. Let M ⊆ V (L1)

be a maximal set such that |M | ≤ ϵn
10 and |NGp(M)| ≤ c|M |

d ln d . Let H = L1 −M . Assume that there is

some subset B ⊆ V (H) such that |B| ≤ |V (H)|
2 and |NH(B)| ≤ c|B|

d ln d . Then,

|NGp(M ∪B)| ≤ |NGp(M)| + |NH(B)| < c|M |
d ln d

+
c|B|
d ln d

=
c|M ∪B|
d ln d

.

Thus, by the maximality of M , we obtain that |M ∪B| ≥ ϵn
10 . However, by Theorem 3(b), every subset

S ⊆ V (L1) with ϵ2n ≤ |S| ≤ 3ϵn
2 has |NGp(S)| ≥ c|S|

d ln d . Hence, |M ∪B| ≥ 3ϵn
2 .

On the other hand, by our choice of B and M , we have that

|M ∪B| ≤ |M | +
|V (L1)| − |M |

2
=

|V (L1)| + |M |
2

≤ |V (L1)|
2

+
ϵn

20
.

By Theorem 1.2, whp |V (L1)| ≤ 2ϵn, and hence |M ∪ B| ≤ 21ϵn
20 < 3ϵn

2 — a contradiction. Hence,
whp H has the desired expansion properties. Furthermore, by Theorem 1.2 whp

|V (H)| = |V (L1)| − |M | ≥ 19ϵn

10
− ϵn

10
≥ 3ϵn

2
.

6 Consequences of expansion in the giant component

We begin with the likely existence of a long cycle, which follows immediately from Theorem 3(b)
together with Theorem 3.5.

Proof of Theorem 6(c). By Theorem 3(b), there exists a constant c < 0 such that whp for all ϵ2n ≤
k ≤ 3ϵn

2 and all subsets S ⊆ V (L1) with |S| = k,

|NGp(S)| ≥ c|S|
d ln d

.

Thus, applying Theorem 3.5 with a = 3ϵn
2 and b = 3cϵn

4d ln d , we obtain that whp L1 contains a cycle of
length Ω

(
n

d ln d

)
.

Note that, due to the comment after Theorem 5, up to a logarithmic factor in d this is the best
bound that can be given with such an argument based solely on the expansion of L1.

We now turn to Theorem 6(a) and (b). For these two theorems, the following two lemmas will be
useful. The first is a variant of a lemma from [31], bounding the typical number of edges incident to
connected subsets in Gp, whose proof we include for completeness.

Lemma 6.1. Whp, for all S ⊆ V (L1) such that Gp[S] is connected,

eGp(S) + eGp(S, SC) ≤ max {10|S|, 20 ln c · d} . (10)

Proof. Let us begin by considering connected sets S such that |S| = k ≥ ln c · d. Since any connected
set in Gp has a spanning tree, it is sufficient to show that (10) holds whenever S is the vertex set of
a tree in Gp of order k ≥ d in Gp. By Lemma 3.3, there are at most n(ed)k−1 trees on k vertices
in G and the probability that each such tree is contained Gp is pk−1. Since each set of k vertices is

incident to at most kd edges in G, there are most
(
kd
9k

)
ways to choose an additional 9k edges incident

to this set of vertices, and these edges are in Gp with probability p9k. Hence, by the union bound, the
probability that (10) fails to hold is at most:

n(ed)k−1pk−1

(
kd

9k

)
p9k ≤ n · (2e)k−1

(
2e

9

)9k

≤ n exp(−2k) = o(1/n),

since k ≥ ln c · d ≥ lnn. Taking a union bound over the at most n possible values of k, it follows that
whp for all subsets S ⊆ V (L1) with |S| ≥ ln c · d and Gp[S] connected, e(S) + e(S, SC) ≤ 10|S|.

23



We now turn to connected sets S with |S| < lnC · d. Since L1 is connected, and by Theorem 1.2 we
have that whp |V (L1)| ≥ ϵn, there exists a connected set S′ ⊇ S such that |S′| = d ln d. Note that
2e(S) + e(S, Sc) ≤ 2e(S′) + e(S′, S′C), and so in particular by the above whp

e(S) + e(S, SC) ≤ 2e(S) + e(S, SC) ≤ 2
(
e(S′) + e(S′, S′C)

)
≤ 20 ln c · d,

completing the proof.

We also require a bound on the typical number of edges in L1. While this can be calculated quite
accurately, the following naive, yet simple to prove bound will suffice for our goals, and utilises the
Depth First Search (DFS) algorithm (see [52] for definition and application of the DFS algorithm in
random graphs). Recall that the excess of a connected graph H is defined by the |E(H)|− |V (H)|−1.

Lemma 6.2. Whp, e(L1) < 3ϵn.

Proof. We begin by running a DFS algorithm with nd
2 random bits Xi, to expose a spanning forest

of Gp. We first claim that if there is a connected component S of order k with k ≥ d2, then we have
queried at least 2kd

3 of the edges incident to S. Indeed, otherwise, there would have been an interval

of length at most 2kd
3 where we receive k positive answers. By a typical Chernoff-type bound, the

probability that a fixed interval of length 2kd
3 contains k positive answers is at most

P
(
Bin

(
2kd

3
,

1 + ϵ

d

)
≥ k

)
≤ exp

(
− k

30

)
≤ exp

(
−d2

30

)
.

In particular, taking a union bound over the at most nd intervals of length 2kd
3 and at most n different

values of k completes the proof of the claim.
By Theorem 1.2, whp this algorithm discovered a unique giant component L1, with |V (L1)| < 2ϵn,

and in doing so queried at least 2|V (L1)|d
3 of the at most |V (L1)|d edges incident to V (L1). However,

since we exposed a spanning tree of L1, at most |V (L1)| − 1 edges of L1 were exposed during the

algorithm. Since there are at most |V (L1)|d
3 queries left and whp |V (L1) < 2ϵn, the number of

excess edges in L1 is stochastically dominated by a binomial random variable Bin
(
2ϵnd
3 , 1+ϵ

d

)
. In

particular, by a standard Chernoff-type bound, whp L1 has at most ϵn excess edges and hence in total
e(L1) ≤ |V (L1)| − 1 + ϵn < 3ϵn.

6.1 Proof of Theorem 6(a)

Proof of Theorem 6(a). We note that by Theorem 1.2 and Lemma 6.2, whp, ϵn < |E(L1)|, |V (L1)| <
3ϵn, and we assume in what follows that this holds. Given a vertex v ∈ V (L1), let B(v, r) denote the
ball of radius r around v in L1. Since L1 is connected and has size at least ϵn, for any v ∈ V (L1)
we have that |B(v, d ln d)| ≥ d ln d. Furthermore, by Lemma 6.1, whp for any B(v, r) ⊆ V (L1) with
|B(v, r)| ≥ ln c · d,

e (B(v, r))

10
≤ |B(v, r)| ≤ e(B(v, r)) − 1,

where the lower bound holds since B(v, r) is connected. By Theorem 4(a) and (b), whp for any
B(v, r) ⊆ V (L1) with |B(v, r)| ≥ d ln d,

e(B(v, r + 1)) = e(B(v, r)) + ∂Gp(B(v, r))

≥ min

3ϵn

2
− 1, e(B(v, r)) +

c ln
(

n
|B(v,r)|

)
d ln d

|B(v, r)|

 .

By the above, whp

e(B(v, r)) +
c ln

(
n

|B(v,r)|

)
d ln d

|B(v, r)| ≥

1 +
c ln

(
n

e(B(v,r))−1

)
10d ln d

 e(B(v, r))

≥

1 +
c′ ln

(
n

e(B(v,r))

)
10d ln d

 e(B(v, r)),
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for some constants c, c′ > 0, and hence whp

e(B(v, r + 1)) ≥ min

3ϵn

2
− 1,

1 +
c′ ln

(
n

e(B(v,r))

)
10d ln d

 e(B(v, r))

 . (11)

We continue assuming the above holds deterministically.
Let v be an arbitrary vertex in L1. We let B0 := B(v, d ln d), and define inductively Bi :=

B(v, d ln d + i).
Let C ′ > 0 be such that n = exp (C ′d). Given 1

d < α ≤ 1, we define

I(α) :=
{
i ∈ N : exp

(
(1 − α)C ′d

)
≤ e(Bi) ≤ exp

((
1 − α

2

)
C ′d
)}

.

Using (11) we can bound the size of I(α). For each i ∈ I(α), we have that
c′ ln

(
n

e(B(i))

)
10d ln d ≥ c′C′α

20 ln d := c′′α
ln d .

Thus by (11),

|I(α)| ≤ log
1+ c′′α

ln d

(
exp

((
1 − α

2

)
C ′d
)

exp ((1 − α)C ′d)

)
=

αC ′d

2 ln
(
1 + c′′α

ln d

) = O(d ln d).

Let imax be the smallest index such that e(Bi) >
3ϵn
2 − 1, let α0 = 1 and let αj = α0

2j
. Then, there is

a smallest index jmax such that

[imax] =

jmax⋃
j=1

I(αj).

Furthermore, there is some constant C ′′ such that if we let αmax =
C′′ ln( 1

ϵ )
d , then exp ((1 − αmax)C ′d) =

3ϵn
2 . Since αi = α0

2i
, it follows that

jmax ≤

⌈
log2

(
d

C ′′ ln
(
1
ϵ

))⌉ = O(ln d).

Thus,
imax ≤ jmax · max

j≤jmax

|I(αj)| = O(d ln2 d).

Therefore it follows that there is some constant K > 0 such that for every v ∈ V (L1),

e
(
B(v,Kd ln2 d

)
≥ e

(
B(K−1)d ln2 d

)
≥ 3ϵn

2
− 1 ≥ |E(L1)|

2
.

Since L1 is connected, we have that e
(
B(v,Kd ln2 d + 1)

)
> |E(L1)|

2 .
Thus, we can cover more than half of E(L1) within a ball of radius O(d ln2 d) from any vertex

v ∈ V (L1), and therefore the diameter of L1 is O(d ln2 d).

6.2 Proof of Theorem 6(b)

We start with some definitions and brief background (see [56] for a more comprehensive introduction
to Markov chains and mixing time). Given a graph G, the lazy simple random walk on G is a Markov
chain starting at a vertex v0 chosen according to some distribution σ, such that for any vertex v ∈ V (G)
the walk stays at v with probability 1

2 , and otherwise moves to a uniformly chosen random neighbour
u of v. Hence, the transition probability from v to u satisfies P(v → u) = 1

2d(v) . If G is connected,
then this Markov chain is irreducible and ergodic and as such has a stationary distribution, which we
call the stationary distribution π, which can be seen to be given by π(v) = d(v)

2e(G) for each v ∈ V (G).
We are interested in estimating how quickly this Markov chain converges to its limit distribution.
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For that, recall that the total variation distance dTV between two distributions p1 and p2 on V (G) is
defined by

dTV (p1, p2) := max
A⊂V (G)

∣∣∣∣p1(A) − p2(A)

∣∣∣∣.
Let P t(v, ·) denote the distribution on V (G) given by starting the lazy random walk at v ∈ V (G) and
running for t steps. If we define d(t) := maxv∈V (G) dTV

(
P t(v, ·), π

)
, then the mixing time of the lazy

random walk is then defined as tmix := min
{
t : d(t) ≤ 1

4

}
. Now, for any S ⊆ V (G), let

π(S) :=
∑
v∈S

π(v) =
2e(S) + e(S, SC)

2e(G)
and Q(S) :=

∑
v∈S,u∈SC

π(v)P(v → u) =
e(S, SC)

4e(G)
.

The conductance Φ(S) of S is then given by

Φ(S) :=
Q(S)

π(S)π(SC)
=

e(S, SC)

2 (2e(S) + e(S, SC))π(SC)
,

where we note that since Q(S) = Q(SC), we have that Φ(S) = Φ(SC). Let πmin = minv∈V (G) π(v).
For ρ > πmin, we define

Φ(ρ) := min {Φ(S) : S ⊆ V (G), ρ/2 ≤ π(S) ≤ ρ,S is connected in G} ,

if there is no such subset S, we set Φ(ρ) = 1. The following theorem due to Fountoulakis and Reed
[34] bounds the mixing time through the conductance of connected sets:

Theorem 6.3 (Theorem 1 of [34]). There exists an absolute constant K > 0 such that

tmix ≤ K

log2 π
−1
min∑

j=1

Φ−2
(
2−j
)
.

Throughout the rest of this section, we consider the mixing time of the lazy random walk on the
giant component L1 of Gp. Below, e(S) will stand for eGp(S) and e

(
S, SC

)
will stand for

∣∣∂Gp(S)
∣∣.

We now aim to bound Φ(ρ). We begin with the following simple observation.

Lemma 6.4. Whp, for any S ⊆ V (L1) such that Gp[S] is connected and π(S) ≥ 100 ln c·d
ϵ3n

, we have

that |S| ≥ 10d lnC
ϵ2

.

Proof. Given S satisfying the conditions of the lemma, it follows that 2e(S)+e(S, SC) = 2e(L1)π(S) ≥
100 ln c·d

ϵ3n
e(L1). Since L1 is connected, by Theorem 1.2 whp e(L1) ≥ |V (L1)| − 1 ≥ ϵn. In particular,

whp 2e(S) + e(S, SC) ≥ 200 ln c·d
ϵ2

, and so by Lemma 6.1, whp

200 ln c · d
ϵ2

≤ 2e(s) + e(S, SC) ≤ 2
(
e(S) + e(S, SC)

)
≤ max{20|S|, 40 ln c · d}.

Since ϵ is sufficiently small, |S| ≥ 10 ln c·d
ϵ2

, as required.

We now show that for wide ranges of ρ, we can apply Theorem 4(a) and (b). We begin by relating
bounds on π(S) to those on Φ(S).

Lemma 6.5. There exists a constant c > 0 such that whp, for every S ⊆ V (L1) with Gp[S] connected
and 100 ln c·d

ϵ3n
≤ π(S) ≤ 1

2 ,

Φ(S) ≥
c ln

(
n
|S|

)
d ln d

.
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Proof. Since π(S) = 2e(S)+e(S,SC)
2e(L1)

≤ 1
2 , it follows that e(S) ≤ e(L1)

2 , as otherwise we have π(S) > 1
2 .

Furthermore, by Lemma 6.2, whp e(L1) < 3ϵn and thus whp e(S) < 3ϵn
2 . Since Gp[S] is connected,

we have that |S| ≤ 1 + e(S). Therefore, whp |S| ≤ 3ϵn
2 . On the other hand, since π(S) ≥ 100 lnCd

ϵ3n
, by

Lemma 6.4 whp |S| ≥ 10d lnC
ϵ2

.

Altogether, we have that whp 10 ln c·d
ϵ2

≤ |S| ≤ 3ϵn
2 . Thus, by Theorem 4(a) and (b), there exists

a constant c′ > 0 such that whp e(S, SC) ≥
c′ ln

(
n
|S|

)
|S|

d ln d , and by Lemma 6.1 we have that whp

2e(S) + e(S, SC) ≤ 2
(
e(S) + e(S, SC)

)
≤ 20|S|. Therefore, with c = c′

20 , whp

Φ(S) =
e(S, SC)

2 (2e(S) + e(S, SC))π(SC)
≥

c′ ln
(

n
|S|

)
|S|

d ln d · 20|S|
≥

c ln
(

n
|S|

)
d ln d

.

Before applying Theorem 6.3, we estimate Φ(2−j) for wide ranges of values of j using Lemma 6.5.

Lemma 6.6. Let j be an integer such that 200 ln c·d
ϵ3n

≤ 2−j ≤ 1
2 . Then there exists a constant c > 0

such that whp

Φ(2−j) ≥ cj

d ln d
.

Proof. Let S =
{
S ⊆ V (L1), 2

−j−1 ≤ π(S) ≤ 2−j , L1[S] is connected
}

. Since 2−j ≥ 200 ln c·d
ϵ3n

, for all

S ∈ S, π(S) ≥ 100 ln c·d
ϵ3n

and so by Lemma 6.5, whp

Φ(S) ≥
c′ ln

(
n
|S|

)
d ln d

.

It follows that whp

Φ
(
2−j
)

= min {Φ(S) : S ∈ S} ≥ min

c′ ln
(

n
|S|

)
d ln d

: S ∈ S

 . (12)

However, for all S ∈ S, since π(S) ≥ 100 ln c·d
ϵ3n

it follows from Lemma 6.4 that |S| ≥ 10d lnC
ϵ2

. Hence,

by Lemma 6.1, whp for all S ∈ S, π(S) = 2e(S)+e(S,SC)
2e(L1)

≥ |S|
ϵn and so

|S| ≤ ϵnπ(S) ≤ 2−jϵn. (13)

Therefore, by (12) and (13) whp

Φ
(
2−j
)
≥

c′ ln
(
2j

ϵ

)
d ln d

=
cj

d ln d
.

We are now ready to prove the Theorem 6(b).

Proof of Theorem 6(b). By Theorem 6.3, we have that there exists an absolute constant K > 0 such
that

tmix ≤ K

log2 π
−1
min∑

j=1

Φ−2
(
2−j
)
. (14)
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Let jmax be the largest index such that 2−j ≥ 200d lnC
ϵ3n

, noting that jmax ≤ log2(ϵ
3n) ≤ d. Then by

Lemma 6.6, whp for 1 ≤ j ≤ jmax, we have that Φ−2
(
2−j
)
≤ d2 ln2 d

c2j2
. Thus,

log2 π
−1
min∑

j=1

Φ−2
(
2−j
)

=

jmax∑
j=1

Φ−2
(
2−j
)

+

log2 π
−1
min∑

j=jmax

Φ−2
(
2−j
)
≤

d∑
j=1

d2 ln2 d

c2j2
+

log2 π
−1
min∑

j=jmax

Φ−2
(
2−j
)
. (15)

We note that

d∑
j=1

d2 ln2 d

c2j2
= O(d2 ln2 d), (16)

since
∑d

j=1
1
j2

= O(1) for d → ∞. Let us now estimate
∑log2 π

−1
min

j=jmax
Φ−2

(
2−j
)
. Since L1 is connected,

and by Lemma 6.2 whp e(L1) < 3ϵn, whp for every S ⊆ V (L1) we have that

Φ(S) = Φ(Sc) ≥ 1

4e(L1)π(S)
≥ 1

12ϵnπ(S)
.

Hence, whp for any S with π(S) ≤ 2−j , Φ(S) ≥ 2j

12ϵn , and so Φ
(
2−j
)
≥ 2j

12ϵn . Therefore, whp

log2 π
−1
min∑

j=jmax

Φ−2
(
2−j
)
≤ 2

(
12ϵn

2jmax

)2

≤ 2

(
12ϵn · 200 ln c · d

ϵ3n

)2

= O(d2). (17)

Altogether, by (14), (15), (16) and (17) we obtain

tmix ≤ K

 d∑
j=1

d2 ln2 d

c2j2
+

log2 π
−1
min∑

j=jmax

Φ−2
(
2−j
) = O(d2 ln2 d) + O(d2) = O(d2 ln2 d).

7 Discussion and open questions

In this paper, we give edge-isoperimetric bounds for high-dimensional product graphs, from which we
are able to derive almost-tight bounds on the likely expansion properties of the giant component in
supercritical percolation on these graphs, as well as almost-tight several structural consequences of
these expansion properties. However, there are many interesting open questions that remain, both in
terms of the isoperimetric properties of these graphs, as well as in terms of the typical structure of
the giant component, and we mention a few of these below.

7.1 Isoperimetry in product graphs

As mentioned in the introduction, Theorems 1 and 2 generalise the edge-isoperimetric inequality of
the hypercube, and are tight in this case for sets of size 2k. In fact, more generally, Theorem 1 is
tight in general for small sets up to a (1+o(1)) multiplicative factor, and the consequence of Theorem
2 that ik(G) = Ω

(
ln
(
n
k

))
recovers up to a constant multiplicative factor known tight isoperimetric

inequalities for many of the families of product graphs for which the edge-isoperimetric problem has
been studied (see [14]).

Moreover, it is not too hard to see that, under the assumption that the base graphs are all isomorphic,
ik(G) = Θ

(
ln
(
n
k

))
for all k. Indeed, it is easy to verify that for k = Ci, i-dimensional projections

of G – that is, induced subgraphs on a vertex set of the form V1 × V2 × · · · × Vt where each Vj is
either V (G(j)) or a singleton vertex {vj} ⊆ V (G(j)) – will have order k and edge-boundary of order
O
(
k ln

(
n
k

))
. With a slightly more careful inductive argument, it can be shown that such a bound

holds for intermediary k as well. It is thus natural to ask about the leading constant.
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Question 7.1. Let H be a connected regular graph, and for all j ∈ [t], let G(j) = H. Let G = □t
j=1G

(j)

and let n := |V (G)|. Are there constants c := c(H) and K := K(H) such that for all 1 ≤ k ≤ n
2 ,

ik(G) = (1 + o(1))c log2

(n
k

)
±K?

A natural conjecture, given the edge-boundary of i-dimensional projections of G, would be that we
can take c = d(H), which would agree with the known bounds in the case of the hypercube.

More generally, and very ambitiously, since we are interested in the asymptotics as t → ∞, and for
any fixed C there is only a finite set {H1, . . . ,Hm} of graphs on at most C vertices, we could ask the
analogue of Question 7.1 in the limit as the proportion of the number of base graphs G(i) that are
equal to a particular graph Hi converges to a limit αi for each i, although it seems likely that this is
a difficult optimisation problem.

In the case of the hypercube the edge-isoperimetric problem has in fact been fully solved — for each
k ≤ 2d it is known precisely which k-sets S minimise its edge-boundary ∂(S), and it is even known
that one can choose a nested sequence of optimal sets, which then interpolate between subcubes of
dimension k for each k ≤ d. This is known to hold more generally for many other product graphs, see
[14], although there are examples, such as the d-dimensional torus for cycles of length larger than five
[24], where there is no nested sequence of optimisers.

For more general high-dimensional product graphs, again restricting ourselves first to the case of
identical base graphs for simplicity’s sake, it is natural to ask if optimal sets are given again by
appropriately chosen projections of G.

Question 7.2. Let H be a connected regular graph and for all j ∈ [t], let G(j) = H. Let G = □t
j=1G

(j).
Given k ≤ t, under what conditions on H is there a choice of vertices vk,1, . . . , vk,k such that the
minimal edge-boundary of a subset of size Ct−k in G is achieved by a set of the form

Sk = {vk,1} × {vk,2} × · · · × {vk,k} × V (H) × V (H) × · · · × V (H)?

Furthermore, under what conditions on H can the vertices {vk,j : j ≤ k} be chosen such that vk,j = vk′,j
for all k, k′ ≥ j, so that the Sk form a nested family?

Finally, the vertex-isoperimetric problem has also been fully solved in the hypercube, see [41], where
optimal sets are given by Hamming balls. It is less easy to give an explicit lower bound for the vertex-
boundary of a set of size k as in Theorem 1.1, but roughly the vertex-expansion factor is a decreasing

function of k, which is Ω(d) for small sets and shrinks to Ω
(

1√
d

)
for linear-sized sets. It would be

interesting to determine if the solution to the vertex-isoperimetric problem in high-dimensional regular
product graphs has similar asymptotic behaviour.

Question 7.3. Let C > 1 be an integer. For all j ∈ [t], let G(j) be a dj-regular connected graph with
1 < |V (G(j))| ≤ C. Let G = □t

j=1G
(j), let n := |V (G)| and let d :=

∑t
j=1 dj.

• Is it true that for all sets S ⊆ V (G) of size |S| ≤ n
2 , |NG(S)| = Ω

(
|S|√
d

)
?

• How does the function îk(G) := min
S⊆V (G),|S|=k

{
|NG(S)|

|S|

}
behave for general k?

7.2 Percolation in high-dimensional product graphs

Moving on to the topic of percolation, as mentioned in the introduction, it has been shown [29] that
for a large class of high-dimensional product graphs the phase transition that they undergo around
the percolation threshold is quantitatively similar to that which occurs in the binomial random graph
G(n, p), a phenomenon that has been observed in many other random subgraph models and which can
be viewed as a sort of universality property of G(n, p). Using the standard notation of Θ̃ to denote
the Θ Landau notation while suppressing logarithmic factors, in this paper we show that as in the
giant component of G(n, p), in percolation on a high-dimensional product graph with degree d and
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order n the typical mixing time of a lazy random walk on L1 is Θ̃(d2) = Θ̃((log n)2), and the likely
diameter of L1 is Θ̃(d) = Θ̃(log n). From this point of view it is natural to ask what other parameters
of these models, when appropriately scaled, resemble those in G(n, p). In particular, a well-known
result of Ajtai, Komlós, and Szemerédi [2] states that whp a supercritical binomial random graph
G(n, p) contains a path and cycle of length Ω(n). Indeed, in a recent work, it was shown [27] that
Qd

1
2
+ϵ

contains whp a Hamiltonian cycle. Finding a cycle spanning a linear fraction of the vertices

in the case of a supercritical subgraph of the hypercube remains open. Note that [27] poses several
questions about a typical maximum length of a cycle in Qd

p for various regimes of p := p(d).

Question 7.4. Let G = □t
j=1G

(j) be a product graph all of whose base graphs are connected, regular

and of bounded order. Let d := d(G), n := |V (G)|, ϵ > 0 and let p = 1+ϵ
d . Does Gp whp contain a

cycle or a path of length Θ(n)?

Remark 7.5. We note that finding a path of length Θ(n) in Qd
p implies the likely existence of a cycle

of the same order of magnitude in Qd
p. Indeed, one can start by taking a path P0 of length Θ(n) in

the giant component of (Q0)p, where Q0 is the subcube of Qd obtained by fixing the first coordinate

to be 0. Considering the projection of the first and last |P0|
10 vertices of this path into the subcube of

Qd obtained by fixing the first coordinate to be 1, Q1, one can utilise similar methods to Lemmas 5.1
and 5.2 to show that at least one of the first |P0|

10 vertices and one of the last |P0|
10 vertices of this path

will belong whp to the giant component in (Q1)p, and thus will have a path connecting them, closing
a cycle of length Θ(n) with most of the vertices of P0. This argument generalises easily to a product
graph all of whose base graphs are connected, regular and of bounded order.

Theorem 6(c) shows that L1 contains whp a cycle of length Ω(nd−1 log−1 d), and by the comment
after Theorem 5, up to the logarithmic factor in d, this result is the best possible that one can derive
directly from the expansion properties of L1. It seems likely that to settle this question, even in the
case of the hypercube, new methods will be required.

Finally, it would be interesting to determine whether the logarithmic factors in d that appear in
our bounds for the asymptotic mixing time and the likely diameter are necessary, or whether they can
be removed, thus mirroring the picture in the supercritical G(n, p), or improved. It is worth noting
that unlike the application of the methods of [35] in G(n, p), in randomly perturbed graphs [54], and
in pseudo-random graphs [31], the bottleneck on our bound on the mixing time here comes from our
bound on the typical expansion of large connected subsets, rather than small subsets.
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